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Introduction: Drug abuse is becoming a global public health crisis. According 
to the United Nations, the number of drug users worldwide has increased 
dramatically over the past decade, with a surge in the number of drug abusers. 
The problem was exacerbated by the expanding market for illicit drugs and the 
increasing availability of synthetic drugs such as fentanyl. Clinical drug abuse is a 
problem that requires particular attention, and the potential addictive properties 
of some drugs and their mechanisms of action are currently unknown, which 
limits the development and implementation of drug addiction intervention 
strategies.

Methods: Eight-week-old C57BL/6J mice were used as study subjects. A 
mental dependence model was established using the conditional position 
preference experiment (CPP), and the hippocampal tissues of the model mice 
were subjected to RNA-seq transcriptome sequencing, LC–MS non-targeted 
metabolome sequencing, and intestinal macro-genome sequencing in order 
to discover propofol mental dependence signature genes. Correlation analyses 
of transcriptomics and metabolomics were performed using the Spearman 
method, and gene-metabolite networks were mapped using Cytoscape 
software. Real-time fluorescence quantitative PCR and immunoprotein blotting 
(Western blotting) methods were used to validate the characterized genes.

Results: After the conditioned position preference experiment, the conditioned 
preference scores of the 75 mg/kg propofol and 2 g/kg alcohol groups were 
significantly higher than those of the control saline group. 152 differential genes 
and 214 differential metabolites were identified in the 75 mg/kg group. Cluster 
analysis revealed that changes in the neuroactive ligand receptor pathway were 
most pronounced. Gut microbiomics assays revealed significant changes in 
five differential enterobacterial phyla (Campylobacter phylum, Thick-walled 
phylum, Anaplasma phylum, Actinobacteria phylum, and Chlorella verticillata 
phylum) in the 75 mg/kg propofol group, which may be related to changes in 
the differential expression of dopamine.
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Discussion: These findings suggest that 75 mg/kg propofol has a significant 
mind-dependent effect on the biology of drug addiction through neuroactive 
ligand-receptor interaction pathways in conjunction with the tricarboxylic acid 
cycle, and the metabolic pathways of alanine, aspartate, and glutamate that may 
influence intestinal microbial changes through bidirectional signaling.

KEYWORDS

propofol, psychiatric dependence, gut microbes, transcriptomics, metabolomics, 
hippocampus

1 Introduction

Propofol, as a fast-acting short-acting anesthetic, is widely used in 
a variety of clinical practices, including short-term anesthesia for 
abortion, gastroscopy, and the induction and maintenance of general 
anesthesia (1), but also for conscious sedation in critically ill patients, 
as well as in the treatment of refractory agitated delirium and 
antiemetic. Recent studies have also shown that propofol has 
therapeutic and anti-inflammatory effects (2). Its main mechanism of 
action is to inhibit neural signaling by promoting chloride inward flow 
via GABA-A type receptors (3). However, the risk of propofol abuse 
and addiction cannot be  ignored, especially among medical 
professionals (4, 5), long-term or overdose use of propofol may lead 
to dependence, increased tolerance, and withdrawal symptoms, and 
overdose may even be life-threatening (6).

Drug addiction is considered a chronic and relapsing brain 
disorder characterized by persistent craving for and use of drugs 
regardless of negative consequences (7). Underlying this craving 
and use behavior are long-term gene expression changes, neuronal 
adaptations, and changes in synaptic plasticity triggered by 
repeated drug ingestion. The hippocampus, a key brain region for 
learning and memory, plays a central role in drug addiction (8). 
Drug addiction can lead to significant changes in neuroplasticity 
in the hippocampus that include changes in neuronal excitability, 
neurotransmission, morphological changes in dendrites and 
axons, and synapse formation or elimination (9). Neurotransmitter 
systems in the hippocampus, including dopamine, glutamate, and 
GABA, are closely linked to the neural mechanisms of drug 
addiction (10). Current research on the mechanisms of drug 
addiction has focused on changes in brain neurotransmitters 
(dopamine, glutamate, and GABA, among others) (11). The 
hippocampal region, a key brain area for learning, memory, and 
spatial navigation, plays a central role in the development and 
maintenance of drug addiction (8). Addictive drugs such as 
cocaine, opioids, and nicotine alter the structure and gene 
expression of the region by modulating synaptic plasticity in the 
hippocampus. In addition, drug abuse-induced changes in 

