
Frontiers in Medicine 01 frontiersin.org

Research progress on the 
kidney-gut-brain axis in brain 
dysfunction in maintenance 
hemodialysis patients
Jie Yu 1, Yulu Li 2, Bin Zhu 3, Jianqin Shen 4 and Liying Miao 1*
1 Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China, 
2 Department of Nephrology, Taicang Loujiang New City Hospital, Suzhou, China, 3 Department of 
Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China, 
4 Department of Blood Purification Center, The Third Affiliated Hospital of Soochow University, 
Changzhou, China

Maintenance hemodialysis (MHD) has become the primary renal replacement 
therapy for patients with end-stage renal disease. The kidney-gut-brain axis 
represents a communication network connecting the kidney, intestine and 
brain. In MHD patients, factors such as uremic toxins, hemodynamic changes, 
vascular damage, inflammation, oxidative stress, and intestinal dysbiosis in 
MHD patients refers to a range of clinical syndromes, including brain injury, 
and is manifested by conditions such as white matter disease, brain atrophy, 
cerebrovascular disease, cognitive impairment, depression, anxiety, and other 
behavioral or consciousness abnormalities. Numerous studies have demonstrated 
the prevalence of these brain disorders in MHD patients. Understanding the 
mechanisms of brain disorders in MHD patients, particularly through the lens of 
kidney-gut-brain axis dysfunction, offers valuable insights for future research and 
the development of targeted therapies. This article reviews the brain dysfunction 
associated with MHD, the impact of the kidney-brain axis, intestinal barrier 
damage, gut microbiota dysbiosis caused by MHD, and the role of the gut-brain 
axis in brain dysfunction.
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1 Introduction

End-stage renal disease (ESRD) is the final phase of various chronic kidney conditions 
and has become a significant global health and healthcare burden. In 2010, approximately 
2.62 million people worldwide received renal replacement therapy (RRT), and by 2030, this 
number is projected to more than double, reaching 5.44 million, with Asia experiencing 
the fastest growth (1). Currently, the primary forms of RRT for ESRD include hemodialysis 
(HD), peritoneal dialysis, and kidney transplantation. In most countries, HD has become 
the most common treatment for ESRD patients due to its high safety and efficiency (2). 
However, a considerable number of ESRD patients experience brain dysfunction after 
receiving long-term maintenance hemodialysis (MHD). Brain dysfunction refers to clinical 
syndromes associated with brain injury, including consciousness disorders, somatic motor 
dysfunction, cognitive impairment, and mental and behavioral abnormalities, all of which 
seriously impact patients’ quality of life (3).
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An increasing number of studies have shown that brain damage, 
including white matter lesions, cerebral atrophy, cerebral infarction, 
cerebral hemorrhage, and subclinical cerebrovascular accidents, is 
common in MHD patients (Figure  1) (4–10). These patients also 
frequently exhibit disturbances in brain functional networks (11, 12). 
In addition, autonomic neuropathy is often observed in MHD patients 
(13), contributing to significant mortality in this population. Recent 

studies have reported that the incidence of cognitive impairment in 
MHD patients ranges from 30 to 80% (14–19). Cognitive impairments 
in these patients affect executive function, information processing 
speed, language fluency, and short-term memory (14, 15, 20). 
Cognitive impairment is also an independent predictor of all-cause 
mortality in MHD patients, further increasing their mortality rate 
(21). In addition, epidemiological studies indicate that the prevalence 

FIGURE 1

Brain dysfunction in MHD patients. The left side represents factors that may cause brain injury, while the right side shows some manifestations of brain 
dysfunction.
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of depression in MHD patients ranges from 23.7 to 52%, significantly 
higher than in the general population (22–24). Depression can 
negatively affect the quality of life in MHD patients by impacting their 
diet, sleep, treatment compliance, and mental state (25–28). It’s also 
associated with increased rates of hospitalization, cardiovascular 
events, and mortality risk (29, 30).

Therefore, investigating the pathogenesis of brain dysfunction in 
MHD patients is crucial for improving disease treatment. In recent 
years, the interaction between the renal-gut-brain axis has become a 
key area of research. This interaction is mediated by autonomic 
regulation from the brain and signals from the gut and kidneys, 
ultimately forming the complex network of the renal-gut-brain axis 
(Figure  2) (31). In this review, we  will explore the mechanisms 
underlying renal-gut-brain axis dysfunction and its role in secondary 
brain dysfunction in MHD patients.

