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inflammatory markers
Mei Yang 1, Quanhui Tan 1, Tingting Li 1, Jie Chen 1, Weiwei Hu 1, 
Yi Zhang 1, Xiaohua Chen 1, Jiangfeng Wang 2, Chentian Shen 2* 
and Zhenghao Tang 1*
1 Department of Infectious Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong 
University School of Medicine, Shanghai, China, 2 Department of Nuclear Medicine, Shanghai Sixth 
People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China

Purpose: The diagnosis of fracture-related infection (FRI) especially patients 
presenting without clinical confirmatory criteria in clinical settings poses 
challenges with potentially serious consequences if misdiagnosed. This study 
aimed to construct and evaluate a novel diagnostic nomogram based on 
18F-fluorodeoxyglucose positron emission tomography /computed tomography 
(18F-FDG PET/CT) and laboratory biomarkers for FRI by machine learning.

Methods: A total of 552 eligible patients recruited from a single institution 
between January 2021 and December 2022 were randomly divided into a 
training (60%) and a validation (40%) cohort. In the training cohort, the Least 
Absolute Shrinkage and Selection Operator (LASSO) regression model analysis 
and multivariate Cox regression analysis were utilized to identify predictive 
factors for FRI. The performance of the model was assessed using the area 
under the Receiver Operating Characteristic (ROC) curve (AUC), calibration 
curves, and decision curve analysis in both training and validation cohorts.

Results: A nomogram model (named FRID-PE) based on the maximum 
standardized uptake value (SUVmax) from 18F-FDG PET/CT imaging, Systemic 
Immune-Inflammation Index (SII), Interleukin - 6 and erythrocyte sedimentation 
rate (ESR) were generated, yielding an AUC of 0.823 [95% confidence interval (CI), 
0.778–0.868] in the training test and 0.811 (95% CI, 0.753–0.869) in the validation 
cohort for the diagnosis of FRI. Furthermore, the calibration curves and decision 
curve analysis proved the potential clinical utility of this model. An online webserver 
was built based on the proposed nomogram for convenient clinical use.

Conclusion: This study introduces a novel model (FRID - PI) based on SUVmax 
and inflammatory markers, such as SII, IL - 6, and ESR, for diagnosing FRI. Our 
model, which exhibits good diagnostic performance, holds promise for future 
clinical applications.

Clinical relevance statement: The study aims to construct and evaluate a 
novel diagnostic model based on 18F-fluorodeoxyglucose positron emission 
tomography /computed tomography (18F-FDG PET/CT) and laboratory 
biomarkers for fracture-related infection (FRI).
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Highlights

 • The diagnosis of fracture-related infection (FRI) especially patients presenting without clinical confirmatory criteria is difficult.
 • 18F-FDG PET/CT and Machine Learning is increasingly used in infectious diseases.
 • The model based on 18F-FDG PET/CT and inflammatory markers contributes to the diagnostic process as well as to further decision-making.

Introduction

Fracture-related infection (FRI) represents a formidable 
challenge in modern trauma surgery (1), with significant global 
implications. The 2019 Global Burden of Diseases, Injuries, and Risk 
Factors Study (GBD) estimated an annual incidence of 178 million 
new bone fractures, totaling 2,296 cases per 100,000 population (2). 
The prevalence of FRI is expected to rise in the coming decade due 
to factors such as increased life expectancy, a growing incidence of 
osteoporotic and age-related fragility fractures, and a rise in surgical 
fracture repair procedures globally (3). FRIs invariably necessitate 
long-term follow-up and high pain tolerance, multiple surgical 
interventions, extended antimicrobial therapy, the achievement of 
bony union, and the restoration of diminished bone or joint 
functionality and can even escalate to the point of necessitating 
amputation or posing life-threatening risks (4). Hence, early 
identification and diagnosis are crucial for timely decision-making 
regarding surgical intervention or alternative therapeutic strategies. 
Notably, unlike prosthetic joint infections (PJI), which have more 
established diagnosis and treatment guidelines, FRIs present unique 
challenges due to associated bone and soft tissue damage and the 
option of implant removal after fracture healing.

In clinical practice, orthopedic surgeons typically classify FRIs 
into two primary groups: the first includes patients with clear clinical 
indicators of infection, such as fistula, sinus, wound breakdown, or 
purulent drainage from the wound. The second group, lacking clear 
clinical confirmatory criteria (5), poses a diagnostic challenge, where 
laboratory findings serve as suggestive yet relatively ambiguous 
criteria (6).

In this context, the use of imaging tools becomes invaluable for 
surgeons, aiding in the selection of the optimal therapeutic approach. 
These tools not only help identify signs of infection but also play a 
crucial role in assessing implant stability and bone regeneration. 
However, each imaging technique has its limitations. For instance, 
plain radiography falls short in evaluating soft tissue and exhibits 
limited sensitivity and specificity for FRI diagnosis (7). Ultrasound 
faces constraints in bone assessment due to metallic implants. 
Computed tomography (CT) struggles with soft tissue contrast and 
the identification of early signs of infection like bone marrow edema 
(8). Magnetic resonance imaging (MRI) is relatively ineffective in 
post-traumatic conditions and fails to distinguish reactive bone 
marrow edema (9). Besides, both CT and MRI are impeded by 
metallic implants.

In recent years, several nuclear imaging techniques have been 
introduced to enhance infection diagnosis. Systematic reviews have 
indicated high diagnostic accuracy for nuclear imaging (10), but these 
techniques generally have low anatomical resolution. Three-phase 
bone scintigraphy, despite widespread use, has limited specificity and 
diagnostic value in violated bone (<1–2 years after trauma/fracture/
osteosynthesis, <5 years after arthroplasty), making it unsuitable as a 

primary diagnostic tool for FRI (7, 11, 12). Gallium scans are time-
consuming, requiring approximately 48–72 h. White blood cell 
scintigraphy (WBCS) is also time-consuming, and there is no 
standardized protocol (9).

In contrast, 18F-fluorodeoxyglucose positron emission 
tomography/computed tomography (18F-FDG PET/CT), though 
expensive, offers a relatively rapid turnaround time (60 min post-
tracer injection) and is gaining popularity in infection/inflammatory 
diseases. The imaging interpretation is presented in two forms: visual 
image analysis, providing 18F-FDG uptake patterns and anatomical 
position, and semiquantitative analysis using standardized uptake 
value (SUV), total lesion glycolysis (TLG), etc. Multiple studies have 
validated its superior sensitivity compared to other nuclear medicine 
techniques in chronic osteomyelitis of the extremities (7, 8, 11). 
Furthermore, systematic reviews have confirmed its high diagnostic 
accuracy in detecting spinal infections (13). Nonetheless, both 18F-
FDG PET/CT and laboratory findings exhibit a limited ability to 
isolate FRI, and research or guidelines about FRI diagnosis and 
treatment remain relatively scarce (14). Nevertheless, the potential of 
18F-FDG PET/CT in detecting infections appears promising.

