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Sepsis-induced acute kidney injury (S-AKI) is a common complication of sepsis. 
It occurs at high incidence and is associated with a high level of mortality in the 
intensive care unit (ICU). The pathophysiologic mechanisms underlying S-AKI are 
complex, and include renal vascular endothelial cell dysfunction. The endothelial 
glycocalyx (EG) is a polysaccharide/protein complex located on the cell membrane 
at the luminal surface of vascular endothelial cells that has anti-inflammatory, 
anti-thrombotic, and endothelial protective effects. Recent studies have shown 
that glycocalyx damage plays a causal role in S-AKI progression. In this review, 
we first describe the structure, location, and basic function of the EG. Second, 
we analyze the underlying mechanisms of EG degradation in sepsis and S-AKI. 
Finally, we provide a summary of the potential therapeutic strategies that target 
the EG.
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1 Introduction

Sepsis is a life-threatening condition caused by an uncontrolled response to infection (1). 
Sepsis-induced acute kidney injury (S-AKI) occurs within 7 days of the onset of sepsis, and is 
extremely common in the intensive care units (ICU), being present in approximately half of 
the patients with acute kidney injury (AKI) in this environment (2). An epidemiologic study 
performed in South Korea showed that from September 2019 to December 2022, 5,100 
patients were admitted to the ICU with a diagnosis of sepsis, of whom 3,177 (62.3%) developed 
S-AKI. A total of 613 (19.3%), 721 (22.7%), and 1,843 (58.0%) patients had stage 1, stage 2, 
and stage 3 S-AKI, respectively. Severe S-AKI (stages 2 and 3 combined) was associated with 
a higher risk of in-hospital mortality (3); however, in general, the risks of chronic kidney 
disease, cardiovascular events, and death are much higher in patients with S-AKI (4–6).

The pathophysiologic mechanisms underpinning S-AKI are complex, and recent studies 
have shown that acute tubular necrosis, oxidative stress (7), mitochondrial dysfunction, 
inflammatory responses (8), microvascular dysfunction (9), and ischemia are involved 
(Figure 1).

Dysfunction of the vascular endothelial barrier is one of the most important mechanisms 
of S-AKI. The glycocalyx is an important component of the vascular endothelial barrier. It is 
complex and fragile, protects endothelial barrier integrity, and plays a crucial role in 
maintaining microcirculatory homeostasis and blood–tissue exchange (10). It is a gel-like 
polysaccharide/protein complex that is synthesized by endothelial cells and is rich in heparan 
sulfate (HS). It maintains vascular endothelial structure and function, protects the integrity of 
the vessel wall, inhibits thrombosis, and restricts leukocyte adherence to endothelial cells (11). 
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Previous studies have shown that endothelial glycocalyx (EG) damage 
is closely associated with the development of S-AKI, and the specific 
structure and function of the glycocalyx and its role in S-AKI have 
been studied in recent years (12) (Figure 1).

2 Structure and function of the 
glycocalyx of vascular endothelial 
cells

The glycocalyx, also known as the polysaccharide envelope, is 
approximately 0.1–1.0 μm thick, as demonstrated through electron 
microscopy by Luft et al. in 1966 (13). Twamley et al. used immuno-
electron microscopy and confocal laser scanning microscopy to study 
the glycocalyx of a human acute monocytic leukemia cell line, and 
found that its average length was 6.45 ± 0.26 μm (14). The thickness 
of the EG is within the range of 0.2–2 μm, and its composition and 
thickness vary according to the type of blood vessel, the location of 
the blood vessel within the organism, and the physiologic state (15). 
It lies between the blood and the vessel wall, is synthesized and 
secreted by vascular endothelial cells, and is a dynamic natural barrier 
that is principally composed of proteoglycans, membrane 
glycoproteins, and plasma proteins, of which proteoglycans and 
glycoproteins are the main components (16). Glycosaminoglycans are 
the most abundant constituent of proteoglycans, accounting for 95% 
of its structure (17). The principal components of glycosaminoglycans 
are HS, chondroitin sulfate, dermatan sulfate, keratin sulfate, and 
hyaluronic acid (HA), and the HS and chondroitin sulfate are 
important for vascular permeability (18–20). Glycoproteins are 
located on the surface of the endothelial cells and are covered by the 
EG under normal conditions. Glycoproteins include short, covalently-
bound, branched oligosaccharides (21), which are principally 
E-selectin, P-selectin, intercellular adhesion molecule (ICAM), and 
vascular cell adhesion molecule (VCAM). Unlike the continuous 
capillaries in the heart (22) and the sinusoidal capillaries in the liver 
(23), the capillaries in the glomerulus are fenestrated, including pores 
that allow the penetration of small molecules but restrict the diffusion 

of proteins. The EG on the luminal surface of the glomerular capillaries 
reduces the size of these pores, almost blocking them (24).

The glycocalyx forms a barrier on the vascular endothelium and 
is a dynamic structure. The basic structure and function of the 
glycocalyx have been thoroughly studied, but some of the mechanisms 
involved have not been fully elucidated (25). Recent studies have 
shown that the glycocalyx plays an important role in the regulation of 
vascular permeability, cell–endothelial interactions (inflammation and 
coagulation) (26, 27), signaling, and molecular bioavailability (21). 
For example, fibroblast growth factor (FGF) signaling is entirely 
dependent on interactions between ligands, receptors, and the 
glycocalyx (28, 29). Furthermore, the binding of plasma-derived 
molecules to the glycocalyx can result in a local concentration 
gradient, which is a common feature of the transcriptional and 
developmental processes that are regulated by growth factors (30, 31).