2 The effect of the kidney-brain axis

2.1 Renal hypertension

Hypertension affects over 80% of patients undergoing MHD, with 
volume overload being a primary cause. Other contributing factors 
include increased activity of the renin-angiotensin-aldosterone 
system, sympathetic nervous system activation, endothelial 
dysfunction, and the use of recombinant human erythropoietin 
(rHuEPO) (32, 33). Accelerated arteriosclerosis in MHD patients can 
lead to microvascular damage, impairing the automatic regulation of 
cerebral blood flow (CBF) (34). The brain, due to its low vascular 
resistance and sustained high blood flow, is particularly vulnerable to 
microvascular damage caused by systemic hypertension. Elevated 

intravascular pressure can lead to vascular wall rupture or ischemic 
damage, resulting in stroke (34, 35). The risk of stroke in MHD 
patients is correlated with the rise in blood pressure levels (36). 
Yu-Huan et  al. (32) found that the risk of cerebral hemorrhage 
increased proportionally with higher pre-dialysis systolic blood 
pressure in 25 MHD patients. Nearly all studies investigating the 
association between hypertension and cognitive decline have 
identified a positive correlation, likely linked to hypertension-induced 
white matter lesions (36). Savazzi et al. (37) performed diagnostic 
brain computed tomography (CT) on 25 MHD patients, all of whom 
were found to have cerebral atrophy. The study revealed a strong 
positive correlation between the degree of cerebral atrophy, 
pre-dialysis blood pressure values, and the duration of hypertension. 
The study revealed a strong positive correlation between the degree of 
cerebral atrophy, pre-dialysis blood pressure values, and the duration 
of hypertension. In a study by Qian et  al. (38), brain magnetic 
resonance imaging (MRI) of 180 MHD patients showed that 36.1% of 
the HD subgroup had cerebral microbleeds (CMBs). Hypertension, 
duration of dialysis, and mean arterial pressure (MAP) were 
significantly associated with deep CMBs, all of which would impact 
patients’ cognitive function.

2.2 Renal anemia

Renal anemia is a common complication in MHD patients, with 
an estimated 95% requiring anemia correction therapy (39, 40). 
Studies have shown a significant positive linear correlation between 
hemoglobin (Hb) levels and local cerebral oxygen saturation (RSO2). 
Under anemic conditions, RSO2 decreases in MHD patients, and the 
subsequent reduction in oxygen delivery can impair various brain 

FIGURE 2

The kidney-gut-brain axis hypothesis for the mechanism of brain dysfunction in MHD patients. The brain dysfunction of MHD patients is caused by 
various factors, including metabolic disorders caused by renal dysfunction, dialysis-related factors, gut microbiota disorders, and intestinal mucosal 
damage, which constitute the communication network of the kidney-gut-brain axis.
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metabolic functions (41, 42). Additionally, a decrease in hematocrit 
(Hct) may result in increased CBF, potentially leading to the increased 
delivery of uremic toxins to the brain, which can cause cerebral 
edema (27). In a study of 56 MHD patients, Lee et al. found that 
patients with higher Hct levels scored better on neurocognitive 
function tests and demonstrated superior working memory and 
attention compared to those with lower Hct levels (43). Pickett et al. 
(44) conducted brain electrophysiological measurements and 
electroencephalogram spectrum analysis in MHD patients and found 
that brain function was significantly impaired when mean Hct was 
23.7%. However, after anemia correction and an increase in mean Hct 
as low as 31.6%, patients showed improved attention and cognitive 
function. RHuEPO is commonly used to correct anemia in clinical 
practice. Brain event-related potentials (ERPs), which are sensitive, 
non-invasive, and relatively objective measures of cognitive function, 
have shown improvement after rHuEPO treatment. In a study 
evaluating ERPs in 15 MHD patients before and after rHuEPO 
therapy, an increase in Hct from 22.7 to 30.6% led to significant 
improvements in the latency and amplitude of the auditory event-
related P300 peaks (45). Correcting anemia with rHuEPO treatment 
can improve the speed and efficiency of information processing in 
MHD patients, enhance attention and memory, improve cognitive 
function, and alleviate anxiety (45–47).

However, the use of rHuEPO is not entirely beneficial and may 
heighten the risk of thrombosis in MHD patients, particularly in those 
with diffuse atherosclerosis, thereby adversely affecting brain function 
(48). This may be related to increase in blood pressure, blood viscosity, 
and peripheral resistance. Some studies have also found that when 
rHuEPO is used to treat renal anemia in MHD patients, increasing 
Hct from 28 ± 8% to 37 ± 5% can reduce the blood flow velocity in the 
middle cerebral artery by 11% (48).

2.3 Dialysis-related factors

2.3.1 Cerebral blood flow and perfusion volume
The removal of large volumes of fluid and changes in circulating 

blood flow during HD can reduce cerebral perfusion and CBF, often 
accompanied by hypoxemia. This may be one of the mechanisms by 
which HD causes recurrent ischemic brain injury, leading to 
secondary psychiatric symptoms (49, 50). The brain receives 15–20% 
of cardiac output due to high CBF, making it susceptible to ischemic 
damage, which can result in local lactic acidosis and direct neuronal 
toxicity (51). HD can increase Hct levels (average Hct before HD is 
mostly below 30%, and significantly increases after HD), which 
increases relative oxygen delivery capacity. As a result, less CBF is 
required to transport oxygen, potentially contributing to the observed 
decrease in mean blood flow velocity (MFV) (52). Polinder-Bos et al. 
(7) monitored CBF in 12 elderly patients with MHD from the 
beginning to the end of HD and observed that global CBF decreased 
by 10% ± 15%, from an average of 34.5 ml/100 g per minute to 
30.5 ml/100 g. The decrease in CBF was consistent across different 
brain regions. In one study in 28 MHD patients, overall cognitive 
function in MHD patients fluctuated significantly during the dialysis 
cycle, with sharp cognitive declines occurring during dialysis. Cerebral 
blood perfusion and velocity were significantly lower after dialysis 
compared to pre-treatment levels, suggesting that hemodynamic 
changes may affect cognitive function and recovery to highest level of 

cognitive function 24 h after the dialysis session (49, 53).These low 
blood flow levels may increase the risk of transient ischemic attacks.