Neither laboratory findings nor imaging alone can diagnose 
FRI. It is widely thought that the diagnostic value could be enhanced 
by combining the two in diagnosing FRI. Hyunkwang et  al. (15) 
combined SUVmax (maximum standardized uptake value) and blood 
inflammatory markers, building a model to assess treatment response 
in pyogenic vertebral osteomyelitis. The results demonstrated that the 
combined performance of SUVmax and blood inflammatory markers 
was superior to the blood inflammatory markers alone.

Nomograms are frequently used tools for prognostic estimations 
in both oncology and general medicine. They can amalgamate 
determinant variables, making them increasingly prevalent in tumor 
prognosis (16, 17). However, their utility extends to diagnostics as well 
(18). Given their characteristics as an integrated model, they 
significantly contribute to the advancement of personalized 
medicine (19).

In our study, we aimed to develop a novel nomogram based on 
18F-FDG PET/CT and laboratory findings to refine early FRI diagnosis 
ability. Considering that the diagnosis of FRI in patients with clear 
clinical confirmatory criteria is relatively straightforward and does not 
require comprehensive tests, the primary aim of our study was to 
provide insight into the diagnosis and management of a subpopulation 
of FRI patients presenting without clinical confirmatory criteria.

Methods

We conducted an extensive search for patients who underwent 
18F-FDG PET/CT scans and other laboratory examinations due to 
post-fracture pain at Shanghai Sixth People’s Hospital between January 
2021 and December 2022.
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The inclusion criteria were as follows:

 • underwent surgery for a fracture;
 • suspect infection for prolonged postoperative pain;
 • the time interval between the latest surgery and 18F-FDG PET/

CT scan was more than 3 months;
 • the time interval between the 18F-FDG PET/CT scan and blood 

tests, following surgery or open biopsy was <1 month;
 • no antibiotic pretreatment within 1 week before 18F-FDG PET/

CT scan;
 • complete clinical data;
 • complete histopathologic or microbiologic cultivation results.

The exclusion criteria were as follows:

 • pathological fractures due to malignant bone tumors;
 • poor image quality;
 • other causes of bone infections (e.g., PJI, diabetic feet, 

spondylodiscitis, and hematogenous osteomyelitis);
 • non-extremity bones (e.g., skull and maxilla);
 • patients with other comorbidities (e.g., tumors, autoimmune 

diseases, multiple myeloma, and other system inflammations) 
that might affect serum biomarker levels.

The participant recruitment process is illustrated in the flowchart 
in Figure 1.

Collection of basic clinical and laboratory 
data

Patients’ clinical data collection is collected and organized through 
the electronic medical record system, including:

 • Basic information: gender, age, number of days of 
hospitalization, number of surgeries;

 • Blood biochemical indexes: blood routine and related indexes 
[white blood cell count (WBC), red blood cell count (RBC), 
platelet count, percentage of neutrophils, absolute value of 
lymphocytes (ALC), absolute value of monocytes (AMC), 
absolute value of neutrophils, mean platelet volume (MPV), mean 
platelet distribution width (PDW), platelet corpuscle (PCT), 
neutrophil-monocyte ratio, neutrophil-to-lymphocyte ratio 
(NLR), monocyte-to-lymphocyte ratio (NLR), and platelet 
pressure (PCT), neutrophil-to-monocyte ratio (NMR), 
neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte 
ratio (MLR), platelet-to-lymphocyte ratio (PLR), platelet count-
to-mean platelet volume (P/V), platelet count-to-mean platelet 
distribution width (PADW), platelet count-to-platelet hematocrit 
(PTP), systemic inflammatory immunity index (SII), systemic 
inflammatory immunity index (SII), and systemic inflammatory 
diseases (SII), Systemic Inflammatory Response Index (SIRI)];

 • Coagulation-related markers [Prothrombin Time (PT), 
International Normalized Ratio (INR), D-dimer, Prothrombin 
Time, Activated Partial Thromboplastin Time (APTT), 
Fibrinogen (FIB), Thromboplastin Time (TT), Fibrinogen 
Degradation Product (FDP), and Anticoagulase III (AT-III)];

 • Nutrition-related markers [albumin, albumin-to-globulin ratio 
(AGR), Prognostic Nutritional Index (PNI)];

 • Inflammation-related indicators [C-reactive protein (CRP), 
calcitonin (PCT), interleukin-6, erythrocyte sedimentation 
rate (ESR)];

Calculation of relevant indicators:
PNI = 10 × serum albumin (g/dL) + 5 × Lymphocyte count 

(*10^9/L).
PLR = Platelet count (*10^9/L)/Lymphocyte count (*10^9/L).
NLR = Neutrophil count (*10^9/L) / Lymphocyte count 

(*10^9/L).
MLR = Monocyte count (*10^9/L) / Lymphocyte count (*10^9/L).
SII = Platelet count (*10^9/L) × Neutrophil count (*10^9/L) / 

Lymphocyte count (*10^9/L).
SIRI = Neutrophil count (*10^9/L) × Monocyte count (*10^9/L) 

/ Lymphocyte count (*10^9/L).
The assessment of FRI adhered to the diagnostic criteria 

established by a consensus reached by an international expert group 
in 2019 (6):

 • Fistula, sinus, or wound breakdown;
 • Purulent drainage from the wound or presence of pus 

during surgery;
 • Phenotypically indistinguishable pathogens identified by 

culture from at least two separate deep tissue/
implant specimens;

 • Presence of microorganisms in deep tissue taken 
during an operative intervention, as confirmed by 
histopathological examination.

Other suggestive criteria were not confirmed diagnoses in this 
study. Histopathological features indicating FRI included necrotic 
bone, fibrosis, bony repair, or organisms on histological specimens; 
polymorphonuclear (PMN) cells >5 per high-power field (20) and 
direct identification of a microorganism from deep-tissue specimens 
using specific staining techniques (6). A microbiological culture was 
considered positive if any relevant organism had grown based on the 
judgment of a microbiologist. Those not meeting the above diagnostic 
criteria were classified as the non-FRI group.

18F-FDG PET/CT imaging

Patients were instructed to fast for at least 6 h before the injection 
of 18F-FDG. Blood glucose level was measured before injection and 
18F-FDG was administered at glucose levels < 11.1 mmol/L. 18F-FDG 
PET/CT scanning was performed after an i.v. injection of 3-4 MBq/
Kg 18F-FDG, followed by an 1-h uptake phase. No intravenous contrast 
agent was administered. 18F-FDG PET/CT scans were performed 
using a dedicated GE Discovery PET/CT scanner including 64 slice 
CT scanners with a dedicated PET (BGO plus crystal). 18F-FDG 
images were acquired for 2.5 min at each bed position from the skull 
base to the superior mediastinum with patients’ arms along the chest 
and from the neck to the mid-thigh with patients’ arms above the 
head. No specific breathing instructions were given. The CT scan was 
obtained from the orbitomeatal line and progressed to the mid-thigh 
with the use of a standardized protocol involving 120 kV, 80 mA, and 
a slice thickness of 3.75 mm. Attenuation correction of PET images 
was performed using attenuation data from CT and image 
reconstruction was done using a standard reconstruction algorithm 
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with ordered subset expectation maximization (OSEM). Image fusion 
was performed using coordinate-based fusion software and 
subsequently reviewed at a workstation (Xeleris) that provided multi-
planar reformatted images and displayed PET, CT, and PET/CT 
fusion images.