neurotransmitter systems, including serotonin and endorphins, 
have been strongly associated with the development of addictive 
behaviors by modulating mood, memory, and reward behaviors. 
Most addictive drugs are directly linked to reward effects by 
increasing the release of dopamine in the brain, particularly in the 
hippocampus, leading to craving and dependence on the drug 
(12). In neurobiological models of addiction, changes in dopamine 
receptor expression in the hippocampus have received widespread 
attention, e.g., chronic drug exposure (e.g., cocaine, endogenous 
cannabinoid analogs) may lead to down-regulation of dopamine 
D2 receptors in the hippocampus, which may be  related to 
reduced sensitivity to drugs and disinterest in non-pharmacological 
rewards in addicted individuals (13). Dysregulated dopamine 
signaling in the hippocampus has also been associated with the 
risk of relapse in drug addiction, as these alterations may affect an 
individual’s response to drug-related cues and decision-making 
processes. Thus, the hippocampus and dopamine system play a 
critical role in the development, maintenance, and relapse of drug 
addiction, and long-term alterations in these brain regions 
provide a neurobiological basis for the persistence of addiction 
and the complexity of treatment.

Multi-omics technology refers to the integrated application of 
various genomics techniques such as genomics, transcriptomics, 
proteomics, metabolomics, etc., to comprehensively analyze the 
changes in biological samples at different biological levels, and in 
the case of drug addiction, many researchers have used 
metabolomics to find that metabolites such as (inositol-1-
phosphate, free fatty acids, and metabolites related to tricarboxylic 
acid cycle, etc.) are increased in the brain of rats after heroin 
addiction (14). Microbiome and metabolomics approaches to 
study methamphetamine users identify microbial metabolic 
pathways involved in addiction (15). The effects of chronic 
methamphetamine exposure on the neural proteome in the 
hippocampus and olfactory bulb region of rats were also 
investigated by proteomic approaches, revealing significant 
changes in the expression of 18 proteins related to addiction such 
as (synaptic vesicle glycoprotein 2A, myelin proteolipoproteins, 
etc.) (16). These technologies enable us to probe deeply into the 
biological basis of drug addiction at the molecular level, revealing 
the underlying gene expression regulation, protein function 
changes, metabolic pathway remodeling, and complex networks 
of inter-cellular interactions. For example, the development of 
single-cell sequencing technology and spatial transcriptomics 
provides a powerful tool to study the cellular heterogeneity and 
tissue microenvironment of drug addiction (17, 18). Dysregulation 
of gut flora in alcohol addiction and modification of addiction 
using gut flora modification (19). The application of these 
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technologies not only greatly broadens our understanding of the 
pathogenesis of drug addiction, but also provides a solid scientific 
basis for the development of new treatment strategies. At present, 
the combined application of propofol and multi-omics technology 
is still in its infancy, and the related research results are limited. 
Transcriptome studies have found that propofol can change the 
structure and function of the developing heart, suggesting its 
potential cardiotoxic effect (20). Metabolomics studies have 
shown that propofol can significantly increase the level of 
inflammatory marker glycoprotein acetylation (GlycA) (21).

In recent years, the interaction between gut microbiota and 
host metabolism has become a hot topic in biomedical research, 
such as the brain-gut axis and the gut-liver axis. The gut 
microbiome not only plays a key role in maintaining the host’s 
nutritional metabolism, immune regulation and intestinal barrier 
function, but also affects the host’s systemic metabolic status 
through its metabolites (22). More and more evidence suggests 
that the interaction between gut microbiome and host metabolism 
may play an important role in the pathogenesis of drug addiction. 
On the one hand, gut microbes can affect the behavior and mood 
of the host by regulating neurotransmitter levels and immune 
responses. On the other hand, metabolic changes may reflect the 
systemic effects of drug abuse on the body.

The purpose of this study is to explore the mechanism of 
propophenol-induced mental dependence in mice by network 
pharmacology, transcriptomtics, metabolomics and 
metagenomics, reveal the molecular mechanism of propofol 
addiction, explore the changes of hippocampal and intestinal flora 
in mice after propofol addiction, and provide therapeutic 
strategies for clinical treatment of propofol addiction and 
prevention of propofol abuse. The flow chart of the experiment is 
shown in Figure 1A.

2 Materials and methods

2.1 Chemical reagents

Propofol was purchased from McLean Biotechnology (D806979), 
HiScript II Q RT SuperMix for qPCR (R223-01, vazyme, Nanjing, 
China), primers were purchased from Xianghong Bio-technology Co., 
Ltd., and antibodies to DRD1 and DRD2 were purchased from 
Proteintech (17934-1-AP, Wuhan, China).