However, some transcranial Doppler ultrasound (TCD) 
measurement studies have shown that in patients not receiving 
rHuEPO during dialysis, cerebral perfusion significantly increased, 
indicating a strong negative correlation between hemoglobin levels 
and cerebral perfusion (54). Anemia can affect CBF velocity and 
volume by altering oxygen metabolism, and it can increase the 
cerebral oxygen extraction fraction in HD patients, potentially 
impairing cerebral vasodilation ability (54). In addition, the factors 
that cause the oscillations in cerebral perfusion in MHD patients are 
diverse, such as blood pH, arterial carbon dioxide, cardiac output and 
other factors may be important factors (50, 54). The brain, as a key 
perfusion organ, is particularly sensitive to circulatory changes ebb 
and flow of circulation (55).

Eldehni et al. reported that using dialysate at 0.5°C below core 
body temperature, compared to 37.0°C, improved vascular resistance, 
increased hemodynamic stability, and reduced the progression of 
white matter lesions (56). Therefore, severe brain damage caused by 
HD may be effectively reduced by enhancing hemodynamic tolerance 
through the use of cooling dialysis agents (56, 57).

2.3.2 Oxidative stress
Oxidative stress (OS) is defined as an imbalance between the 

production of free radicals (FRs) or reactive oxygen species (ROS) and 
the body’s antioxidant defense system, leading to oxidative damage to 
cellular components and, in severe cases, cell death (58). Studies have 
confirmed that OS is common in MHD patients (59–61). The reasons 
for increased OS in MHD patients include (a) Abnormal production 
of oxidants, such as increased ROS production due to limited 
biocompatibility of HD membranes, and an increase in uremic toxins 
with pro-oxidative functions (58, 62); (b) Reduced absorption of food 
antioxidants due to malnutrition and the non-selective removal of 
antioxidants during dialysis, leading to a significant reduction in 
antioxidant level (58, 63, 64); (c) Deficiencies in antioxidant enzyme 
levels (61).

OS plays an important role in neurodegenerative damage and 
cognitive decline. Increased OS can directly induce neuronal death 
and intermittently reduce neuronal activation potential, thereby 
lowering local oxygen demand and reducing perfusion and blood 
supply (59). OS can impair synaptic plasticity and memory function, 
manifesting as cognitive decline (65). Furthermore, OS is considered 
a contributing factor to atherosclerotic cardiovascular disease in ESRD 
patients (66), although it is not related to the presence or severity of 
white matter lesions in the brain (60). In a study by Belaïch et al. (59), 
blood oxygen level-dependent brain magnetic resonance imaging 
(BOLD-fMRI) was performed on 86 MHD patients. The results 
showed that after dialysis, OS levels significantly increased 
systemically, compared to before dialysis. This was accompanied by a 
significant decrease in brain activation intensity in the motor areas 
and a notable increase in the volume of brain activation. These 
changes suggest brain plasticity induced by elevated OS levels.

2.3.3 Cerebral oxygenation
Valerianova et al. (67) found that during HD, RSO2 in the patients’ 

brain decreased shortly after the start of dialysis, reaching its lowest 
value within 15 min. Patients with higher red blood cell distribution 
width (RDW) exhibited lower RSO2 values and greater fluctuations 
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during HD (RDW has recently been extensively studied, and RDW 
elevation is associated with malnutrition, inflammation, and OS in 
MHD patients). Research indicates that RSO2 in the brain can decrease 
by more than 20% during HD (68), and this reduction is correlated 
with cognitive decline in MHD patients (69). In the study by 
Ookawara et  al. examining the relationship between cognitive 
function score on mini-mental state examination (MMSE) and clinical 
factors in 193 MHD patients, those with MMSE scores ≥24 had 
significantly higher brain RSO2 levels (53.8% ± 8.3%) compared to 
patients with MMSE scores ≤23 (49.5% ± 9.8%), indicating that 
MMSE score is independently correlated with brain RSO2 (41).

2.3.4 Cerebral edema
Acute loss of intravascular volume and fluid displacement during 

HD lead to diffuse interstitial brain edema and damage to cellular 
integrity, which are also associated with cognitive dysfunction (70). 
Walters et al. (71) conducted brain MRI scans on five patients with 
MHD and a normal control group, performing imaging examinations 
before and after HD. Brain volume changes were measured using 
magnetic resonance registration technology. In MHD patients, the 
average brain volume increased by 32.8 ml (SE 7.4 ml, accounting for 
3% of brain volume) after HD, whereas the control group showed only 
a 1.4 ml (SE 0.6 ml) change (71). The results indicated that 
asymptomatic brain edema occurred in MHD patients after HD, with 
those experiencing the largest absolute decrease in pre-HD urea 
concentration showing the most brain edema. This study did not test 
the cognitive function of the patients. Although no patients showed 
significant neurological symptoms, the possibility of brain function 
damage in patients cannot be ruled out, and we speculate that brain 
volume changes will be  greater in patients with neurological 
symptoms. Kong et al. (70) performed diffusion tensor imaging (DTI), 
neuropsychological (NP) tests, and laboratory tests on 80 MHD 
patients and a healthy control group. DTI data suggested that MHD 
patients had diffuse brain edema and moderate white matter integrity 
damage, both of which were associated with cognitive impairment. In 
experiments conducted on uremic dogs, Arief et al. (72) found that 
rapid HD was related to a decrease in cerebrospinal fluid pH and the 
spontaneous accumulation of osmotic pressure in the brain. This 
created an osmotic gradient between the brain and plasma, resulting 
in brain edema, increased intracranial pressure, and epileptic seizures.