3 The role of the endothelial cell 
glycocalyx in disease

In recent years, with the further development of medical 
technology, interest in the structure and function of the glycocalyx has 
been steadily increasing (32). The structure of the glycocalyx has 
become increasingly clear, and new technologies such as scanning 
probe microscopy have been used to better characterize the structure 
and function of the glycocalyx under physiologic conditions (33). The 
EG plays an important role in the maintenance of vascular 
homeostasis, and it is therefore a key player in a variety of systemic 
diseases (34).

The glycocalyx has been shown to be  closely associated with 
various cardiovascular diseases. In aortic aneurysm, degradation 
products of the glycocalyx, syndecans, may serve as biomarkers and 
therapeutic targets (35). During acute myocardial infarction, the 
dysregulation of complement activation can lead to the degradation 
of the EG, causing endothelial dysfunction, and therefore this may 
provide new therapeutic targets (36). In coronary atherosclerosis, 
damage to the EG accelerates plaque formation (37). Furthermore, 

FIGURE 1

S-AKI is associated with a complex array of mechanisms. The pathophysiologic mechanisms included acute tubular necrosis, oxidative stress, 
inflammatory responses, mitochondrial dysfunction, microvascular dysfunction, and ischemic. Sepsis-related injury factors cause the degradation of 
the glycocalyx, which leads to vascular endothelial dysfunction and is an important mechanism causing acute tubular necrosis during S-AKI. S-AKI, 
Sepsis-induced acute kidney injury.
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cardiac surgery can affect the function of the EG, predisposing toward 
disease progression (38). Thus, the glycocalyx has become a potential 
therapeutic target for cardiovascular disease (39).

Recent research has also demonstrated the role of the glycocalyx 
in respiratory diseases (40). For example, there is a complex interaction 
between coronavirus disease 2019 and the EG (41), and the glycocalyx 
plays a crucial role in the pathogenesis, progression, and complications 
of this disease (42, 43). In acute respiratory distress syndrome, the 
shedding of the epithelial glycocalyx contributes to the development 
and progression of lung injury, including excessive alveolar 
permeability, disruption of surfactant function, greater bacterial 
virulence, and impaired epithelial cell repair (44). The HS of the 
glycocalyx plays an important role in preserving endothelial barrier 
function and preventing the development of injury, acting in concert 
with tight junctions through signal transducer and activator of 
transcription 3 signaling (45).

The glycocalyx also plays important roles in other diseases. In 
patients with tumors, the glycocalyx, through extracellular vesicles, 
plays central roles in angiogenesis, the tumor microenvironment, and 
metastasis (46). The disruption of the EG has also been identified in 
diabetic nephropathy and retinopathy, and it plays a role in their 
development (47, 48). Moreover, the glycocalyx maintains the integrity 
of the blood–brain barrier and the vascular health of the central 
nervous system, influencing key processes such as blood flow 
regulation, inflammation, and vascular permeability (49).

Some common drugs have also been shown to affect the 
glycocalyx. For example, rivaroxaban protects the EG against damage 
caused by oxidative stress (50), doxycycline protects against sepsis-
induced EG damage (51), and excessive aldosterone can cause EG 
damage (52).

4 The role of the endothelial cell 
glycocalyx in sepsis

4.1 Early damage and the vicious circle of 
endothelial glycocalyx pathology in sepsis

Sepsis is a systemic disease, but the vascular endothelium is the 
first site that is exposed to bacterial endotoxin. As early as a few 
decades ago, it was shown that the glycocalyx covers the surface of 
most vascular lumens and that microcirculatory dysfunction and 
endothelial damage play important roles in the multiorgan failure 
associated with sepsis (53), and also that endothelial dysfunction and 
microcirculatory impairment are determinants of the severity and 
duration of sepsis (54).

Recent studies of the heart, lungs, and small blood vessels of the 
kidneys have shown that the EG is involved in some manifestations of 
endothelial dysfunction in sepsis (53, 55), and Song et al. have shown 
that measures taken to prevent glycocalyx degradation (subcutaneous 
injection of sulodexide (SDX), a highly purified patented product 
prepared from the porcine intestinal mucosa, consisting of 80% 
iduronylglycosaminoglycan sulfate, known as “fast-moving heparin,” 
and 20% dermatan sulfate) improves the survival of mice with sepsis 
(56). Furthermore, there may be a vicious circle involving endothelial 
cell dysfunction and glycocalyx damage. Zhang et  al. found that 
endothelial cell dysfunction, which is characterized by low nitric oxide 
(NO) bioavailability, greater reactive oxygen species production, the 

activation of abscission enzymes, and impaired extracellular lysosome-
associated organelle function, triggers the degradation of the EG (57), 
leading to shear stress defects. The glycocalyx, which covers 
endothelial cells, is the first component of the barrier to sense the 
mechanical signals associated with blood flow and transduce 
mechanical and biological signals to endothelial cells. During sepsis, 
changes in hemodynamics and shear stress can lead to glycocalyx 
damage and endothelial cell dysfunction. In turn, endothelial cell 
dysfunction affects the synthesis and secretion of the glycocalyx, 
thereby forming a vicious circle (58).