2.2 Animal models and experimental 
design

Healthy male C57BL/6J mice (6 weeks old, weighing 20–23 g) were 
purchased from Xi’an Fraser Biotechnology Co. The mice were 
acclimatized to the laboratory environment for 2 weeks before the 
experiment. Standard diet and water were ad libitum. 72 mice were 
randomly divided into 6 groups of 12 mice each, including saline 
control group, propofol-treated group (0 mg/kg, 50 mg/kg, 75 mg/kg, 
100 mg/kg) and alcohol control group. Propofol was injected 
intraperitoneally and 100 mg/kg was chosen as the highest dose based 
on the literature that the 114 mg/kg dose resulted in the loss of the flip 
reflex in mice. The normal saline group and alcohol group were used 

as negative and positive controls, respectively. The experiment was 
divided into adaptation stage, training stage and testing stage. The 
adaptation period lasted for 3 days. Every day, the mice were placed in 
the middle channel, opened the channel door, and explored freely for 
30 min to help the mice adapt to the experimental environment. On 
the fourth day, the basic time test was performed with a 15 min limit 
time, and the mouse’s residence time in the preference box and the 
non-preference box was recorded as the baseline data of behavioral 
preferences. Then enter the 20 day training phase. In the morning, 
mice were intraperitoneally injected with normal saline, propofol and 
alcohol of different concentrations, and placed in the preference box to 
close the door of the middle channel; In the afternoon, all mice received 
the same volume of normal saline injection as the control group, placed 
in the non preference box, closed the channel door, and then cycled to 
the 21st day, entered the test phase, reopened the door of the middle 
channel, the mice explored freely for 15 min, and recorded the 
residence time in the preference box and the non preference box. The 
preference score was calculated by the residence time before and after 
the experiment to evaluate the effect of propofol and alcohol on the 
behavioral preference of mice (23, 24). At the end of the test, mice were 
executed and hippocampal tissues were separated on ice and stored in 
liquid nitrogen for subsequent experiments. All experiments involving 
propofol drug addiction in this study were approved by the Ethics 
Committee of Qinghai University School of Medicine (2022–01). 
Animal experiments were conducted in accordance with the European 
Guidelines for the Care and Use of Laboratory Animals (2010/63/EU).

2.3 Metabolomics

A 50–100 mg sample was taken and added to a methanol-
acetonitrile mixture for low temperature sonication extraction. 
Centrifuge at 12000 rpm for 10 min, take the supernatant and add 
200 μL of 30% acetonitrile solution to re-dissolve and centrifuge at 
14000 rpm for 15 min. Samples were analyzed using Vanquish UPLC 
(Thermo, USA). Samples were separated on a Waters HSS T3 column 
with electrospray ionization source detection. Raw data were 
pre-processed using Progenesis QI software (Waters Corporation, 
Milford, USA), normalized and imported into R software. The metabolic 
abundance of each group of samples was standardized to eliminate the 
technical variation between different samples. On this basis, the average 
abundance of each group of metabolites was calculated, and the FC 
value was further calculated. The p value was calculated by Student’s 
t-test, and the VIp value was calculated by multivariate statistical 
analysis method OPLS-DA. When screening differential metabolites, 
strict thresholds were set: P value 1, and FC > 1.5 or < 0.667. The 
metabolites that met these conditions were identified as differential 
metabolites, and the significance level of metabolite enrichment in each 
pathway was analyzed by Fisher’s exact test.

2.4 Transcriptomics

Total RNA was extracted by Trizol reagent and evaluated for 
quantity and purity. High-quality RNA samples were selected for 
construction of sequencing libraries. The mRNA was enriched using the 
magnetic bead method, followed by fragmentation, reverse transcription 
and PCR amplification. DESeq2 software was used to identify 
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FIGURE 1

Hippocampal transcriptome changes in 75 mg/kg propofol-addicted mice. (A) Study design. (B) Change in preference scores for each group after the 
conditional location preference experiment (preference preference score = time before the experiment - time after the experiment) p < 0.05, *p < 0.01. 
(C) Volcano map of the propofol group. (D) Volcanic map of the alcohol group. (E) Differential gene intersections between the propofol group and the 

(Continued)
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differentially expressed transcripts and genes, setting |log2(fold change)| 
>1 as the threshold, and KEGG and GO enrichment analyses were 
performed. p value corrected p < 0.05 was used as the screening criterion 
to further analyze the GO function and KEGG pathway enrichment.

2.5 Macrogenomics

Samples of intestinal contents were collected and total DNA was 
extracted from the samples and tested for DNA purity and integrity. 
DNA samples were broken and libraries were constructed for high-
throughput sequencing. Raw data were pre-processed in Illumina fastq 
format to remove host contamination. The obtained sequences were 
spliced and assembled, and gene prediction, annotation and 
classification were performed. Finally, the samples were subjected to 
similarity clustering, sequencing tests and statistical comparison of 
differences. For the analysis of intestinal microbiota, principal 
component analysis (PCA) was used to preliminarily distinguish the 
significant differences between different groups. Subsequently, the 
differences in the composition of intestinal microbial communities 
under different groups were shown by species composition histograms, 
and these differences were further quantified by linear discriminant 
analysis (LDA). In order to identify microbial species with significant 
differences, STAMP analysis tool and Wilcoxon rank sum test were 
used to analyze the differences between groups, and the significance 
level was also set as p < 0.05. This method can not only identify different 
species, but also visually display their distribution in different groups.