Statistical analysis

While preoperative laboratory examinations, such as complete 
blood count (CBC) and coagulation function, play a crucial role, 
they tend to be more abundant in modeling. In the training cohort, 
the Minimum-Redundancy Maximum-Relevance (mRMR) 

algorithm (21) and the Least Absolute Shrinkage and Selection 
Operator (LASSO) method (22) were employed to identify the 
most relevant and robust features. The mRMR algorithm aims to 
identify features highly correlated with the diagnosis of FRI while 
minimizing correlations with other features, thus mitigating model 
overfitting. The LASSO method, designed for high-dimensional 
data regression, was utilized to select features with 
non-zero coefficients.

All statistical analyses were carried out using R Studio software 
(version 4.3.0). LASSO regression was implemented using the 
“glmnet” package. Statistical significance was set at p < 0.05 
(two-sided). Differences between the training and validation cohorts 
were evaluated using the independent t-test or Mann–Whitney U test, 

FIGURE 1

The participant recruitment process is illustrated in the flowchart.
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depending on the data distribution. Chi-squared testing was employed 
to assess the significance of differences between categorical variables. 
Model performance was assessed with a focus on discrimination 
and calibration.

Model construction and evaluation

Discrimination
To assess the diagnostic performance of the model, we generated 

Receiver Operating Characteristic (ROC) curves. The optimal cutoff 
values of the biomarkers, calculated from the training cohort, were 
then applied in the validation cohort. A bar chart was generated to 
visually represent the discrimination performance. DeLong testing 
was employed to compare the Area Under ROC Curves (AUC) 
between the training and validation cohorts.

Calibration
Calibration curves were generated for both the training and 

validation cohorts to investigate the agreement between the observed 
and predicted outcomes of the model. The goodness of fit was assessed 
using Hosmer-Lemeshow testing, and p-values exceeding 0.05 were 
indicative of well-calibrated models.

Decision curve analysis (DCA)
In the validation cohort, DCA was conducted to evaluate the 

clinical application of the model. DCA is a method for assessing the 
net benefits of predictive models (23).

Results

Clinical characteristics

A total of 552 patients meeting the predetermined inclusion and 
exclusion criteria were identified from the hospital information 
system databases. The cohort, which consisted of 427 males and 125 
females, had an average age of around 50 years. Of these, 322 (58.4%) 
were diagnosed with FRI based on the specified diagnostic criteria. 
Table 1 outlines the basic characteristics of the two groups. Indicators 
such as SUVmax, NLR, SII, WBC, CRP, the percentage of neutrophils, 
neutrophils, IL-6, and ESR were significantly higher in the group of 
patients diagnosed with FRI, while indicators such as albumin, AGR, 
MPV, and PDW were significantly lower in the FRI patient group. No 
significant differences in gender, age, MLR, RBC, ALC, platelet 
hematocrit, TT, or AT-III were observed at baseline (p > 0.05). As 
expected, the FRI group had a longer length of hospital stay and a 
higher number of surgeries (p < 0.05).

Among the 552 patients, 322 patients were diagnosed with FRI, 
and 195 patients had positive culture results. The positive bacterial 
identification rate in microbiological cultures was 60.6% (n = 195), 
with methicillin-sensitive Staphylococcus aureus being the 
predominant causative bacterium (29.4%, n = 69). Further details on 
bacteriology are provided in Table 2.

All 552 patients were randomly assigned to either the training 
cohort (60%, N = 331) or the validation cohort (40%, n = 221) using 
R Studio software. No significant variations in clinical characteristics 
were observed between the two cohorts (P > 0.05), as shown in Table 3

Model construction and evaluation

In the training set, four significant predictors of FRI were 
identified from among the 35 laboratory biomarkers and SUVmax 
(Figures 2A,B). These predictors, including SUVmax, SII, ESR, and IL - 
6, were initially screened using Lasso regression. Logistic multifactorial 
regression analysis revealed that SUVmax (p < 0.001, 95% CI: 1.22–
1.59), SII (p = 0.026, 95% CI: 1.02–1.38), IL - 6 (p = 0.022, 95% CI: 
1.00–1.07), and ESR (p = 0.014, 95% CI: 1.00–1.04) were independent 
predictors for FRI (Table  4). Consequently, the final FRID  - PI 
nomogram is depicted in Figure 3.

Performance of the model

The discriminative ability of the diagnostic model was assessed 
using ROC curves. In the training set, the AUC was 0.823 [95% 
confidence interval (CI), 0.778–0.868], and the AUC in the validation 
was 0.811 (95% CI, 0.753–0.869), indicating a moderate 
discriminative ability.

The diagnostic efficacy of the model is summarized in Table 5, and 
the ROC curve is illustrated in Figure 4. FRID-PI demonstrated 0.823 
(95%CI 0.778–0.868) AUC, 77.0% specificity, 76.4% sensitivity, and 
76.7% diagnostic accuracy in the training cohort. Validation cohort 
yielded a 0.811 (95% CI 0.753–0.869) AUC, 85.5% specificity, 63.3% 
sensitivity, and 76.5% diagnostic accuracy for FRID-PI. The 
Calibration curve (Figure 5A) demonstrated the degree of consistency 
between predicted probability and observed probability. The Hosmer–
Lemeshow test resulted in a p-value of 0.053, suggesting a good fit for 
the predictive model.

DCA curves in the training and validation cohorts are presented 
in Figure 5B. Quantifying net benefit probabilities across the 0.0–1.0 
threshold, DCA evaluated the clinical utility of FRID-PI. The decision 
curve indicated a direct correlation between the model’s clinical 
decisions and net benefit, with greater benefit observed when 
decisions were farther from the two extreme curves. The current 
decision curve highlights the high net benefit demonstrated by the 
FRID-PI for diagnosing FRI.

Discussion

In this retrospective study, we developed and evaluated a novel 
diagnostic nomogram based on SUVmax, SII, IL-6 and ESR to diagnose 
FRI in patients without clinical confirmatory criteria. The nomogram 
exhibited high performance and proved beneficial for diagnosing FRI.

Despite advancements in orthopedic surgical techniques, the 
persistent challenge of post-operative infections remains, exacerbated 
by the insidious nature of the disease. Additionally, the emergence of 
culture-negative FRIs, often linked to antibiotic overuse, poses 
diagnostic challenges. Indeed, swift identification and treatment are 
crucial to prevent adverse outcomes, necessitating effective and 
simplified diagnostics.

Originally employed for oncology, 18F-FDG PET/CT has gained 
increasing recognition in inflammatory diseases (12). As early as 1998, 
scholars explored its utility in diagnosing chronic osteomyelitis (24). 
However, it should be borne in mind that technological advancements 
over time limit direct comparisons with historical outcomes due to 
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TABLE 1 Baseline characteristics for patients in non-FRI and FRI groups.