4.2 Mechanisms of enzymatic degradation 
and the regulatory networks of the 
glycocalyx

In general, there is greater catabolism of proteins, lipids, and 
carbohydrates in sepsis (59), but recent studies have shown that there 
is also greater polysaccharide synthesis in endothelial cells in the 
presence of sepsis. This is accompanied by loss of the glycocalyx and 
a 60% increase in permeability of the vascular endothelium, a change 
that is even more pronounced in patients who die as a result of sepsis, 
indirectly demonstrating that sepsis leads to the degradation of the 
glycocalyx and a compensatory increase in glycocalyx synthesis by 
endothelial cells (60). There is normally a feedback mechanism that 
regulates glycocalyx synthesis and degradation, but the rate of 
degradation is much higher than the rate of synthesis in the pathologic 
state. Enzymatic degradation of the glycocalyx is mediated by catabolic 
enzymes, catabolites, metalloproteinases, matrix metalloproteinases 
(MMPs), disintegrin and metalloproteinase domain-containing 
proteins (ADAMs), heparanase-1, hyaluronidase, and GPI-specific 
PLC AMs (61–63).

The expression of the gene encoding heparanase is regulated 
epigenetically and by tumor suppressor p53, but can also be induced 
by early growth response stimulation of transcription factor-1, reactive 
oxygen species, and inflammatory cytokines (64). Heparanase is also 
overexpressed in some malignant tumors and is activated in sepsis, 
causing partial degradation of the glycocalyx, which further 
exacerbates the loss of glycocalyx components (65). Schmidt et al. 
used heparinase inhibitors and a heparinase-deficient mouse model 
to demonstrate the pathogenic role of heparanase activation in sepsis-
induced respiratory distress (53), and a similar phenomenon was 
identified in a model of ischemic acute kidney injury (66, 67).

4.3 The dual role of imbalances in 
hyaluronic acid metabolism in glycocalyx 
damage

HA has a wide variety of receptors, including cluster of 
differentiation 44 (CD44), HA-mediated motility receptor, lymphatic 
endothelial receptor-1, endocytosis-activated HA receptor, and Toll-
like receptor 4, and is thus a potent signaling molecule with a range of 
effects that plays a crucial role in the development of sepsis (68). 
Under normal circumstances, the high-molecular weight form of HA 
predominates, and this maintains tissue stability and immune balance 
(69). When sepsis develops, inflammatory stimuli cause the 
degradation of high-molecular weight HA to the low-molecular 
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weight form, and the accumulation of this form triggers an 
inflammatory response with the aim of eliminating pathogens (70). If 
low-molecular weight HA is produced in excessive amounts or cannot 
be cleared promptly an uncontrolled inflammatory response develops, 
which aggravates tissue damage. High-molecular weight HA can 
inhibit this inflammatory response to a certain extent by inhibiting the 
effects of the low-molecular weight form (71) through competition for 
receptors or interference with the associated signal transduction 
pathway (72). Thus, the balance between the two forms plays key roles 
in the development and outcome of sepsis. A disruption of this 
balance leads to the progression of the disease (73).

Sepsis has been shown to affect HA metabolism. The circulating 
concentrations of HA and HS are four-fold higher than normal in 
patients with sepsis and 29-fold higher in patients who survive for 
more than 90 days. Furthermore, the HA concentration correlates 
with the severity of renal and hepatic impairment (74). In rats with 
unilateral renal ischemia/reperfusion injury, the circulating HA 
concentration is high on day 1, and the excess largely comprises the 
high-molecular weight species (75). This phenomenon is associated 
with 35- to 50-fold higher hyaluronan synthase 1 mRNA expression 
in the outer and inner medulla of the kidney and a sustained increase 
in hyaluronan synthase 2 mRNA expression. However, the activities 
of hyaluronidase 1 and 2 are inhibited for 24 h following ischemia/
reperfusion (76).

4.4 Lysosome-mediated glycocalyx 
degradation: a critical early defect in sepsis

Lysosome-associated organelles also induce degradation of the 
glycocalyx. Lysosomes, as well as late endosomes and autophagosomes, 
have a thin layer of lysosomal glycocalyx on their inner surfaces (77) 
that protects the membranes from being digested by the hydrolytic 
enzymes they contain (78). It has been suggested that secreted 
lysosomes may contribute to the repair of the glycocalyx on cellular 
membranes during cytosolization (79), but the opposite has been 
identified in patients with sepsis (55). Lysosomes contain 

approximately 60 different soluble hydrolases that hydrolyze 
glycosaminoglycans, phospholipids, and a range of proteins, and 
cytosolization results in the release of a large number of stored 
substances from secreted lysosomes (80). Zullo et al. found that patchy 
degradation of the EG occurs after 10–15 min of exposure to 
lipopolysaccharide (LPS) and that this phenomenon is associated with 
an increase in histone B concentration in the culture medium, 
consistent with the export of lysosomal contents. Furthermore, when 
the binding of NO donors to lysosome-associated organelles is 
inhibited, this loss of EG is attenuated (55). Thus, lysosomes may also 
mediate early glycocalyx loss (Figure 2).