2.6 Network pharmacology and molecular 
docking

Potential targets of propofol were collected from four databases, 
PharmMapper, SwissTargetPrediction, Drugbank and 
BATMAN-TCM, and from NCBI, GeneCard, Therapeutic Targets 
Database, Pharmacogenomics Knowledge Base four databases to 
collect relevant targets for drug addiction (25–28). The Wayne 
diagrams of propofol targets and drug addiction targets were drawn 
using the Microbiotics Online Platform.1 Protein interaction networks 
were constructed using the STRING database. The DAVID database 
was used to perform GO and KEGG pathway enrichment analyses 
and visualization of potential targets. The 3D structural data of 
propofol were downloaded from the PubChem database, while the 
protein structural data were obtained from the PDB database. 
Molecular docking was performed through the CB-Dock2 platform.2

1 https://www.bioinformatics.com.cn/

2 https://cadd.labshare.cn/cb-dock2/php/index.php

2.7 Comprehensive analysis of 
transcriptomics and metabolomics

On the basis of transcriptomics and metabolomics sequencing 
analysis, the correlation analysis of OPLS-DA was performed on the 
differential genes and differential metabolites of propofol at a 
concentration of 75 mg / kg, and the load map was drawn. Subsequently, 
the differential metabolites and differential genes were analyzed by 
Pearson correlation analysis for clustering heat map drawing, and the 
correlation was set to p < 0.05 (p < 0.05, ‘*’) to explore the correlation 
between genes and metabolites. After that, Cytoscape (Cytoscape 
v3.9.0) was used to draw a gene-enzyme reaction-metabolite network 
diagram to explore the relationship between genes and metabolites.

2.8 Real-time fluorescence quantitative 
PCR

RNA was extracted from hippocampus, converted to cDNA by 
reverse transcription kit, and amplified by PCR using SYBR method. 
Through the PCR instrument, the fluorescence signal changes were 
monitored and collected to obtain the Ct value (cycling threshold), and 
the relative quantitative analysis was performed by the 2^–ΔΔCt method.

2.9 Western blotting

Hippocampal tissue was mixed with RIPA lysate, protease and 
phosphatase inhibitor (100:1:1) and ground, and the supernatant was 
subjected to polypropylene gel electrophoresis, incubated overnight at 
4°C with primary antibody against DRD1 and DRD2, and then the 
secondary antibody was incubated and developed, and the images 
were collected.

2.10 Statistical analysis

Behavioral data were calculated by the preference score formula, 
plotted and analyzed using GraphPad Prism software v10.1.2. 
Comparisons between multiple groups were analyzed using one-way 
ANOVA with p < 0.05 as the criterion for significance. All experiments 
were repeated three times with p < 0.05 as the criterion for 
statistical significance.

3 Results

3.1 Behavioral analysis

The results of CPP showed that the preference scores of mice 
in the 75 mg/kg Propofol group (Propofol group) changed 

saline and alcohol groups. (F) Heat map of gene expression in saline, propofol group and alcohol group. (G) KEGG-enriched bubble map of the 
propofol group. (H) KEGG-enriched bubble plot for the alcohol group. (I) GO analysis enrichment circle plot for the propofol group. (J) GO analysis 
enrichment circle plot for the alcohol group. (K) Metabolite principal component analysis plot for the propofol group. (L) Metabolite principal 
component analysis plot for the alcohol group.

FIGURE 1 (Continued)
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significantly and at p < 0.05 compared to the saline control group, 
the preference scores of mice in the Alcohol group changed 
significantly and at p < 0.05 compared to the saline group, and 
the preference scores of mice in the Propofol group showed the 
same trend of change compared to the Alcohol group which 
indicated that isoPropofol did form a mental dependence, see 
(Figure 1B).