There are two central hypotheses regarding the mechanism of 
cerebral edema, both supported by rapid HD experiments in uremic 
animals (73). The first hypothesis is the “reverse osmosis gradient” 
mechanism, in which urea is cleared from the blood faster than from 
the brain, creating a brain plasma osmotic gradient. The brain reacts 
to the higher osmotic pressure in the blood by generating its own 
osmotic pressure, driving water into the brain (74–76). Therefore, it is 
essential to adjust dialysis prescriptions carefully to minimize changes 
in plasma osmolality during HD treatment and reduce the risk of 
cerebral edema.

2.4 Hyperhomocysteinemia

Elevated plasma total homocysteine (THcy) levels, defined as 
fasting THcy levels above 1.87 mg/L (13.9 mol/L), are present in 
approximately 85% of HD patients, compared to about 10% in the 
general population (27). Elevated THcy levels can damage small 

arteries and are an independent risk factor for cardiovascular and 
cerebrovascular diseases, making THcy a novel predictor of 
cerebrovascular events (77, 78). Homocysteine may contribute to 
cognitive impairment and cerebrovascular disease through multiple 
mechanisms. Firstly, homocysteine directly causes neurotoxicity by 
inhibiting methylation reactions, increasing sensitivity to extracellular 
toxins, and activating the N-methyl-D-aspartate (NMDA), subtype of 
glutamate receptors (79–81). Secondly, homocysteine has a direct 
pre-thrombotic effect on the vascular system by activating platelets 
and reducing thrombomodulin/protein C activation, promoting blood 
clots formation (27, 78, 79). Thirdly, elevated homocysteine can 
induce oxidative stress and DNA damage in vascular endothelial cells 
while also increasing platelet-endothelial adhesion and promoting 
vascular smooth muscle cell proliferation (78, 79). Fourthly, elevated 
homocysteine is a reliable indicator of vitamin B12 deficiency, which 
can lead to neurological disorders including cognitive impairment 
(81). Finally, high THcy levels are strongly associated with 
atherosclerotic diseases, as homocysteine enhances the autoxidation 
of low-density lipoprotein cholesterol and increases the binding of 
lipoprotein A and fibrin, promoting atherosclerosis (79, 81–83). 
Cerebral ischemia caused by atherosclerosis may accelerate the 
progress of cognitive dysfunction and brain atrophy at the same time 
(82). Anan et al.’s study showed that THcy levels were higher in MHD 
patients with spinal cord injury (the most common form of subcortical 
cerebral infarction) compared to MHD patients without spinal cord 
injury (78). Additionally, Maesato et al. (79) conducted brain MRI 
examinations on 34 MHD patients and found that the average 
hippocampal atrophy rate was 27.3% and the average total brain 
atrophy rate was 11.2%. The study also showed a significant correlation 
between hippocampal atrophy and hyperhomocysteinemia in HD 
patients. Since the hippocampus is supplied by the anterior choroidal 
artery, a vessel prone to thrombotic cerebral infarction, 
hyperhomocysteinemia may contribute to hippocampal damage and 
related cognitive impairment (79).

2.5 Secondary hyperparathyroidism and 25 
(OH) D deficiency

Secondary hyperparathyroidism (SHPT) is characterized by 
elevated levels of parathyroid hormone (PTH), parathyroid hyperplasia, 
calcium and phosphorus metabolism disorders, as well as clinical 
conditions such as renal bone disease and vascular calcification. On the 
one hand, elevated PTH can directly induce neurotoxic effects, leading 
to cognitive impairment and mental disorders; on the other hand, high 
PTH can activate parathyroid hormone 2 receptors (PTH2R), which 
are widely distributed in the central nervous system, affecting various 
neuroendocrine functions (84, 85). Diskin et al. (85) evaluated the 
psychological health scores using the Kidney Disease Quality of Life 
(KDQOL-36) and Patient Health Questionnaire (PHQ-2) on 10 
patients with intact parathyroid hormone (iPTH) levels above 1,000 pg.
ml and 10 MHD patients with iPTH levels below 400 pg/ml. They 
found that patients in the high PTH group had higher levels of 
depression. Other studies have shown that after parathyroidectomy in 
MHD patients with SHPT, brain electrical abnormalities and patients’ 
mental states, as well as mild central nervous system dysfunction, are 
improved (86). A large-scale study involving 65,849 MHD patients 
demonstrated that high levels of iPTH were significantly associated 
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with an increased risk of hemorrhagic stroke and identified iPTH as a 
risk factor for stroke in MHD patients (87, 88). This may be due to high 
serum PTH levels causing changes in blood pressure, increased 
vasoconstriction ability, vascular smooth muscle hypertrophy, vascular 
calcification, fibrosis, and affecting the cerebrovascular system by 
promoting inflammation (32). PTH also influences the nervous system 
through calcium regulation mechanisms. In a study by Tanaka et al. on 
the relationship between mineral metabolism abnormalities and mental 
health in MHD patients, it was found that patients with a corrected 
calcium level of 11 mg/dl had significantly lower psychological health 
scores compared to those with corrected calcium level of <8.4 mg/dl 
(89). In clinical practice, MHD patients often take calcium-containing 
phosphate binders and active vitamin D preparations to treat SHPT (90, 
91). However, during the treatment, MHD patients are prone to 
developing hypercalcemia, which can cause psychoneurotic symptoms 
(84). Elevated PTH levels also promote calcium accumulation in brain 
tissue, significantly increasing brain Ca2+ content, inhibiting 
mitochondrial oxidation, and reducing ATP production (86, 89, 92).