5 Relationship between the vascular 
endothelial cell glycocalyx and acute 
kidney injury in sepsis

5.1 Structure and function of the kidney 
endothelial glycocalyx layer and its 
potential role in S-AKI

The EG layer lines the open fenestrae and covers the surface of the 
podocytes. The capillary EG covers 16.7% ± 1.8% of…. These 
structures are key to kidney function (15). Recent research has shown 
that an endothelial-specific glycocalyx component, endomucin 
(EMCN), is highly expressed in the glomerular endothelium and plays 
a key role supporting the normal structure and function of the 
glomerular filtration barrier by maintaining the tight junctions, 
homeostasis of the glomerular endothelium, and function of 
podocytes (81). The microvasculature of the kidney has similar 
functions to the microvascular systems of other organs, including the 
delivery of sufficient oxygen and nutrients to tissue cells, maintenance 
of the integrity of the endothelial monolayer, maintenance of the 
anticoagulant/procoagulant balance, and promotion of leukocyte 
recruitment (82). The vascular EG can determine vascular 
permeability, weaken the interaction between blood cells and the 
vessel wall, mediate shear stress sensing, achieve balanced signal 

FIGURE 2

(a) Normal glycocalyx structure. (b) Mechanisms of sepsis-induced glycocalyx damage: shear stress, lysosome-related organelles, inflammatory 
response, oxidative stress, and some metallohydrolases. MMPs, matrix metalloproteinases; ADAMs, A Disintegrin And Metalloproteinase Domain-
containing Proteins; IL-1β, Interleukin-1β; IL-6, Interleukin-6; IL-10, Interleukin-10; TNF-α, Tumor Necrosis Factor-α; CD44, Cluster of Differentiation 
44; vWF, Von Willebrand Factor; SOD, Reactive Oxygen Species; ICAM-1, Intercellular Adhesion Molecule-1; VCAM-1, Vascular Cell Adhesion 
Molecule-1.
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transduction, and play a role in vascular protection. However, when it 
is disrupted, these properties are lost (16, 83). In the kidney, the 
control of vascular homeostasis and renal microvascular permeability 
is further regulated by the glycocalyx (84). The heterogeneity of the 
behavior of renal capillary endothelial cells is partly determined by the 
microenvironment in which the cells are located (85). Because sepsis 
rapidly changes the microenvironment and endothelial cells are one 
of the cell types that first sense the changes caused by sepsis and 
undergo extensive molecular adaptations (83), further research into 
the renal vascular EG could help physicians diagnose sepsis as early as 
possible, thereby providing the opportunity for early intervention.

More than half of patients in the ICU develop AKI, of those 
admitted because of sepsis, 62.3% develop S-AKI, and severe S-AKI is 
associated with a higher risk of death (3, 86). The systemic hypotension 
associated with sepsis involves reflex vasoconstriction, which leads to 
a decrease in renal blood perfusion, ultimately resulting in ischemia 
and hypoxia in the kidney (87). The subsequent pathophysiologic 
mechanisms can be summarized as acute tubular apoptosis, oxidative 
stress, inflammation, microcirculatory dysfunction, vascular barrier 
function disorder, local hypoxia, and tissue edema (84). Any of these 
factors, alone or in combination, can lead to AKI and damage to the 
vascular endothelium, including shedding of the glycocalyx. Damage 
to the tubular endothelial cells can increase leukocyte adhesion, 
platelet aggregation, and vasoconstriction, reduce blood flow to 
nephrons, and damage the glomerular barrier and the extensive 
network of peritubular capillaries (88). The glycocalyx is a negatively 
charged gel that covers endothelial cells and forms a molecular sieve, 
preventing the passage of macromolecules and protecting endothelial 
cells (89). Therefore, damage to the glycocalyx is a crucial promoter of 
S-AKI progression (90).

5.2 Manifestations of endothelial 
glycocalyx damage in S-AKI and the 
mechanisms involved

In all models of sepsis, loss of the EG rapidly leads to the 
accumulation of high circulating concentrations of soluble glycocalyx 
components (91). In mice, the plasma concentration of syndecan-1 
begins to increase within 6 h of high-dose LPS (20 mg/kg) 
administration and peaks after approximately 24 h (92). Electron 
microscopic analysis has shown that 48 h after LPS treatment, the 
glycocalyx of glomerular endothelial cells and podocytes begins to 
disappear, and endothelial fenestrations are lost or edematous, such 
that a gap forms between the podocytes and the basement membrane 
(15). In addition, heparanase expression is high, principally in the 
glomerulus, 24–48 h after LPS treatment, which leads to the 
glomerular loss of HS and glycosaminoglycans, and is associated 
with high blood urea nitrogen (BUN), high urinary albumin/
creatinine ratio, and glomerular injury (93, 94). Furthermore, in rats 
that are subjected to cecum ligation and puncture (CLP) 
induced-AKI, early glomerular syndecan-1 loss is followed by the 
loss of hyaluronic acid 7 h after CLP is initiated, and this is 
accompanied by alterations in glomerular sialic acids and the 
molecular composition of the glomerular filtration barrier (95). 
Although the circulating creatinine concentration and creatinine 
clearance are normal, the urinary albumin/creatinine ratio of such 
rats is high, suggesting a loss of the glomerular filtration barrier, 

rather than a loss of renal function. Furthermore, in mice subjected 
to CLP, the expression of active heparanase increases within the first 
4 h of AKI, most markedly in the glomerulus and small 
periglomerular arteries (96).