3.2 Transcriptomic analysis of propofol 
group and alcohol group

In the transcriptomic analyses performed in the propofol and 
alcohol groups, we used |log2FC| > 1 and p < 0.05 as the criteria 
for screening differentially expressed genes. The results showed 
that there were 152 genes with significant changes in expression 
in the propofol group, of which 30 were up-regulated and 122 
were down-regulated. The alcohol group, on the other hand, had 
261 genes with significant changes in expression, including 18 
up-regulated and 243 down-regulated genes (Figures  1C,D). 
Cross-tabulation analysis of gene expression revealed 79 common 
differentially expressed genes. Clustering heatmap analysis further 
revealed that the propofol and alcohol groups were similar in 
differential gene expression patterns (Figures  1E,F). KEGG 
pathway enrichment analysis pointed out that samples from both 
groups exhibited significant changes in cocaine addiction and 
neuroactive ligand-receptor interaction pathways (Figures 1G,H). 
In addition, GO functional enrichment analysis identified 10 
significantly enriched biological processes covering signal 
transduction, dopamine receptor activity, and lipid and organic 
acid binding functions (Figures 1I,J).

3.3 Metabolomic changes in propofol and 
alcohol groups

Alterations in hippocampal metabolic profiles by propofol 
addiction were assessed from metabolite expression levels, and 
OPLS-DA analysis of the propofol and alcohol groups showed that 
samples within the propofol and alcohol groups clustered together, 
whereas the samples between the groups tended to be significantly 
separated, suggesting that there were significant differences 
between the groups (Figures  1K,L). Volcano plots of the 
differential metabolites screened in the propofol group and 
alcohol group are shown (Figures 2A,B). The cross-differential 
metabolite heatmaps of the saline, propofol, and alcohol groups 
clearly showed the differences in metabolites and 17 cross-
differential metabolites between the propofol and alcohol groups 
and the control saline group (Figure 2C), which indicated that the 
metabolite trends were similar in the propofol and alcohol groups. 
Next, metabolite-related metabolic pathways were analyzed using 
the KEGG pathway library and plotted as bar graphs 
(Figures 2D,E), which showed that the metabolites in the propofol 
group and the alcohol group were mainly concentrated in the 
citric acid cycle, 2-oxocarboxylic acid metabolism, and alanine, 
aspartate, and glutamate metabolic pathways. In addition to the 
common metabolic compounds such as glycerophospholipids, 
carboxylic acids and their derivatives, which were found in the 

propofol and alcohol groups, there were also antioxidant and 
neuroprotective compounds such as benzothiazoles, coumarins 
and their derivatives, organic oxides, and purine nucleosides, as 
shown in the graphs (Figures 2F,G).

3.4 Differences in gut microbes between 
propofol and saline groups

To assess the effect of propofol addiction on gut microbial 
diversity, we  analyzed species evenness and richness in the 
propofol group versus the saline group using Simpson’s index and 
Shannon’s index. The results showed that species evenness and 
richness were significantly higher in the propofol group than in 
the saline group (Figures  2H,I). Principal component analysis 
(PCA) and non-metric multidimensional scaling (NMDS) further 
revealed a high degree of clustering of the samples in the propofol 
group, indicative of a high diversity of community composition 
(Figure  3A). Linear discriminant analysis of LEfSe software 
identified potential biometabolic pathways (Figure 3B). Histogram 
analysis of species abundance revealed significant changes in 
microbial composition at the phylum level in the propofol group, 
including the disappearance of the Campylobacter phylum, a 
decrease in the thick-walled phylum, and an increase in the 
Anaplasma phylum, Actinobacteria phylum, Pseudomonas 
phylum, and Micrococcus wartyi phylum. At the genus level, 
H. pylori disappeared, Streptococcus decreased, and Lactobacillus 
spp. and Akkobacter spp. increased in abundance, changes 
indicative of key biomarker flora in the propofol group 
(Figures 3C,D). Comparative analysis of the macrogenomic data 
using Stamp software gave us information on the species 
composition abundance, functional prediction and their 
differences in the propofol group. KEGG and eggNOG functional 
prediction analyses revealed a significant increase in substance-
dependent, neural and drug-resistance-associated metabolic 
pathways in the propofol group (Figures 3E,F).

3.5 Integrated analysis of metabolomics 
and transcriptomics data

To gain a deeper understanding of the biological changes in the 
hippocampal region of the propofol group, we constructed a correlation 
matrix heat map of 79 common differential genes and 17 common 
differential metabolites among the saline, propofol and alcohol groups 
by Spearman correlation analysis (Figure  3G), which revealed the 
expression patterns of key genes and metabolites. The analysis revealed 
significant correlations (p < 0.05) between 1,062 pairs of differential 
genes and metabolites, e.g., the dopamine receptor was positively 
correlated with cis-aconitine and (R)-ergosterol-5-pyrophosphate, and 
negatively correlated with docosahexaenoic acid (DHA), a metabolite 
of lysophosphatidylethanolamine, and lysophosphatidylcholine. In 
addition, OPLS-DA analysis of Top25 differential genes and metabolites 
further revealed the correlation between them (Figure  3H). The 
compound-reaction-enzyme-gene network diagram constructed using 
Cytoscape 3.9.0 software (Figure 4A) revealed the potential interactions 
and pathway regulation between metabolites and genes. These findings 
not only elucidated the biological changes in the propofol group, but 
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FIGURE 2