25-hydroxyvitamin D [25(OH)D] is the main circulating form of 
vitamin D, and deficiency of 25(OH)D due to kidney injury is common 
in MHD patients. Vitamin D nuclear receptors are widely expressed in 
the spinal cord and brain, and vitamin D plays a role in regulating the 
synthesis of neurotransmitters such as acetylcholine and catecholamines 
(84, 93). In addition, 25 (OH) D exhibits vascular protection, 
neuroprotection, inhibition of pro-inflammatory factor inhibition, and 
antioxidant and immune regulatory properties. Low levels of 25 (OH) 
D are associated with vascular disease risk factors, including vascular 
calcification, endothelial dysfunction and inflammation (93–95). 
Therefore, 25(OH)D deficiency is considered an important risk factor 
for cognitive impairment and certain neurodegenerative diseases. 
Shaffi et al. (95) analyzed 255 MHD patients and found that lower levels 
of 25(OH)D were associated with an increased likelihood of impaired 
executive function in the cognitive domain. Demet In another study, 
Yavuz et al. (94) conducted questionnaire assessments on 121 MHD 
patients using the Pittsburgh Sleep Quality Index (PSQI) and Beck 
Depression Inventory (BDI), and found that low 25(OH)D levels and 
high BDI values are independent risk factors impairing sleep quality. 
Other studies have found a significant correlation between low serum 
25(OH)D levels and higher depression scores (84).

3 The kidney-gut axis

Since Ritz introduced the concept of “gut kidney syndrome” at the 
International Dialysis Conference in 2011 (96), the connection 
between the intestine and kidneys has been extensively studied, 
leading to the development of the “gut-kidney axis” theory (Figure 2). 
In this interaction, uremia affects the composition and metabolism of 
the gut microbiota, while dysbiosis of the gut microbiota leads to 
increased uremic toxins and microinflammation, further promoting 
the progression of kidney disease (97).

3.1 MHD causes disruption of gut 
microbiota in patients

The gut microbiota plays several critical roles, including energy 
generation, nutrient metabolism, immune regulation, and maintaining 

the structural integrity of the intestinal mucosal barrier (98–100). In 
patients with reduced renal filtration capacity, the accumulation of 
urea in the blood leads to its diffusion into the intestines, where it is 
metabolized by bacteria to produce ammonia. This process raises the 
pH of the intestinal lumen, disrupting intestinal homeostasis (101). 
The Human Microbiome Project has provided comprehensive data on 
2,172 microbial species isolated from humans, divided into 12 
different bacterial phyla. Of these, 93.5% belong to Proteobacteria, 
Firmicutes, Actinobacteria, and Bacteroidetes (102). Over 90% of 
healthy individuals’ gut microbiota is dominated by two main bacterial 
phyla, Bacteroidetes and Firmicutes, followed by Actinobacteria and 
Verrucomicria (98, 103). Although the human colon also contains 
major pathogens such as Campylobacter jejuni, Salmonella enterica, 
Vibrio cholerae, Escherichia coli, and Bacteroides fragilis, the is 
relatively low (typically accounting for 0.1% or less of the entire gut 
microbiota) (98).

In MHD patients, the bacteria in the blood do not primarily 
originate from dialysate (104, 105). The main bacteria detected in the 
blood are also present in the intestines, and the changes in bacterial 
colonies in the blood closely resemble those in the gut. This suggests 
that the bacteria in the bloodstream may come from the gut 
microbiota (104). HD can alleviate intestinal toxins and improve the 
disruption of intestinal microbiota (106). However, MHD patients still 
exhibit significant changes in gut microbiota abundance (104, 106–
109). Studies comparing MHD patients with healthy individuals or 
ESRD patients who are not on dialysis have shown that the diversity 
of gut microbiota species in MHD patients is significantly higher than 
in control groups (104, 106, 109).