FRI non-FRI P-value2

N = 3221 N = 2301

Gender (%) 0.986

 Male 249 (77.3%) 178 (77.4%)

 Female 73 (22.7%) 52 (22.6%)

Age (years) 51 (36, 62) 50 (36, 58) 0.358

Days of hospitalization 11.0 (8.0, 16.0) 9.0 (7.3, 11.8) <0.001

Number of surgeries 2.00 (1.00, 3.00) 2.00 (1.00, 3.00) <0.001

SUVmax 6.30 (4.80, 7.88) 3.70 (2.90, 5.10) <0.001

PNI 417 (377, 449) 425 (399, 457) 0.002

MLR 0.27 (0.20, 0.38) 0.25 (0.20, 0.33) 0.058

NLR 2.32 (1.71, 3.30) 1.91 (1.41, 2.60) <0.001

PLR 131 (101, 179) 121 (93, 160) 0.022

SII 8,216 (5,614, 11,892) 6,765 (4,933, 9,700) <0.001

SIRI 1.11 (0.75, 1.93) 0.89 (0.60, 1.27) <0.001

Albumin (g/L) 40.7 (37.0, 44.0) 41.8 (39.0, 45.0) 0.001

AGR 1.30 (1.10, 1.43) 1.40 (1.30, 1.60) <0.001

WBC (*10^9/L) 7.10 (5.80, 8.70) 6.15 (5.00, 7.28) <0.001

CRP (mg/L) 7 (3, 16) 6 (1, 8) <0.001

RBC (*10^12/L) 4.76 (4.27, 5.15) 4.81 (4.39, 5.13) 0.43

Platelet count (*10^9/L) 240 (192, 315) 228 (182, 279) 0.005

Neutrophil percentage (%) 63 (56, 69) 58 (52, 64) <0.001

ALC (*10^9/L) 1.80 (1.50, 2.30) 1.80 (1.50, 2.30) 0.888

AMC (*10^9/L) 0.50 (0.40, 0.60) 0.50 (0.40, 0.60) 0.017

ANC (*10^9/L) 4.50 (3.40, 5.70) 3.60 (2.70, 4.30) <0.001

MPV (fl) 10.00 (9.40, 11.08) 10.45 (9.80, 11.20) 0.002

PDW (%) 11.30 (10.00, 13.08) 11.80 (10.70, 13.58) 0.005

Platelet hematocrit (%) 0.25 (0.20, 0.31) 0.23 (0.20, 0.29) 0.057

Platelet count/mean platelet volume ratio (P/V) 24 (18, 32) 22 (17, 28) 0.001

Platelet count/mean platelet distribution width 22 (15, 29) 19 (14, 25) <0.001

Platelet count/platelet hematocrit 996 (904, 1,066) 957 (884, 1,022) <0.001

Platelet count/albumin 5.94 (4.72, 7.64) 5.27 (4.30, 6.65) <0.001

PCT (ng/ml) 0.050 (0.025, 0.061) 0.034 (0.020, 0.041) <0.001

IL-6 (pg/ml) 10 (3, 15) 5 (2, 7) <0.001

ESR (mm/h) 32 (15, 39) 18 (9, 21) <0.001

D-dimer (mg/L FEU) 0.59 (0.32, 1.10) 0.42 (0.24, 0.75) <0.001

PT (s) 11.90 (11.30, 12.60) 11.70 (11.10, 12.20) 0.002

INR 1.04 (0.98, 1.10) 1.02 (0.97, 1.06) <0.001

APTT (s) 27.90 (26.23, 29.90) 27.30 (25.90, 29.10) 0.004

FIB (g/L) 2.97 (2.51, 3.77) 2.61 (2.35, 3.01) <0.001

TT (s) 17.00 (16.30, 17.70) 17.00 (16.40, 17.80) 0.467

FDP (mg/L) 2.00 (2.00, 3.50) 2.00 (2.00, 2.58) 0.002

AT-III (%) 92 (85, 97) 91 (86, 99) 0.633

1n (%); median (interquartile range). 2chi-square independence test; Wilcoxon rank sum test; p < 0.05 were considered statistically significant. SUVmax, Maximum standardized uptake value; 
PNI, Prognostic Nutritional Index; MLR, Monocyte-to-Lymphocyte Ratio; NLR, Neutrophil-to-Lymphocyte Ratio; PLR, Platelet-to-Lymphocyte Ratio; SII, Systemic Immune-Inflammation 
Index; SIRI, System Inflammation Response Index; AGR, albumin to globulin ratio; WBC, white blood cell count; CRP, C-reactive protein; RBC, red blood cell count; ALC, absolute 
lymphocyte count; AMC, absolute monocyte count; ANC, absolute neutrophil count; MPV, mean platelet volume; PDW, mean platelet distribution width; PCT, procalcitonin; Interleukin-6; 
ESR, erythrocyte sedimentation rate; PT, prothrombin time; INR, international normalized ratio; APTT, activated partial thromboplastin time; FIB, fibrinoge; TT, thrombin time; FDP, 
Fibrinogen degradation products; AT-III, antithrombin III.
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evolving techniques. Recent studies have increasingly validated the 
significant role of 18F-FDG PET/CT in diagnosing and differentiating 
osteomyelitis (25–27). Van Vliet et al. (26) conducted a retrospective 
assessment to evaluate the efficacy and optimal diagnostic accuracy of 
18F-FDG PET/CT in distinguishing delayed unions in 30 patients. 
Their findings revealed a significant distinction in SUVmax values 

between aseptic delayed unions and septic delayed unions, yielding an 
AUC of 0.747. This suggests that SUVmax could be  a useful 
differentiation test in bone infection or aseptic pain.

Martina Sollini et al. (28) retrospectively tested the efficacy and 
optimal diagnostic accuracy of 18F-FDG PET/CT in distinguishing 
infection in non-union in 47 patients. Their results substantiated that 
18F-FDG PET/CT offers heightened utility when clinical presentations 
are atypical in suspected FRIs. Notably, the study observed that 18F-
FDG PET/CT exhibited good performance in ruling out infection 
among patients with normal CRP levels, contrasting with its efficacy 
in confirming infection in those with elevated CRP. The authors also 
found that a combination of visual approach and semi-quantitative 
analysis achieved a balanced compromise between sensitivity and 
specificity (80 and 77%), aligning with findings from other notable 
studies (27). As previously reported (26), a balanced sensitivity and 
specificity can help avoid unnecessary surgeries and reduce the risk of 
under treatment in septic delayed unions. Using SUVmax for 
interpreting 18F-FDG PET/CT imaging seems promising for FRI, 
especially in patients without obvious clinical presentations, 
compensating for the limitations of blood tests.

A complete blood count, coagulation function tests, and routine 
inflammation indicators (e.g., ESR, CRP) are commonly ordered 
when FRI is suspected, with blood routine and coagulation indicators 
being essential prerequisites for pre-operative assessment.