Changes in metabolomics in the hippocampus in the 75 mg/kg group. (A) Metabolite volcano plot of the propofol group. (B) Metabolite volcano plot of 
the propofol group versus the alcohol group. (C) Gene expression heatmap of the saline, propofol and alcohol groups. (D) KEGG pathway enrichment 
histogram for the propofol group. (E) KEGG pathway enrichment histogram for the alcohol group. (F) Pie chart of chemical classification of differential 
metabolites in the propofol group. (G) Pie chart of chemical classification of differential metabolites in the alcohol group. (H) Shannon index box plot of 
alpha diversity of gut microbes in the propofol group. (I) Box plot of the Gini-simpson index of alpha diversity of gut microbes in the propofol group.
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FIGURE 3

Characteristic gut microbiological changes in the propofol group and the control group. (A) PCA and NMDS analysis of gut microbes in the propofol 
group versus the saline and alcohol groups. (B) Linear discriminant analysis of gut microbial metabolic pathways in the propofol group. (C) Changes in 
species composition at the phylum level in the propofol group. (D) Species composition changes at the genus level in the propofol group. (E) KEGG 
pathway maps for significant differences in microbial abundance in the propofol group. (F) Functional annotation maps of eggNOG for significant 
differences in microbial abundance in the propofol group. (G) Correlation matrix heatmaps of differential genes with differential metabolites in the 
propofol group. *p < 0.05, **p < 0.01. (H) OPLS-DA analyses of differential genes with differential metabolites in the Top20.

https://doi.org/10.3389/fmed.2025.1539467
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2025.1539467

Frontiers in Medicine 09 frontiersin.org

FIGURE 4

Network pharmacology and differential gene-metabolite association analysis of propofol and addiction. (A) Gene-metabolite network mapping with 
cytoscape. (B) Venn of targets of action of propofol versus targets of action of addiction. (C) Protein interactions map between propofol targets of 
action and targets of addiction. (D) GO enrichment analysis of the common targets of action of propofol and addiction. (E) KEGG pathway-enriched 
bubble map of the intersection of propofol targets of action and targets of addictive action. (F) Venn of propofol addiction targets versus cocaine 
addiction targets.
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also provided important data for the discovery of therapeutic targets 
and biomarkers for propofol addiction.

3.6 Network pharmacology and molecular 
docking analysis

In this study, 473 propofol action targets and 588 addiction targets 
were obtained by database screening, and Venn diagram analysis 
showed that 37 targets were shared between the two (Figure 4B). 
These targets were collated and visualized by a protein–protein 
interaction (PPI) network constructed from the STRING database and 
using Cytoscape 3.9.0 software (Figure 4C), with node color shades 
indicating the strength of the protein–protein interactions. The GO 
enrichment analysis identified 143 annotated pathways for biological 
processes, 51 cellular components and 56 molecular functions, and 
the analyses of each class The top  10 pathways were visualized 
(Figure 4D), involving multiple key biological processes such as signal 
transduction, chemical synaptic transmission, transmembrane ion 
transport, etc. KEGG pathway enrichment analysis screened out 23 
signaling pathways, of which the top  10 were mainly involved in 
GABAergic synapses, morphine addiction, taste transmission, etc. 
(Figure 4E), and the neuroactive ligand-receptor interaction pathway 
was particularly prominent. Transcriptomics sequencing focused on 
pathways related to neurological ligand-active receptor interactions 
and cocaine addiction. Cross-analysis with transcriptomic data from 
cocaine addiction models, seen in dataset GSE108836 (29) identified 
38 common targets of action (Figure 4F), and KEGG enrichment 
analysis further confirmed the importance of the neuroactive ligand-
receptor pathway (Figure  5A). Combined with network 
pharmacological analysis, we  screened the neuroactive receptor-
ligand pathway and mapped the network of genes in the pathway, and 
found that the dopamine receptors DRD1 and DRD2 had a high 
degree of interactions (Figure  5B); therefore, molecular docking 
analyses of dopamine receptors DRD1 and DRD2 were performed, 
and the results showed that isoproterenol binds with binding energies 
of −6.9 and − 6.6 to DRD1 and DRD2, respectively (Figures 5C,D).