Bacteroidetes, which play key roles in nutrient absorption and the 
maturation and maintenance of epithelial cells (110), and their 
diversity decreases in MHD patients (104, 107, 109). A notable feature 
of the gut microbiota in MHD patients is the reduction of beneficial 
bacteria, such as Lactobacillus (106–108). Lactobacillus and 
Bifidobacterium are mainly involved in maintaining the integrity of 
the intestinal mucosal barrier (108). Conversely, there is an increase 
in pathogenic bacteria such as Enterobacteriaceae (106, 108). In 
healthy individuals, Proteobacteria account for less than 1% of the gut 
microbiota, and a low abundance of Proteobacteria alongside high 
levels of Bacteroides, Prevotella, and Ruminococcus, indicates a healthy 
gut microbiota (98, 103). However, studies show that in MHD 
patients, the levels of Proteobacteria increase significantly (104, 107, 
109), while Prevotella decreases (107) and Ruminococcus increases 
(109). Escherichia coli and Enterococcus faecalis are opportunistic 
pathogens that can overgrow when gut microbiota balance is 
disrupted, leading to intestinal dysbiosis and infections (108). In 
MHD patients, the levels of these two bacteria are elevated (106–108). 
In addition, the duodenum and jejunum of uremia patients (usually 
not colonized by bacteria) are extensively colonized by aerobic and 
anaerobic bacteria, further complicating the pathogenic effects of 
uremia on intestinal function (96).

3.2 Intestinal mucosal barrier damage and 
bacterial translocation in MHD patients

Under normal conditions, tight junction proteins in the intestinal 
epithelium form an effective barrier, preventing the penetration of 
harmful substances such as bacteria, bacterial toxins, digestive 

https://doi.org/10.3389/fmed.2025.1538048
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yu et al. 10.3389/fmed.2025.1538048

Frontiers in Medicine 07 frontiersin.org

enzymes, and partially degraded food products (111). Uremic toxins 
can damage the structure and function of the intestinal barrier, 
particularly by depleting key protein components in the tight 
junctions of the colon (111). Disruption of the intestinal epithelial 
barrier allows endotoxins and other harmful luminal contents to enter 
the systemic circulation, contributing to systemic inflammation 
(104, 112).

The decrease in effective circulating blood volume during HD can 
lead to temporary insufficiency of intestinal blood supply and 
ischemic damage to the intestinal mucosal barrier (96). Studies have 
shown that one in six patients undergoing MHD for 1–2 years 
developed gastrointestinal bleeding, and 82% of MHD patients 
experienced ischemic colitis (113). These conditions increase intestinal 
permeability and mucosal damage, facilitating bacterial translocation 
and the entry of bacterial endotoxins.

Malnutrition is very common among MHD patients. Long-term 
dietary restrictions, combined with the loss of albumin and amino 
acids during dialysis, may contribute to gut microbiota imbalances, 
particularly in patients undergoing high-throughput dialysis (114, 
115). This disrupts the stable state of the gut microbiota, which relies 
on food for energy metabolism, increasing the risk of 
bacterial translocation.

3.3 Intestinal environment disorder 
aggravates renal damage progression

Ischemia–reperfusion injury of the intestinal mucosal barrier, 
microinflammation caused by intestinal leakage, activation of the 
immune response due to dysregulation of the intestinal flora and 
mitochondrial dysfunction, these changes in turn accelerate kidney 
injury (31, 96, 116). Indoxyl sulfate (IS) is a uremic toxin produced 
from the breakdown of tryptophan by intestinal bacteria and is 
normally excreted by the kidneys. In CKD, IS accumulates, exerting 
pro-inflammatory effects, disrupting endothelial cell function, 
damaging renal tubular epithelial cells and podocytes, and leading to 
renal interstitial fibrosis (96, 97, 101).

4 The effect of gut-brain axis

The gut microbiota plays a crucial role in the normal development 
of brain function. A growing body of animal and clinical studies has 
shown that gut microbiota disorders are associated with neurological 
conditions such as Alzheimer’s disease, autism spectrum disorder, 
Parkinson’s disease, depression, and stroke (117, 118). The gut-brain 
axis, a bidirectional communication pathway between gut bacteria 
and the central nervous system, involves the central nervous system, 
endocrine system, and immune system, forming a network that 
connects the gut and brain (Figure 2) (117). In our clinical research, 
30 healthy individuals and 77 MHD patients were enrolled and 
classified into healthy control (HC), normal cognitive function (NCF), 
and mild cognitive decline (MCD) groups based on evaluations using 
the Montreal Cognitive Assessment. Compared to the HC or NCF 
groups, the MCD group exhibited significant changes in gut 
microbiota characteristics, including α- and β-diversity, and alterations 
in 16 specific gut bacteria. Additionally, certain blood metabolites 
were altered, suggesting that MHD-related MCD may be linked to 

abnormal gut microbiota composition and imbalances in serum 
metabolites. The Bilophila genus, in particular, may serve as a sensitive 
biomarker for MCD in MHD patients (119).

4.1 Microinflammation caused by intestinal 
bacteria and brain dysfunction

Microinflammation refers to a chronic low-grade inflammatory 
state characterized by elevated levels of circulating pro-inflammatory 
cytokines, such as C-reactive protein (CRP), interleukin-6 (IL-6), and 
tumor necrosis factor-α (TNF-α), with CRP being a reliable objective 
indicator of inflammatory activity (104, 120). Most ESRD patients 
have bacterial ectopia and inflammation, and HD can exacerbate the 
micro inflammatory state to a certain extent (104, 120). Approximately 
30–50% of MHD patients exhibit inflammatory reactions (105).