Inflammatory markers (e.g., ESR, WBC, CRP) are recognized as 
pivotal in clinical guidelines, serving as important suggestive criteria 
(6). CBC ratio parameters studied more in recent years in infectious 
diseases (29), were included in our study. Strony et al. (30) used the 
platelet count to mean platelet volume ratio and reported an AUC of 
0.814 for the diagnosis of FRI, outperforming other inflammation 
indicators. With the in-depth development of research, scholars have 
found that new indicators composed of multiple types of cells, such 
as SII and SIRI, can further integrate the combined effects of various 
inflammatory cells to evaluate the inflammatory level of diseases. 
Telang et al. (31) research and other studies have shown that patients 
with elevated SII are prone to developing PJI, and it is an independent 
risk factor for postoperative infection. These indicators are capable of 
providing a more comprehensive assessment of the relationship 
between diseases, immune cells, and the inflammatory response. 
Therefore, our study also sought to assess the value of the derived 
indicators based on the existing results.

In this study, we  combined 18F-FDG PET/CT imaging with 
laboratory tests to construct a multivariable logistic regression 
model, including 18F-FDG PET/CT semi-quantitative analysis and 
ESR, SII, IL-6. The model exhibited good discrimination in the 
training cohort (AUC = 0.823) and the validation cohort 
(AUC = 0.811). For the training set, the model demonstrated a 
sensitivity of 76.4%, specificity of 77.0%, and accuracy of 76.7%. 
There are relatively few diagnostic models for FRI. To assess the 
clinical utility of the model, we extended our evaluation beyond 
traditional performance measures like AUC. DCA was employed to 
estimate the net benefit of the model across a range of risk thresholds, 
allowing us to evaluate the potential impact of different risk 
thresholds (32, 33). The research results of Xu et  al. (34) on the 
diagnosis of lower limb FRI using inflammatory indicators showed 
that the area under the curve (AUC) of the combination of C-reactive 
protein (CRP) and neutrophil-to-lymphocyte ratio (NLR) could 
reach 0.873, which is higher than that of the model in this study. 

TABLE 2 Culture results of microorganisms.

Identification of causative 
microorganisms

No. of patients

Staphylococcus aureus 103

MSSA 69

MRSA 34

Polymicrobial infection 35

Pseudomonas aeruginosa 17

Klebsiella pneumoniae 10

Aerobacter cloacae 8

Staphylococcus epidermidis 7

Enterococcus faecalis 7

E. coli Escherichia Coli 6

Streptococcus agalactiae 5

Lactobacillus rhamnosus 4

Candida albicans 3

Mycobacterium tuberculosis 2

Acinetobacter Baumanii 2

Staphylococcus aureus 2

Pseudomonas aeruginosa 2

Streptococcus pyogenes 2

Clostridium tetani 2

Morganella morganii 1

Streptococcus pneumoniae 1

Corynebacterium diphtheriae 1

Staphylococcus aureus 1

Pseudomonas aeruginosa 1

Achromobacter xylosoxidans 1

Bacillus cereus 1

Clostridium botulinum 1

Salmonella enterica 1

Escherichia coli 1

Staphylococcus aureus 1

Streptococcus constellatus 1

Staphylococcus aureus 1

Bidirectional Prevotella 1

Mycobacterium avium Pennei 1

Klebsiella pnenmoniae 1

Serratia marcescens 1

Candida pseudohyphae 1

MSSA, methicillin-sensitive Staphylococcus aureus; MRSA, methicillin-resistant 
Staphylococcus aureus.
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TABLE 3 Clinical characteristics of patients.

Training cohort Validation cohort P-value2

N = 3311 N = 2211

Gender (%) 0.685

 Male 258 (77.9%) 169 (76.5%)

 Female 73 (22.1%) 52 (23.5%)