3.7 qPCR validation of differential genes

We screened eight differential genes from key pathways involved 
in neural ligand-receptor interactions for real-time fluorescence 
quantitative qPCR validation. These genes included DRD1, DRD2, 
TH, TRH, PPP1R1B, CHAT, RGS9, and GPR6. qPCR validation 
showed that the expression changes of these genes in the hippocampal 
region were consistent with the transcriptome sequencing results, thus 
validating the accuracy of the transcriptome data. This result is 
detailed in Figure 5E, which provides a solid experimental basis for 
further exploring the molecular mechanism of propofol addiction.

3.8 Western blot to verify the expression of 
dopamine receptor

In order to verify the expression of dopamine receptors in the 
hippocampus, protein immunoblotting was performed for verification, 
and the results showed that the expression of dopamine DRD1 and 

DRD2 in the hippocampus of mice in the propofol and Alcohol groups 
was decreased compared with that in the Saline group, which was 
consistent with the results of the sequencing analysis (Figures 5F,G).

4 Conclusion

Through this study, it was found that propofol had mental 
dependence, and the addictive effect was the highest at the dose of 
75 mg/kg, and the addictive effect decreased after a certain dose, which 
provided a basis for the future use of propofol. Transcriptome and 
network pharmacology showed that propofol addiction caused 
significant expression of neuroactive ligand receptor pathway, and the 
tricarboxylic acid cycle and alanine, aspartate, and glutamate pathways 
in the hippocampus were significantly up-regulated. At the same time, 
Campylobacter, Bacteroidetes, Actinobacteria, and Verrucomicrobia in 
the intestinal flora were significantly increased. Therefore, it is inferred 
that the increase of SCFAS in the gut interacts with the activity of 
dopamine neurotransmitters in the hippocampal fatty acid metabolism, 
amino acid metabolism and neuroactive receptor ligand pathway.

5 Discussion

In this study, we  combined transcriptomic, metabolomic, and 
metagenomic analyses of the hippocampus to provide new insights 
into the molecular mechanisms of propofol abuse addiction. These 
findings reveal the central role of the neural ligand-receptor interaction 
pathway in propofol addiction, especially the changes of dopamine 
neurotransmitters in the neuroreceptor pathway, and provide new 
insights into the detailed mechanism of propofol addiction.

In the analysis of transcriptomics results, significant changes 
in gene expression in the hippocampus following propofol 
addiction were observed, and these changes were mainly focused 
on the neuroactive ligand receptor pathway. Specifically, we found 
significant changes in the expression of the dopamine receptors 
DRD1 and DRD2, GPR6, and RGS9, which are closely related to 
neuroadaptive changes, synaptic plasticity, signaling, and other 
functions. These findings echo the neurobiological model 
proposed by Koob and Le Moal et al., which posits that addiction 
is a vicious cycle driven by a decline in the function of the brain 
reward system and activation of the anti-reward system, where 
chronic drug exposure leads to a decline in the function of the 
reward neurotransmitter system and concomitant activation of the 
anti-reward system, which induces down-regulation of dopamine 
receptor expression, thereby increasing the risk of drug craving 
and relapse (30, 31), causing downregulation of dopamine 
receptor expression and a high risk of drug craving and relapse. 
In addition, GPR6, a G protein-coupled receptor, has been 
identified as a novel therapeutic molecular target for cannabidiol, 
which provides new therapeutic perspectives (32), RGS9 and its 
specific splice variant RGS9-2 play roles in the regulation of 
morphine reward and dependence (33). Studies of the neuroactive 
ligand pathway have revealed that the pathway contains a variety 
of neurotransmitter systems including dopamine, endorphins, 
glutamate, norepinephrine, 5-hydroxytryptamine, and gamma-
aminobutyric acid. Among these systems, the dopamine system 
plays a central role in the regulation of motor, emotional, and 
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FIGURE 5

Validation of differential gene correlations in the neuroactive receptor-ligand interaction pathway. (A) KEGG-enriched bubble plot of cocaine addiction 
targets. (B) Protein interaction plots of genes on the neuroactive receptor-ligand pathway. (C) Diagram of molecular docking models for dopamine 
receptor 1. (D) Diagram of molecular docking models for dopamine receptor 2. (E) QPCR validation of differential genes in significant pathways 
regarding propofol addiction. *p < 0.05, p < 0.01 and p < 0.001 and ***p < 0.0001. (F,G) Western blotting validation of dopamine receptor 1 and 
dopamine receptor 2 regarding propofol addiction. *p < 0.05, p < 0.01 and p < 0.001 and ***p < 0.0001.
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reward-related behaviors. Therefore, we believe that the reciprocal 
regulation of neural ligand-receptor interactions between genes 
such as DRD1, DRD2, GPR6, and RGS9 is closely linked to the 
reward effects and addictive behaviors of propofol.