In pathologic conditions, the loss of HS disrupts the charge 
selectivity of the glomerular filtration barrier, which increases the 
filtration of proteins and leads to proteinuria (97). This increases the 
reabsorption burden of the renal tubules, resulting in impaired 
excretion of renal metabolic waste and contributing to the increase in 
BUN. However, this increase in BUN is also affected by other factors: 
the concomitant loss of HS at least in part explains the increase in 
BUN and fully explains the CLP-induced decrease in glomerular 
filtration rate (GFR) (98). CLP-induced sepsis leads to the degradation 
of HS in the endothelial glycocalyx (99). Hemodynamically, the loss 
of HS impairs its mechanotransduction function, resulting in 
abnormal regulation of vascular tone and lower renal perfusion; and 
in terms of vascular barrier function, the loss of HS exposes adhesion 
molecules, promoting the adhesion of leukocytes and platelets, 
triggering inflammation and thrombosis, and further impairing renal 
blood supply and glomerular filtration, ultimately leading to a 
decrease in GFR (100). Thus, in CLP-induced sepsis, the loss of HS is 
the key factor causing the decrease in GFR and can fully explain this 
effect. The increase in renal microvascular permeability becomes 
evident 8–24 h after CLP, which is a delayed response compared with 
the early increases in the systemic concentrations of glycocalyx 
components (101). The structure of the glycocalyx is gradually 
degraded, and therefore it retains some of its barrier function for a 
time, thereby restricting the increase in microvascular permeability. 
Furthermore, the intervals between an inflammatory stimulus, the 
massive generation and complete activation of lytic enzymes, and the 
accumulation of glycocalyx degradation products, which causes 
changes in microvascular permeability that can be relatively prolonged 
(102). There are multiple compensatory mechanisms for glycocalyx 
damage, such as an increase in the expression of tight junction 
proteins and changes in cytoskeletal structure, which help maintain 
the normal function of microvessels (103) and further delay the effects.

5.3 The relationship between endothelial 
glycocalyx damage and renal leukocyte 
recruitment

The effects of the sepsis-associated loss of the vascular EG on renal 
leukocyte recruitment are less clear than those on permeability. In the 
presence of LPS, the lung capillaries of mice rapidly lose HS, leading 
to greater neutrophil recruitment (53). However, in the kidney, 48 h 
after LPS administration, monocyte and macrophage accumulation is 
dependent on the glycocalyx, whereas neutrophil endocytosis in the 
glomerulus is not (93). In mice with CLP-induced sepsis, no 
relationship was identified of the loss of HS in glomeruli with small 
periglomerular arteriolar microvessel function and neutrophil 
endocytosis (96). However, in antiglomerular basement membrane 
glomerulonephritis, neutrophil recruitment to the glomerulus is 
dependent on the loss of HS (104). These data suggest that in S-AKI, 
the glomerular EG restricts immune cell recruitment. Findings made 
in other organs cannot be  fully extrapolated to the kidney, and 
therefore the role of the glycocalyx in inflammation and leukocyte 
recruitment in S-AKI requires further investigation (105).
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5.4 The vital role of the endothelial 
glycocalyx in the stability of the renal 
microvasculature

The EG also plays important roles in renal microvascular 
homeostasis. We  evaluated the role of heparanase using two 
experimental models of glomerulonephritis, in wild-type and 
heparan-deficient mice, and found that normal glomerular levels of 
HS are necessary for the maintenance of normal renal function (93). 
HS is an important component of the glomerular filtration barrier 
(106), and in experimental diabetic nephropathy, low expression of 
HS leads to impaired function of the glomerular filtration barrier, 
greater protein filtration, and therefore an impairment in renal 
function (107). Therefore, normal glomerular levels of HS are 
necessary for renal function in general and the control of glomerular 
permeability in particular (93, 108), and HS in small arterioles is 
necessary for the appropriate control of GFR (96) because it helps 
maintain the normal structure and function of blood vessels. 
Hemodynamically, as a major component of the EG, HS converts fluid 
shear stress into signals, regulates vascular tone, and ensures the 
normal contraction and relaxation of arterioles (106). During sepsis, 
HS is degraded, leading to abnormal regulation of vascular tone, 
which affects renal blood perfusion and GFR (109). When HS is 
damaged, the adhesion of leukocytes and platelets increases, which 
may lead to thrombosis and inflammation in arterioles, affect the 
blood supply to the kidneys, and impair GFR. Furthermore, 
appropriate glomerular levels of syndecan and HS are necessary for 
normal glomerular filtration barrier function (95). In S-AKI, the 
microvascular levels of these glycocalyx components change in a 
heterogeneous manner, and along with changes in other structural 
components of the endothelial surface layer, these underlie the loss of 
microvascular function (85). A recent study has shown that the 
absence of EMCN disrupts endothelial homeostasis. Along with 
infiltration by inflammatory cells, it also causes dysfunction of the 
glomerular filtration barrier, and therefore albuminuria (81). These 
findings reveal the crucial role of the glycocalyx molecule EMCN in 
the permeability of renal blood vessels and the integrity of the 
glomerular filtration barrier; and provide more compelling evidence 
for the relationship between S-AKI and the glycocalyx.