Age (years) 50 (36, 62) 50 (39, 61) 0.93

Days of hospitalization 9.0 (8.0, 13.0) 10.0 (8.0, 15.0) 0.006

Number of surgeries 2.00 (1.00, 3.00) 2.00 (1.00, 3.00) 0.379

SUVmax 5.00 (3.50, 7.05) 5.30 (3.70, 7.10) 0.354

PNI 426 (392, 454) 415 (380, 450) 0.075

MLR 0.25 (0.20, 0.36) 0.26 (0.20, 0.36) 0.726

NLR 2.11 (1.65, 3.07) 2.13 (1.54, 2.89) 0.421

PLR 129 (98, 175) 124 (100, 169) 0.542

SII 7,597 (5,262, 11,170) 7,232 (5,250, 10,765) 0.392

SIRI 1.03 (0.67, 1.67) 1.02 (0.72, 1.57) 0.958

Albumin (g/L) 41.6 (38.1, 44.5) 40.3 (37.0, 44.0) 0.062

AGR 1.40 (1.20, 1.50) 1.30 (1.20, 1.50) 0.065

WBC (*10^9/L) 6.40 (5.45, 7.90) 6.80 (5.60, 8.20) 0.204

CRP (mg/L) 7 (1, 10) 7 (1, 9) 0.711

RBC (*10^12/L) 4.79 (4.37, 5.17) 4.73 (4.30, 5.13) 0.477

Platelet count (*10^9/L) 232 (188, 304) 240 (183, 293) 0.686

Neutrophil percentage (%) 61 (55, 67) 60 (54, 67) 0.338

ALC (*10^9/L) 1.80 (1.40, 2.30) 1.90 (1.50, 2.30) 0.356

AMC (*10^9/L) 0.50 (0.40, 0.60) 0.50 (0.40, 0.60) 0.172

ANC (*10^9/L) 3.90 (3.10, 5.00) 3.90 (3.20, 5.30) 0.494

MPV (fl) 10.20 (9.55, 11.05) 10.30 (9.60, 11.20) 0.323

PDW (%) 11.30 (10.25, 13.35) 11.80 (10.40, 13.20) 0.447

Platelet hematocrit (%) 0.24 (0.20, 0.29) 0.24 (0.20, 0.30) 0.412

Platelet count/mean platelet volume ratio (P/V) 23 (17, 30) 24 (17, 29) 0.839

Platelet count/mean platelet distribution width 21 (14, 28) 21 (15, 27) 0.891

Platelet count/platelet hematocrit 986 (904, 1,052) 970 (891, 1,045) 0.168

Platelet count/albumin 5.50 (4.62, 7.21) 5.90 (4.48, 7.55) 0.354

PCT (ng/ml) 0.036 (0.020, 0.061) 0.041 (0.025, 0.061) 0.074

IL-6 (pg/ml) 7 (3, 15) 7 (3, 15) 0.643

ESR (mm/h) 20 (11, 35) 20 (11, 35) 0.381

D-dimer (mg/L FEU) 0.46 (0.28, 0.94) 0.54 (0.29, 0.99) 0.212

PT(s) 11.80 (11.20, 12.40) 11.80 (11.30, 12.40) 0.616

INR 1.03 (0.97, 1.08) 1.03 (0.98, 1.08) 0.648

APTT(s) 27.60 (25.95, 29.70) 27.70 (25.90, 29.40) 0.747

FIB (g/L) 2.73 (2.44, 3.32) 2.87 (2.46, 3.58) 0.114

TT(s) 17.00 (16.30, 17.80) 17.00 (16.30, 17.70) 0.966

FDP (mg/L) 2.00 (2.00, 3.00) 2.00 (2.00, 3.30) 0.203

AT-III (%) 91 (86, 97) 92 (84, 98) 0.783

1n (%); median (interquartile range). 2Pearson’s chi-square test; Wilcoxon rank sum test; p < 0.05 were considered statistically significant. SUVmax, Maximum standardized uptake value; PNI, 
Prognostic Nutritional Index; MLR, Monocyte-to-Lymphocyte Ratio; NLR, Neutrophil-to-Lymphocyte Ratio; PLR, Platelet-to-Lymphocyte Ratio; SII, Systemic Immune-Inflammation Index; 
SIRI, System Inflammation Response Index; AGR, albumin to globulin ratio; WBC, white blood cell count; CRP, C-reactive protein; RBC, red blood cell count; ALC, absolute lymphocyte 
count; AMC, absolute monocyte count; ANC, absolute neutrophil count; MPV, mean platelet volume; PDW, mean platelet distribution width; PCT, procalcitonin; Interleukin-6; ESR, 
erythrocyte sedimentation rate; PT, prothrombin time; INR, international normalized ratio; APTT, activated partial thromboplastin time; FIB, fibrinogen; TT, thrombin time; FDP, Fibrinogen 
degradation products; AT-III, antithrombin III.
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However, their research lacks data from a validation group. 
Therefore, further research is still needed.

Several limitations need to be acknowledged in the current study. 
Firstly, a notable limitation of our study is the relatively low sensitivity 
(62.6% in the validation cohort) of the FRID - PI model, risking under 
diagnosis. FRI’s complexity is a key factor. Our sample size may be too 
small. A larger one could improve the model’s ability to identify FRI 
patterns and increase sensitivity. Despite this, the model shows good 
overall discriminative power. Future research should aim to enhance 
sensitivity by exploring specific biomarkers or features, using advanced 
algorithms, and conducting large - scale multicenter studies. Secondly, 
the analysis was limited to a semi-quantitative assessment of PET/CT 
data. While visual analysis could potentially offer important diagnostic 
insights, it is more susceptible to subjective influence. Thirdly, the lack 

of standardized scan reconstruction resulted in semi-quantitative 
analysis results specific to the employed camera system, making it 

FIGURE 2

(A) The 35 variables in the training cohort of infection were screened by LASSO regression. The optimal Lambda parameter was selected used by 10-
fold cross validation. The Lambda value was taken as the optimal value of the model when the cross validation error was minimum, and the number of 
variables corresponding to the non-zero regression coefficient was counted at this time; (B) LASSO coefficients for infection-related factors in the 
training cohort.

TABLE 4 Multivariate logistic analysis of potential diagnose factors 
identified by LASSO regression in the training cohort.

Parameters OR1 95% CI1 P-value

SUVmax 1.39 1.22, 1.59 <0.001

SII 1.19 1.02, 1.38 0.026

IL-6 (pg/ml) 1.03 1.00, 1.07 0.022

ESR (mm/h) 1.02 1.00, 1.04 0.014

1OR, Odds Ratio; 95% CI:, 95% confidence interval; SUVmax, Maximum standardized uptake 
value; SII, Systemic Immune-Inflammation Index; ESR, erythrocyte sedimentation rate; IL-6, 
leukocytes-6.

FIGURE 3

Nomogram for diagnose FRI in the training group. FRI = fracture-related infection.
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FIGURE 5

(A) A calibration curve of the nomogram in the training set. The dotted line indicates an ideal model, and the solid line indicates the predictive 
performance of the nomogram. The closer the distance between 2 lines, the better the performance of the nomogram. (B) The decision curve analysis 
of the nomogram for FRI in training cohort and validation cohort. The black line indicates the net benefit when no individuals develop FRI, while the 
grey line indicates the net benefit when all individuals suffer from FRI. The red line represents in the training cohort, and the blue line represents in the 
validation cohort. The area among the black line, grey line, red line and blue line indicates the clinical usefulness of the nomogram. FRI, fracture-
related infection.

TABLE 5 Model diagnostic efficacy.

AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%) NPV PPV P

Training 0.823 (0.778–0.868) 0.764 0.770 0.767 0.817 0.709 <0.001

Validation 0.811 (0.753–0.869) 0.633 0.855 0.765 0.773 0.75 <0.001

FIGURE 4

The ROC curve of diagnosis model for training cohort (A) and validation cohort (B). AUCs of the nomogram models. AUC, area under the receiver 
operating characteristic curve.
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challenging to extrapolate findings to other hospitals and camera 
systems. Given the influence of various factors on SUVmax (35), the 
adoption of standardized criteria such as European Association 
Research Ltd. (EARL) (36) and Quantitative Imaging Biomarker 
Alliance (QIBA) (37) for PET/CT scans is recommended. 
Unfortunately, these reconstruction protocols are not yet integrated 
into clinical routines in China. And 18F-FDG PET/CT is indeed more 
expensive, and its large-scale clinical application is limited. Fourth, 
because of lasso regression decreases variability in the parameter 
estimates and reduces overfitting, leading to fewer parameters in 
nomogram model. Therefore, expect more machine learning 
algorithms to be used for diagnosing FRI in the future. Fourth, our 
study was a single-center, retrospective analysis, underscoring the 
necessity for multicenter clinical and prospective trials to validate the 
external applicability of our model. Finally, our study did not follow up 
with patients, and more attention should be paid in future studies.

Conclusion

In conclusion, this study makes the first attempt to integrate 18F-
FDG PET/CT semi-quantitative analysis with laboratory examinations 
for FRI diagnosis. We  developed and validated the FRID-PI, 
incorporating ESR, SII, IL-6 and SUVmax into the diagnostic model. 
The nomogram, serving as a non-invasive predictive tool, enhances 
diagnostic accuracy, specificity, and sensitivity of FRI staging when 
compared to SUVmax and ESR, SII, IL-6 alone. This tool holds promise 
for assisting clinicians in identifying and diagnosing FRI in patients 
lacking clinical confirmatory criteria, thereby aiding in timely and 
appropriate treatment decisions.

Data availability statement

The original contributions presented in the study are included in 
the article material, further inquiries can be directed to the 
corresponding authors.

Ethics statement

The studies involving humans were approved by Shanghai Sixth 
People’s Hospital. The studies were conducted in accordance with the 
local legislation and institutional requirements. The participants 
provided their written informed consent to participate in this study.