Metabolomics further analyzes the effects of propofol addiction on the 
hippocampal region, which produces metabolites including citric acid, 
lysophosphatidylcholine, lysophosphatidylethanolamine, methylcoumarin, 
and docosahexaenoic acid, all of which are involved in cellular signaling, 
and energy metabolism related to the hippocampus. Especially dominated 
by citric acid, which breaks down into a variety of short-chain fatty acids, 
and the citric acid cycle also produces a variety of short-chain fatty acids. 
Current research suggests that short-chain fatty acids have anti-
inflammatory effects, are involved in G protein-coupled receptors, 
neurotransmitter synthesis, neuroprotection, and the brain-gut axis (34), 
an increase in neuroprotection, signaling, and energy metabolism was 
found in the chemical classification of metabolites. In addition, significant 
cell membrane metabolic markers found in animal models of nicotine 
addiction and methamphetamine addiction were phosphatidylcholine (35, 
36), and significant changes in energy metabolism-related metabolites such 
as citric acid cycle products and intermediates were similarly found in 
human serum as well as in the hippocampus of methamphetamine addicts 
(37), thus changes in metabolites in the hippocampal region of propofol 
addiction reflect the effects of propofol on energy metabolism pathways, 
neural signaling pathways involved in the production, activation, and 
functioning of neurotransmitters in the neural ligand-receptor interaction 
pathway to provide energetic substances, and reflect adaptive changes in 
neuronal cells in response to chronic exposure to propofol, which may 
further affect neurotransmitter function and neural network stability. This 
is consistent with existing findings.

In addition to transcriptomics and metabolomics, intestinal 
microbial macro-genomics sequencing was performed, and the results 
revealed that propofol addiction resulted in significant changes in the 
species abundance and composition of microorganisms in the intestine, 
such as a decrease in Thick-walled phyla and an increase in Anopheles and 
Actinomycetes, which were found to be the main phyla of the intestinal 
tract, and that the Thick-walled phyla and the Anopheles produce, by 
different means, SCFA, which can affect the brain by acting on G protein-
coupled receptors expressed by cells in the intestine. For example, short-
chain fatty acids act through G protein-coupled receptors such as FFAR2 
and FFAR3, or by inhibiting histone deacetylase activity (38), and an 
increase in the actinomycete phylum improves host resistance to disease 
and maintains immune stability in the intestinal environment. Gut 
microbes can affect the immune system, including influencing the 
activation of immune cells and the production of cytokines. These 
cytokines can cross the blood–brain barrier and affect neuroinflammation 
and the activation state of microglia in the brain, which in turn affects 
neurotransmitter homeostasis. For example, anaerobic bacteria of the 
phylum Actinobacteria such as Bifidobacteria, Propionibacteria, 
Corynebacteria, and Streptomyces modulate the immune-inflammatory 
response by inducing regulatory T cells (39). In addition Actinobacteria 
phylum has the ability to produce antibiotics, which helps to inhibit the 
growth of pathogenic microorganisms, and is also involved in the 
synthesis of vitamins in the intestinal tract and maintenance of intestinal 
barrier function (40). Additionally the increase in Lactobacillus gates 
suggests that there may be vagal involvement in the brain-gut connection, 
and that certain specific gut microbes, such as Lactobacillus rohita, can 
transmit signals to the microbe-gut-brain axis via the vagus nerve, 
thereby affecting neuroendocrine metabolism and altering neurotrophic 

proteins, neurotransmitters in the hippocampus (41, 42). The gut 
microbiota communicates bi-directionally with the brain via the 
gut-brain axis. For example, changes in the metabolism of tryptophan, a 
precursor for the synthesis of the neurotransmitter 5-hydroxytryptophan, 
may affect mood and behavior (43). The mechanisms by which the gut 
microbiota influences mood and behavior through the gut-brain axis are 
multifaceted and involve complex interactions between the nervous, 
endocrine and immune systems.

These findings further underscore the pivotal role of the 
brain-gut axis in drug addiction and elucidate the intricate 
regulatory mechanisms between gut microbiota and hippocampal 
neural function. A key innovation of this study lies in the selection 
of propofol, a widely used clinical anesthetic, as the research 
subject, combined with neuroomics and gut microbiome analysis 
to explore the molecular mechanisms underlying drug addiction. 
However, we  acknowledge several limitations, including the 
constrained scope of experimental data and the absence of large-
scale dataset validation, which may restrict the generalizability 
and long-term applicability of our findings. Moreover, the precise 
mechanisms governing the interactions between gut microbiota 
and the host nervous system remain to be fully elucidated. Future 
studies should employ larger sample sizes and longitudinal designs 
to comprehensively unravel the molecular mechanisms of propofol 
addiction, thereby providing a more robust theoretical foundation 
and practical insights for clinical interventions.
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