5.5 Current status of research into the 
endothelial glycocalyx in sepsis

Endothelial dysfunction and glycocalyx damage have become a 
focus of sepsis research, and markers of glycocalyx degradation are 
being identified. This is evidenced by a recently published bibliometric 
analysis that counted articles regarding endothelial dysfunction in 
sepsis that were published between 2003 and 2023, which showed a 
rapidly increasing number. Key areas of future research will include 
the signaling pathways and molecular mechanisms involved, 
endothelial repair, and interactions between endothelial cells and 
other cell types in sepsis (110). In addition, Nelson et al. have shown 
that patients with septic shock who are admitted to the ICU (N = 18) 
have a significantly higher median expression of syndecan-1 than 
healthy individuals (111). Furthermore, Schmidt et al. measured the 
urinary HS concentration, which may reflect renal glycocalyx 
degradation, and found that HS was the only glycosaminoglycan that 

was significantly associated with mortality (hyaluronic acid and 
chondroitin sulfate were not) and that patients who died of sepsis had 
significantly higher mean HA concentrations at the start of the study 
than survivors (112).

6 Importance of the glycocalyx for the 
diagnosis and treatment of S-AKI

6.1 Challenges in the early diagnosis of 
S-AKI and potential biomarkers

Currently, the fundamental problem regarding the treatment or 
prevention of S-AKI is that it is typically diagnosed late. The diagnostic 
criteria for AKI are based on changes in urine output and serum 
creatinine concentration (2). However, urine output is not a very 
reliable index in patients who are taking medication or are 
perioperative, and other commonly used surrogate indices, such as the 
serum creatinine concentration, creatinine clearance, or GFR, can 
only show that AKI and functional impairment is already present, 
rather than being predictors of their development at an early stage 
(113). By contrast, the troponin concentration can be used to identify 
cardiac conditions before dysfunction develops (114). Therefore, the 
identification of a high troponin concentration permits earlier 
treatment and prevention, thereby halving the mortality rate 
associated with non-ST-segment elevation-associated myocardial 
infarction (115). Thus, there is an urgent need to identify a marker of 
structural damage to the kidney before functional impairment and the 
vicious cycle of inflammation, microcirculatory disturbances, and 
local ischemia are established (116).

6.2 Glycocalyx-associated biomarkers for 
the early diagnosis of S-AKI

Several biomarkers that have the potential to overcome the 
limitations of the use of creatinine concentration have been identified 
(91). For example, cystatin C is suitable for the detection of renal 
impairment in patients with GFRs in the “creatinine-blind” range, and 
it is not significantly influenced by muscle mass, age, or ethnicity 
(117). The cystatin C concentration begins to rise 24–48 h after AKI, 
and this response is much faster than that of creatinine, the 
concentration of which increases 2–7 days after AKI, depending on 
the extent of the pre-existing kidney damage (118). Another new 
biomarker is neutrophil gelatinase-associated lipocalcin (NGAL), 
which shows changes in concentration that are comparable to those 
of troponin, with a peak 6 h after the onset of AKI. This is a reliable 
predictor of AKI in critically ill patients, but the utility of NGAL for 
the diagnosis of sepsis is more questionable because it is partly derived 
from neutrophils (119). Cut-off values have been established for these 
biomarkers, but although they may help physicians identify the most 
appropriate time to start treatment for kidney damage, no 
corresponding treatment exists (84).

The findings of studies of the tubular EG may be  able to 
compensate for these diagnostic and therapeutic deficiencies. Previous 
studies have identified several predictors of glycocalyx injury or 
degradation in patients with sepsis, including high plasma HS and 
heparanase concentrations in children (20) and high plasma HA and 
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syndecan-1 concentrations in adults (120). These glycocalyx 
components are released into the bloodstream and may represent 
useful markers for the prediction of sepsis and even S-AKI. Some 
preliminary studies have demonstrated that high concentrations of 
syndecan-1, CD44, and glycosaminoglycans are associated with 
microvascular injury in resuscitated patients with septic shock (91, 
121). However, the relationships between these markers and S-AKI 
have yet to be fully characterized. One study has shown that in patients 
with septic shock, the plasma concentrations of syndecan-1 and 
VE-cadherin increase significantly within 7 days (122). In addition, in 
patients with organ failure, the syndecan-1 and VE-cadherin 
concentrations increase, whereas that of sphingosine 1-phosphate 
(S1P) decreases. The syndecan-1 and VE-cadherin concentrations are 
independently associated with the need for renal replacement therapy 
during hospitalization in the ICU, but only syndecan-1 is predictive of 
its development (122). A few previous studies have shown associations 
between these markers and S-AKI. Saoraya et al. showed that in the 
emergency department, the circulating concentration of syndecan-1, 
a marker of glycocalyx degradation, correlates with the fluid 
requirement, severity of sepsis, extent of organ dysfunction, and risk 
of mortality, but a direct relationship with glycocalyx degradation has 
not been identified (123). The serum syndecan-1 concentration may 
indirectly reflect the extent of glycocalyx degradation because a study 
performed in humans showed that syndecan-1 may be a potential 
biomarker of the quality of donor kidneys (124). However, Hahn et al. 
found that the renal elimination of syndecan-1 and HS differed 
significantly. The changes in renal function that are common after 
trauma and major surgery may lead to several-fold changes in the 
plasma concentrations of these substances (125), which renders the 
reliability of these markers questionable. Schmidt et al. found that in 
septic shock, the glycosaminoglycans fragmentation index is 
associated with the development of renal insufficiency and in-hospital 
mortality within 72 h of urine collection (112). Finally, Ying et al. 
found that syndecan-1 predicts the prognosis of children with septic 
shock, and SDX may have therapeutic potential for sepsis-associated 
endothelial dysfunction (126). The search for markers of glycocalyx 
injury continues.