Author contributions

MY: Data curation, Formal analysis, Visualization, Writing – 
original draft, Writing – review & editing, Conceptualization, 

Investigation, Methodology, Validation. QT: Writing – original draft, 
Writing – review & editing, Data curation, Formal analysis, 
Visualization. TL: Writing – review & editing, Data curation, 
Methodology, Visualization, Formal analysis. JC: Writing – review & 
editing, Data curation, Methodology, Visualization. WH: Writing – 
review & editing, Data curation, Methodology. YZ: Writing – review 
& editing, Data curation, Formal analysis. XC: Writing – review & 
editing, Conceptualization, Data curation. JW: Wiriting – original 
draft, supervision, software. CS: Conceptualization, Formal analysis, 
Visualization, Writing – review & editing, Supervision. ZT: 
Conceptualization, Formal analysis, Visualization, Writing – review 
& editing, Supervision.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This study was supported 
by the National Natural Science Foundation of China (no. 82100631), 
the Shanghai Sixth People’s Hospital scientific research project (no. 
YNLC201903), the Shanghai Municipal Health Commission research 
project (no. GWVI-11.1-40), and the Shanghai Key Clinical Specialty 
of Medical Imaging (no. SHSLCZDZK03203).

Acknowledgments

We thank all the participants in this study.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
 1. Metsemakers WJ, Kuehl R, Moriarty TF, Richards RG, Verhofstad MHJ, Borens O, 

et al. Infection after fracture fixation: current surgical and microbiological concepts. 
Injury. (2018) 49:511–22. doi: 10.1016/j.injury.2016.09.019

 2. Wu AM, Bisignano C, James SL, Abady GG, Abedi A, Abu-Gharbieh E. 
Global, regional, and national burden of bone fractures in 204 countries and 
territories, 1990-2019: a systematic analysis from the global burden of disease 

https://doi.org/10.3389/fmed.2025.1534988
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1016/j.injury.2016.09.019


Yang et al. 10.3389/fmed.2025.1534988

Frontiers in Medicine 12 frontiersin.org

study 2019. Lancet Healthy Longev. (2021) 2:e580–92. doi: 
10.1016/S2666-7568(21)00172-0

 3. Moriarty TF, Metsemakers WJ, Morgenstern M, Hofstee MI, Vallejo Diaz A, Cassat 
JE, et al. Fracture-related infection. Nat Rev Dis Primers. (2022) 8:67. doi: 
10.1038/s41572-022-00396-0

 4. Foster AL, Moriarty TF, Trampuz A, Jaiprakash A, Burch MA, Crawford R, et al. 
Fracture-related infection: current methods for prevention and treatment. Expert Rev 
Anti-Infect Ther. (2020) 18:307–21. doi: 10.1080/14787210.2020.1729740

 5. Vanvelk N, Van Lieshout EMM, Onsea J, et al. Diagnosis of fracture-related 
infection in patients without clinical confirmatory criteria: an international retrospective 
cohort study. J Bone Jt Infect. (2023) 8:133–42. doi: 10.5194/jbji-8-133-2023

 6. Metsemakers WJ, Morgenstern M, Mcnally MA, et al. Fracture-related infection: A 
consensus on definition from an international expert group. Injury. (2018) 49:505–10. 
doi: 10.1016/j.injury.2017.08.040

 7. Lee YJ, Sadigh S, Mankad K, Kapse N, Rajeswaran G. The imaging of osteomyelitis. 
Quant Imaging Med Surg. (2016) 6:184–98. doi: 10.21037/qims.2016.04.01

 8. Pineda C, Espinosa R, Pena A. Radiographic imaging in osteomyelitis: the role of 
plain radiography, computed tomography, ultrasonography, magnetic resonance 
imaging, and scintigraphy. Semin Plast Surg. (2009) 23:80–9. doi: 10.1055/s-0029-1214160

 9. Govaert GA, Ff IJ, Mcnally M, et al. Accuracy of diagnostic imaging modalities for 
peripheral post-traumatic osteomyelitis - a systematic review of the recent literature. Eur 
J Nucl Med Mol Imaging. (2017) 44:1393–407. doi: 10.1007/s00259-017-3683-7

 10. Zhang Q, Dong J, Shen Y, Yun C, Zhou D, Liu F. Comparative diagnostic accuracy 
of respective nuclear imaging for suspected fracture-related infection: a systematic 
review and Bayesian network meta-analysis. Arch Orthop Trauma Surg. (2021) 
141:1115–30. doi: 10.1007/s00402-020-03506-3

 11. Govaert G, Glaudemans A. Nuclear medicine imaging of 
posttraumatic osteomyelitis. Eur J Trauma Emerg Surg. (2016) 42:397–410. doi: 10.1007/ 
s00068-016-0647-8

 12. Wang Y, Sun Z, Liang X, Shen C. Inguinal draining-lymph node in (18)F-FDG PET/
CT images could be a new indicator for the diagnosis of fracture-related infection in the 
lower extremities. Front Immunol. (2023) 14:1206682. doi: 10.3389/fimmu.2023.1206682

 13. Treglia G, Pascale M, Lazzeri E, van der Bruggen W, Delgado Bolton RC, 
Glaudemans AWJM. Diagnostic performance of (18)F-FDG PET/CT in patients with 
spinal infection: a systematic review and a bivariate meta-analysis. Eur J Nucl Med Mol 
Imaging. (2020) 47:1287–301. doi: 10.1007/s00259-019-04571-6

 14. Govaert GAM, Kuehl R, Atkins BL, et al. Diagnosing fracture-related infection: 
current concepts and recommendations. J Orthop Trauma. (2020) 34:8–17. doi: 
10.1097/BOT.0000000000001614

 15. Shin H, Kong E, Yu D, Choi GS, Jeon I. Assessment of therapeutic responses using 
a deep neural network based on (18)F-FDG PET and blood inflammatory 
markers in pyogenic vertebral osteomyelitis. Medicina. (2022) 58:1693. doi: 
10.3390/medicina58111693

 16. Cho CS, Gonen M, Shia J, Kattan MW, Klimstra DS, Jarnagin WR, et al. A novel 
prognostic nomogram is more accurate than conventional staging systems for predicting 
survival after resection of hepatocellular carcinoma. J Am Coll Surg. (2008) 206:281–91. 
doi: 10.1016/j.jamcollsurg.2007.07.031

 17. Kattan MW. Nomograms are superior to staging and risk grouping systems for 
identifying high-risk patients: preoperative application in prostate cancer. Curr Opin 
Urol. (2003) 13:111–6. doi: 10.1097/00042307-200303000-00005

 18. Yang Y, Zhang X, Zhao L, Mao H, Cai TN, Guo WL. Development of an MRI-
based radiomics-clinical model to diagnose liver fibrosis secondary to 
Pancreaticobiliary Maljunction in children. J Magn Reson Imaging. (2023) 58:605–17. 
doi: 10.1002/jmri.28586

 19. Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in 
oncology: more than meets the eye. Lancet Oncol. (2015) 16:e173–80. doi: 
10.1016/S1470-2045(14)71116-7

 20. Moriarty TF, Metsemakers WJ, Morgenstern M, Hofstee MI. Fracture-related 
infection. Nat Rev Dis Prim. (2022) 8:401. doi: 10.1038/s41572-022-00401-6

 21. Ding C, Peng H. Minimum redundancy feature selection from microarray 
gene expression data. J Bioinforma Comput Biol. (2005) 3:185–205. doi: 
10.1142/S0219720005001004