Intestinal bacteria and their components are involved in the micro 
inflammatory state observed in MHD patients (105, 121). In a study 
of 52 ERSD patients by Shi et al., compared with non -dialysis patients, 
MHD patients showed slightly higher levels of hypersensitive 
C-reactive protein (hs-CRP), IL-6, and plasma endotoxin in their 
blood. The study found that the more complex the bacterial species, 
the higher the levels of CRP and endotoxin in their blood, indicating 
a positive correlation between the bacterial load in the blood and the 
levels of CRP and IL-6 (104). Zhang et al. (108) compared 39 MHD 
patients with healthy individuals and found that MHD patients had 
lower levels of Bifidobacterium and Lactobacillus in the intestines but 
higher levels of Escherichia coli and Enterococcus, all of which 
contributed to the low-grade inflammatory state.

Intestinal-derived bacteria increase the micro inflammatory state 
of MHD patients through various mechanisms, including the 
accumulation of circulating endotoxins and uremic toxins produced 
by bacteria, a reduction of anti-inflammatory bacteria, bacterial 
translocation caused by intestinal mucosal barrier damage, immune 
dysfunction caused by CKD, and long-term high-dose antibiotic use, 
which further increases the resistance of Enterococci in the intestine 
(104, 108, 122).

A prospective study showed that high levels of inflammatory 
factors in MHD patients are closely related to vascular risk factors of 
atherosclerosis and cardiovascular death (123). In ESRD patients and 
HD patients, microinflammation increases the incidence of 
atherosclerosis and the risk of brain disorders (120, 124, 125). In a 
study by Fanadka et al., over 90% of MHD patients had some degree 
of intracranial arterial calcification, which was correlated with serum 
CRP levels, indicating that micro-inflammation contributes to the 
changes in vascular structure (126). Another study found that hs-CRP 
levels are an important risk factor for asymptomatic cerebral infarction 
in MHD patients (127).

Inflammation also plays a crucial role in the mechanisms 
underlying mental disorders. The inflammatory response system 
(IRS), driven by pro-inflammatory cytokines, can contribute to 
depression by activating the hypothalamic–pituitary–adrenal (HPA) 
axis and increasing serotonin and catecholamines (128). Peripheral 
inflammation caused by gut microbiota can lead to cerebral 
amyloidosis and hippocampal volume reduction and may cause 
neurodegeneration and cognitive impairment, playing an important 
role in the initiation and progression of dementia (122, 129, 130). In 
MHD patients, the level of the inflammatory mediator prostaglandin 
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D2 synthase (PGD2S) is elevated, which may induce neuronal 
apoptosis and, theoretically, be involved in the progression of dialysis-
induced brain disorders (131). Bossola et al. used the Beck Depression 
Inventory (BDI) and Hamilton Anxiety Scale (HAMA) to assess 
depression and anxiety in 80 patients with MHD, showing IL-6 levels 
were positively correlated with depression scores in multivariate 
analysis (132). A meta-analysis found that higher levels of IL-6 and 
CRP are associated with an increased risk of psychological and 
immunological changes, including all-cause dementia and depression; 
IL-1 β has been identified as an important risk factor for depressive 
symptoms and plays a key role in neurodegenerative changes by 
involving in the pathogenesis of the production and deposition of 
amyloid β-protein in the brain of Alzheimer’s disease (128). In a study 
of patients with cognitive impairment, the abundance of Odoribacter, 
Butyricimonas, and Bacteroides in their intestines was significantly 
reduced. These bacteria have strong resistance to nerve inflammation 
and immune regulation, revealing that chronic inflammation may link 
the gut microbiota characteristics to cognitive impairment (130).

4.2 Intestinal-derived uremic toxin and 
brain damage

Uremic toxins are classified based on their physical and chemical 
characteristics during HD clearance: (I) Small, water-soluble 
molecules (such as urea and uric acid), which are easily removed by 
HD and may not necessarily be  functionally toxic; (ii) Medium 
molecular weight compounds such as β 2-microglobulin and leptin, 
which affect multiple organ systems; (iii) Protein-bound compounds, 
typically low molecular weight compounds such as phenols and 
indoles, which are difficult to remove by dialysis and can significantly 
enhance toxic effects in the body (133–135). Protein-bound uremic 
toxins produced by the gut microbiota, such as IS, p-cresol sulfate 
(PCS), and indole-3-acetic acid (IAA), along with guanidine 
compounds (GCs) derived from arginine (guanidinosuccinic acid, 
guanidine, and methylguanidine), are considered the main uremic 
toxins responsible for brain damage in uremia patients (136–142).

These uremic toxins not only directly cause neurotoxicity, impair 
brain synaptic function, and induce astrocyte apoptosis, but they may 
also have harmful indirect effects on the brain through mechanisms 
such as blood–brain barrier disruption, microvascular changes, 
endothelial dysfunction, neuroinflammation, oxidative stress, and 
imbalances in neurotransmitter amino acids (133–135, 137–145).