6.3 Use of glycocalyx-associated 
biomarkers as part of therapeutic strategies 
for S-AKI

Concerning the treatment of glycocalyx injury, Urban et al. found 
that colivelin, a synthetic derivative of the mitochondrial peptide 
humanin, reduces the plasma syndecan-1, tumor necrosis factor-α 
(TNF-α), and interleukin-10 (IL-10) concentrations. In addition, the 
glycocalyx in colivelin-treated mice has thicker and more complex 
glycosaminoglycan bundles than that in vehicle-treated septic mice 
(127). Furthermore, the intravenous administration of interferon-β 
(IFN-β; 1,000 units/20 g) 6 and 18 h after CLP increases the survival 
rate of mice by 40% (128). Vitamin C (VC) and recombinant 
thrombomodulin have also been studied for their potential to protect 
the glycocalyx and improve the prognosis associated with sepsis. In 
humans, the administration of high doses of VC intravenously for 48 h 
(50 mg/kg every 6 h) has been shown to reduce the plasma syndecan-1 
concentration (129). In addition, the plasma syndecan-1 concentration 
of septic mice is reduced by recombinant thrombomodulin, suggesting 

that it ameliorates glycocalyx injury (130). The search for markers of 
glycocalyx damage that can predict S-AKI is ongoing.

Measures that protect or restore the glycocalyx may reduce the 
vascular hyperpermeability, inflammation, and organ dysfunction 
associated with sepsis (131). S1P is a sphingolipid that may help 
improve glycocalyx integrity by inhibiting syndecan-1 shedding. It 
binds to the S1P1 receptor, which is most abundantly expressed on 
vascular endothelial cells, and the activation of this receptor attenuates 
the activity of MMPs, causing syndecan-1 ectodomain shedding (132). 
Because the activation of heparanase can increase MMP expression, 
heparin also may attenuate the increase of MMP expression by 
inhibiting heparanase activity (133). Fernández-Sarmiento et al. found 
that children with sepsis, and particularly those who are administered 
unbalanced crystalloid solutions during resuscitation, demonstrate a 
loss or deterioration of the EG, and this effect peaks approximately 6 h 
after the infusion and is often associated with metabolic acidosis and 
AKI (134). Duan et  al. demonstrated that IFN-β alleviates sepsis 
through the sirtuin 1 (SIRT1)-mediated blockade of EG shedding and 
that IFN-β plus nicotinamide riboside prevents endothelial damage 
during sepsis through activation of the SIRT1/heparanase 1 pathway 
(128). More recently, it has been demonstrated that 10–12 weeks of 
dietary supplementation with Endocalyx, which contains high-
molecular weight HA and other glycocalyx components, restores the 
glycocalyx and ameliorates age-related vascular dysfunction in aged 
mice (135). Although this finding is promising, many glycocalyx 
enzyme-targeting therapies require the oral administration of dietary 
supplements for a few weeks, which is virtually impossible for patients 
with sepsis. Instead, glycocalyx-targeting therapies for sepsis and 
other acute health conditions need to rapidly restore the glycocalyx 
and be administered parenterally.

Ishiko et  al. demonstrated that the intravenous infusion of 
liposomal nanocarriers of pre-assembled glycocalyx (LNPG) leads 
to the restoration of the glycocalyx in LPS-treated mice (136). This 
study had a couple of key strengths that are worth highlighting. First, 
LNPG administration is a novel means of restoring the glycocalyx, 
and importantly, LNPG infusion in septic mice restores the 
glycocalyx within 30 min and maintains its integrity thereafter. 
Second, the therapeutic effect of LNPG was shown both in vivo and 
ex vivo, when it was delivered to endothelial cells lacking a glycocalyx 
(137). Although other therapeutic agents, such as colivelin, have 
been shown to restore the glycocalyx and reduce the plasma 
concentration of syndecan-1 in sepsis (127), it is not clear whether 
these agents are directly integrated into the glycocalyx from the 
circulation or whether the glycocalyx is restored by de novo synthesis 
by endothelial cells. To the best of our knowledge, this was the first 
study of a potential therapy targeting the glycocalyx in sepsis to 
demonstrate that it can be restored by an exogenous substance (138). 
Another study showed that hydrogen-rich saline can upregulate the 
SIRT1/nuclear factor-κB signaling pathway, thus reducing the 
shedding of vascular EG in S-AKI (139). Furthermore, Xing et al. 
discovered that knocking down hyaluronidase-1  in mice with 
LPS-induced sepsis significantly alleviates kidney inflammation, 
oxidative stress, apoptosis, and renal dysfunction in AKI (140). It 
also mitigates the damage to the renal EG by preventing the release 
of hyaluronic acid into the bloodstream. The beneficial effects of 
hyaluronidase-1 blockade are closely related to activation of the 
5′-AMP-activated protein kinase/mechanistic target of rapamycin 
(AMPK/mTOR) signaling pathway (141). However, the mechanism 
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involved and the therapeutic significance require further 
investigation. A recent study has shown that tacrolimus reduces 
apoptosis, maintains the integrity of the glycocalyx, regulates 
neutrophil infiltration, and alleviates kidney injury in AKI caused 
by brain death (142). Nevertheless, its effect on S-AKI remains 
unclear and requires further research. Another study showed that 
plasma infusion may prevent and treat the degradation of the EG in 
sepsis, but the current level of evidence is insufficient to prove that 
this effect is mediated by the glycocalyx. Thus, further research is 
needed before this approach could be used clinically (143).