 22. Sauerbrei W, Royston P, Binder H. Selection of important variables and 
determination of functional form for continuous predictors in multivariable model 
building. Stat Med. (2007) 26:5512–28. doi: 10.1002/sim.3148

 23. Talluri R, Shete S. Using the weighted area under the net benefit curve for decision 
curve analysis. BMC Med Inform Decis Mak. (2016) 16:94. doi: 
10.1186/s12911-016-0336-x

 24. Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, et al. 
Chronic osteomyelitis: detection with FDG PET and correlation with 
histopathologic findings. Radiology. (1998) 206:749–54. doi: 10.1148/radiology. 
206.3.9494496

 25. Wenter V, Albert NL, Brendel M, Fendler WP, Cyran CC, Bartenstein P, et al. [(18)
F]FDG PET accurately differentiates infected and non-infected non-unions after 
fracture fixation. Eur J Nucl Med Mol Imaging. (2017) 44:432–40. doi: 
10.1007/s00259-016-3528-9

 26. Van Vliet KE, De Jong VM, Termaat MF, et al. FDG-PET/CT for differentiating 
between aseptic and septic delayed union in the lower extremity. Arch Orthop Trauma 
Surg. (2018) 138:189–94. doi: 10.1007/s00402-017-2806-8

 27. Lemans JVC, Hobbelink MGG, Ffa IJ, et al. The diagnostic accuracy of (18)F-FDG 
PET/CT in diagnosing fracture-related infections. Eur J Nucl Med Mol Imaging. (2019) 
46:999–1008. doi: 10.1007/s00259-018-4218-6

 28. Sollini M, Trenti N, Malagoli E, Catalano M, di Mento L, Kirienko A, et al. [(18)F]FDG 
PET/CT in non-union: improving the diagnostic performances by using both PET and CT 
criteria. Eur J Nucl Med Mol Imaging. (2019) 46:1605–15. doi: 10.1007/s00259-019-04336-1

 29. Ok F, Erdogan O, Durmus E, Carkci S, Canik A. Predictive values of blood urea 
nitrogen/creatinine ratio and other routine blood parameters on disease severity and 
survival of COVID-19 patients. J Med Virol. (2021) 93:786–93. doi: 10.1002/jmv.26300

 30. Strony J, Paziuk T, Fram B, Plusch K, Chang G, Krieg J. An adjunct Indicator for 
the diagnosis of fracture-related infections: platelet count to mean platelet volume ratio. 
J Bone Jt Infect. (2020) 5:54–9. doi: 10.7150/jbji.44116

 31. Telang S, Mayfield CK, Palmer R, Liu KC, Wier J, Hong K, et al. Preoperative 
laboratory values predicting Periprosthetic joint infection in morbidly obese patients 
undergoing Total hip or knee arthroplasty. Bone Joint Surg Am. (2024) 106:1317–27. doi: 
10.2106/JBJS.23.01360

 32. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating 
prediction models. Med Decis Mak. (2006) 26:565–74. doi: 10.1177/ 
0272989X06295361

 33. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a 
multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the 
TRIPOD statement. BMJ. (2015) 350:g7594. doi: 10.1136/bmj.g7594

 34. Xu X, Wang H, Liu Y, Wang D, Diao S, Gao Y, et al. The role of combined 
inflammatory biomarkers in the diagnosis of high- and low-virulence FRI among high-
risk lower extremity fractures. Int J Gen Med. (2023) 16:3363–71. doi: 
10.2147/IJGM.S426608

 35. Sollini M, Berchiolli R, Delgado Bolton RC, et al. The "3M" approach to 
cardiovascular infections: multimodality, multitracers, and multidisciplinary. Semin 
Nucl Med. (2018) 48:199–224. doi: 10.1053/j.semnuclmed.2017.12.003

 36. Kaalep A, Burggraaff CN, Pieplenbosch S, Verwer EE, Sera T, Zijlstra J, et al. 
Quantitative implications of the updated EARL 2019 PET-CT performance standards. 
EJNMMI Phys. (2019) 6:28. doi: 10.1186/s40658-019-0257-8

 37. Graham MM, Wahl RL, Hoffman JM, Yap JT, Sunderland JJ, Boellaard R, et al. 
Summary of the UPICT protocol for 18F-FDG PET/CT imaging in oncology clinical 
trials. J Nucl Med. (2015) 56:955–61. doi: 10.2967/jnumed.115.158402

https://doi.org/10.3389/fmed.2025.1534988
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1016/S2666-7568(21)00172-0
https://doi.org/10.1038/s41572-022-00396-0
https://doi.org/10.1080/14787210.2020.1729740
https://doi.org/10.5194/jbji-8-133-2023
https://doi.org/10.1016/j.injury.2017.08.040
https://doi.org/10.21037/qims.2016.04.01
https://doi.org/10.1055/s-0029-1214160
https://doi.org/10.1007/s00259-017-3683-7
https://doi.org/10.1007/s00402-020-03506-3
https://doi.org/10.1007/s00068-016-0647-8
https://doi.org/10.1007/s00068-016-0647-8
https://doi.org/10.3389/fimmu.2023.1206682
https://doi.org/10.1007/s00259-019-04571-6
https://doi.org/10.1097/BOT.0000000000001614
https://doi.org/10.3390/medicina58111693
https://doi.org/10.1016/j.jamcollsurg.2007.07.031
https://doi.org/10.1097/00042307-200303000-00005
https://doi.org/10.1002/jmri.28586
https://doi.org/10.1016/S1470-2045(14)71116-7
https://doi.org/10.1038/s41572-022-00401-6
https://doi.org/10.1142/S0219720005001004
https://doi.org/10.1002/sim.3148
https://doi.org/10.1186/s12911-016-0336-x
https://doi.org/10.1148/radiology.206.3.9494496
https://doi.org/10.1148/radiology.206.3.9494496
https://doi.org/10.1007/s00259-016-3528-9
https://doi.org/10.1007/s00402-017-2806-8
https://doi.org/10.1007/s00259-018-4218-6
https://doi.org/10.1007/s00259-019-04336-1
https://doi.org/10.1002/jmv.26300
https://doi.org/10.7150/jbji.44116
https://doi.org/10.2106/JBJS.23.01360
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1136/bmj.g7594
https://doi.org/10.2147/IJGM.S426608
https://doi.org/10.1053/j.semnuclmed.2017.12.003
https://doi.org/10.1186/s40658-019-0257-8
https://doi.org/10.2967/jnumed.115.158402

	FRID-PI: a machine learning model for diagnosing fracture-related infections based on 18F-FDG PET/CT and inflammatory markers
	Highlights
	Introduction
	Methods
	Collection of basic clinical and laboratory data
	18F-FDG PET/CT imaging
	Statistical analysis
	Model construction and evaluation
	Discrimination
	Calibration
	Decision curve analysis (DCA)

	Results
	Clinical characteristics
	Model construction and evaluation
	Performance of the model

	Discussion
	Conclusion

	References