The manifestations of brain damage caused by neurotoxins 
include cognitive impairment, drowsiness, convulsions, coma, 
cerebrovascular disease, and neuropathy, which can be  partially 
improved through HD (144, 146). Intestinal-derived uremic toxins in 
CKD patients can induce endothelial barrier dysfunction of cerebral 
vessels, leading to cerebral microbleeds (147). Secondary restless leg 
syndrome (RLS) is also frequently associated with various neurological 
disorders caused by uremic toxins (148). Among these toxins, IS has 
been extensively studied for its neurotoxic effects. Several animal 
experiments have shown that IS can increase oxidative stress and 
neuroinflammation, disrupt the blood–brain barrier, impair glial cell 
function, and induce neuronal cell death in a dose-dependent manner 
(143, 149). High serum IS concentrations are associated with more 
severe cognitive impairment (143). Lin et  al. (134) evaluated 260 
MHD patients based on the MMSE and the Cognitive Ability 

Screening Inventory (CASI), and found that after adjusting for 
confounding factors, circulating free IS levels were negatively 
correlated with MMSE and CASI scores (134).

IAA, another uremic solute from the indole family, is metabolized 
in tissues through serotonin and other tryptophan derivatives and is 
toxic to astrocytes and microglia (135). Higher plasma IAA levels in 
MHD patients are linked to reduced microbial diversity (150). IAA 
can induce endothelial dysfunction, inflammation, and oxidative 
stress, increasing the risk of cardiovascular damage and cognitive 
impairment (150). A study involving 230 MHD patients showed a 
significant correlation between IAA and cognitive impairment (135). 
IAA is also associated with anxiety and depression symptoms in CKD 
patients (151).

In addition, a systematic study on endotoxemia in CKD revealed 
that serum endotoxin levels in MHD patients were nearly six times 
higher than those in non-dialysis patients (152). HD-induced systemic 
circulation stress and repeated ischemia may increase the translocation 
of intestinal endotoxin and induce endotoxemia, which can lead to a 
wide range of adverse effects on vascular structure and function 
(133, 152).

4.3 Neurotransmitters and neural 
transmission pathways produced by 
intestinal bacteria

Recent studies have shown that gut microbiota regulates the 
synthesis and function of neurotransmitters such as glutamate, 
γ-aminobutyric acid (GABA), acetylcholine, norepinephrine, 
serotonin, and dopamine (153–155). Since some neurotransmitters 
cannot penetrate the blood–brain barrier, they must be synthesized in 
the brain by local neurotransmitter precursors. Therefore, changes in 
the abundance of gut microbes can alter the expression of 
neurotransmitter receptors in the brain (117, 153). The gut microbiota 
can also transmit sensory signals to the brain through the vagus nerve, 
participating in signal transmission in neural pathways. This 
interaction influences brain function and cognitive behavior, 
suggesting the role of gut microbiota in the pathogenesis of various 
neuropsychiatric diseases (156–158).

In early studies, two abnormalities were observed during autopsies 
of patients who had suffered from dialysis encephalopathy: a 
significant decrease in GABA levels in several brain regions (frontal, 
occipital, and cerebellar cortex, caudate nucleus, and medial dorsal 
thalamus) and a reduction in cholinergic acetyltransferase activity in 
the cerebral cortex (159, 160).

4.4 Intestinal microbiological intervention 
therapy

After understanding the physiological functions and pathological 
mechanisms of intestinal flora, many researchers have explored 
various methods to reconstruct healthy intestinal flora. In recent years, 
three dietary supplements, probiotics, prebiotics, and synbiotics, have 
been considered to have a significant impact on the balance of the gut 
microbiota (161, 162).The comprehensive analysis of several clinical 
trials in HD patients showed that probiotics, prebiotics and synbiotics 
could significantly reduce the levels of circulating toxins (PCs, 
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endotoxin) and inflammatory biomarkers (CRP, IL-6), and improve 
the balance between antioxidants and pro-oxidant markers to reduce 
oxidative stress (163, 164). However, there is still a knowledge gap as 
to whether there are specific gut microbial species and their 
metabolites that can be used as potential therapies for treatment.

5 Summary and perspective

In summary, this review explores the imbalance of the kidney-gut-
brain axis and elucidates the mechanisms of interaction between the 
three organs in secondary brain dysfunction in MHD patients. Firstly, 
factors such as hypertension, anemia, and metabolic abnormalities 
resulting from renal dysfunction in MHD patients contribute to brain 
damage. We discussed how HD treatment affects brain structure and 
function by causing decreased brain perfusion, OS, and osmotic 
pressure differences. Secondly, we summarized the dysbiosis of the gut 
microbiota and the damage to the intestinal mucosal barrier observed 
in MHD patients. Finally, we  explained how disturbances in gut 
microbiota, through the gut-brain axis, lead to neuronal damage and 
mental disorders by inducing internal microinflammation, the 
accumulation of uremic toxins, and disruptions in signal transmission 
pathways. Although increasing studies are uncovering the complex 
communication between the gut, brain, and kidneys, many specific 
mechanisms of action remain unclear. Future research could focus on 
identifying potential biomarkers for diagnosing this condition by 
further exploring the mechanisms of the kidney-gut-brain axis. This 
will provide a stronger theoretical basis for developing targeted 
therapeutic strategies.
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