Renal tubular endothelial cells and the glycocalyx are closely 
associated with the development of S-AKI. However, the extent to 
which glycocalyx restoration improves the prognosis of sepsis 
needs to be further investigated. This may lead to the discovery 
of new therapies for sepsis and septic renal injury, as well as other 
disorders that lead to glycocalyx degradation (Figure 3).

7 Summary

In recent years there has been a gradual increase in research 
on the glycocalyx, which is an important substance that is 
synthesized and secreted by vascular endothelial cells and is 
involved in the maintenance of endothelial structure and function. 
Under pathologic conditions, glycocalyx degradation indicates 
damage to the vascular endothelium, which is associated with the 
development of various pathologies, such as vascular leakage, 
interstitial edema, the dissemination of inflammation, oxidative 
stress, vasoconstriction, and even disseminated intravascular 
coagulation. A large amount of evidence suggests that glycocalyx 
plays a critical role in S-AKI. To date, research on the role of the 
EG in S-AKI has mostly been performed in cells or animals, and 
there have been very few clinical studies. This severe shortage of 
clinical data has greatly hindered the identification of EG-related 
molecules as diagnostic markers and therapeutic targets for 
S-AKI. Even though knowledge regarding the important roles of 
the glycocalyx has accumulated, the relationship between the 
impairment of the EG and sepsis or S-AKI has not been fully 

elucidated. Therefore, further in-depth research is required to 
explore potential therapeutic strategies targeting the EG.
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FIGURE 3

Potential therapeutic approaches and targets for sepsis-induced acute kidney injury, including reducing the production of inflammatory factors, 
weakening the activity of metallohydrolases, SIRT1-related treatments, inhibiting the shedding of glycocalyx components, and repairing the glycocalyx. 
VC, Vitamin C; IFN-β, Interferon-β; SIRT-1, Sirtuin 1; MMPs, matrix metalloproteinases; ADAMs, A Disintegrin And Metalloproteinase Domain-containing 
Proteins; IL-1β, Interleukin-1β; IL-6, Interleukin-6; IL-10, Interleukin-10; TNF-α, Tumor Necrosis Factor-α; FGF, Fibroblast Growth Factor; LNPG, 
liposomal nanocarriers of pre-assembled glycocalyx; SIRT1, Sirtuin 1; SDX, sulodexide; ROS, Reactive Oxygen Species.
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Glossary

S-AKI - sepsis-induced acute kidney injury

ICUs - intensive care units

EG - endothelial glycocalyx

AKI - acute kidney injury

HS - heparan sulfate

ICAM - intercellular adhesion molecule

VCAM - vascular cell adhesion molecule

FGF - Fibroblast Growth Factor

NO - nitric oxide

MMPs - matrix metalloproteinases

ADAMs - A Disintegrin And Metalloproteinase Domain-
containing Proteins

CD44 - Cluster of Differentiation 44

HA - hyaluronic acid

LPS - lipopolysaccharide

EMCN - endo mucin

BUN - blood urea nitrogen

CLP - cecum ligation and puncture

GFR - glomerular filtration rate

NGAL - neutrophil gelatinase-associated lipocalcin

S1P - Sphingosine 1-Phosphate

TNF-α - Tumor Necrosis Factor-α

IL-10 - Interleukin-10

IL-1β - Interleukin-1β

VC - Vitamin C

SIRT1 - Sirtuin 1

LNPG - liposomal nanocarriers of pre-assembled glycocalyx

AMPK/mTOR - 5′-Adenosine Monophosphate-Activated Protein 
Kinase/mammalian Target Of Rapamycin

IL-6 - Interleukin-6

vWF - Von Willebrand Factor

SOD - Reactive Oxygen Species

SDX - sulodexide

ROS - Reactive Oxygen Species

https://doi.org/10.3389/fmed.2025.1535673
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

	Role of the endothelial cell glycocalyx in sepsis-induced acute kidney injury
	1 Introduction
	2 Structure and function of the glycocalyx of vascular endothelial cells
	3 The role of the endothelial cell glycocalyx in disease
	4 The role of the endothelial cell glycocalyx in sepsis
	4.1 Early damage and the vicious circle of endothelial glycocalyx pathology in sepsis
	4.2 Mechanisms of enzymatic degradation and the regulatory networks of the glycocalyx
	4.3 The dual role of imbalances in hyaluronic acid metabolism in glycocalyx damage
	4.4 Lysosome-mediated glycocalyx degradation: a critical early defect in sepsis

	5 Relationship between the vascular endothelial cell glycocalyx and acute kidney injury in sepsis
	5.1 Structure and function of the kidney endothelial glycocalyx layer and its potential role in S-AKI
	5.2 Manifestations of endothelial glycocalyx damage in S-AKI and the mechanisms involved
	5.3 The relationship between endothelial glycocalyx damage and renal leukocyte recruitment
	5.4 The vital role of the endothelial glycocalyx in the stability of the renal microvasculature
	5.5 Current status of research into the endothelial glycocalyx in sepsis

	6 Importance of the glycocalyx for the diagnosis and treatment of S-AKI
	6.1 Challenges in the early diagnosis of S-AKI and potential biomarkers
	6.2 Glycocalyx-associated biomarkers for the early diagnosis of S-AKI
	6.3 Use of glycocalyx-associated biomarkers as part of therapeutic strategies for S-AKI

	7 Summary

	References

