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Background: Early detection of periocular aging is a common concern in 
cosmetic surgery. Traditional diagnostic and treatment methods often require 
hospital visits and consultations with plastic surgeons, which are costly and 
time-consuming. This study aims to develop and evaluate an AI-based decision-
making system for periocular cosmetic surgery, utilizing a Hierarchical Attention 
Transformer (HATrans) model designed for multi-label classification in periocular 
conditions, allowing for home-based early aging identification.

Methods: This cross-sectional study was conducted at the Department of 
Plastic and Reconstructive Surgery at Shanghai Jiao Tong University School of 
Medicine’s Ninth People’s Hospital from September 1, 2010, to April 30, 2024. 
The study enhanced the Vision Transformer (ViT) by adding two specialized 
branches: the Region Recognition Branch for foreground area identification, 
and the Patch Recognition Branch for refined feature representation via 
contrastive learning. These enhancements allowed for better handling of 
complex periocular images.

Results: The HATrans model significantly outperformed baseline architectures 
such as ResNet and Swin Transformer, achieving superior accuracy, sensitivity, 
and specificity in identifying periocular aging. Ablation studies demonstrated 
the critical role of the hierarchical attention mechanism in distinguishing subtle 
foreground-background differences, improving the model’s performance in 
smartphone-based image analysis.

Conclusion: The HATrans model represents a significant advancement in multi-
label classification for facial aesthetics, offering a practical solution for early 
periocular aging detection at home. The model’s robust performance supports 
its potential for assisting clinical decision-making in cosmetic surgery, facilitating 
accessible and timely treatment recommendations.
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1 Introduction

The appearance of youthful, vibrant, and lively eyes is often 
regarded as a key element of facial aesthetics. To achieve this ideal, 
various orbital rejuvenation procedures have been developed, both 
in academic research and clinical practice (1). These procedures 
include medial and lateral canthoplasty, as well as upper and lower 
blepharoplasty. Regardless of the specific surgical approach, the 
concept of aesthetic units is critical for ensuring cohesive treatment 
of the orbital region (2, 3). Conditions such as monolids and ptosis 
can create a tired or dull appearance, particularly in flatter facial 
contours (4). Narrow palpebral fissures reduce corneal visibility, and 
a shortened lateral canthus can disrupt facial symmetry, while an 
extended lateral canthus aligns more closely with aesthetic 
ideals (5, 6).

With growing economies and improving living standards, the 
desire for cosmetic enhancement has increased globally (7). Eyelid 
surgery is now one of the most commonly performed cosmetic 
procedures worldwide, underscoring the importance of the eyes in 
facial aesthetics. The main objective of orbital rejuvenation surgery is 
to restore youthful proportions to the face and emphasize the eyes (8, 
9). However, there are no universally accepted standards for these 
procedures, and no single technique has gained widespread 
recognition. Surgeons typically base their recommendations on 
aesthetic evaluations of the periorbital area and patient preferences 
(10). Yet, many patients lack the necessary expertise in aesthetic 
evaluation, leading to uncertainty in determining the most effective 
treatment. Additionally, surgeons often rely on their own experience 
and preferences, which can limit the objectivity of initial treatment 
decisions (11). A model capable of offering surgical recommendations 
during orbital rejuvenation diagnosis would therefore optimize 
treatment plans and enhance post-operative monitoring (12).

Recent advances in artificial intelligence (AI) and deep learning 
(DL) have made automated facial feature extraction a reality (13). DL 
models, particularly the Vision Transformer (ViT), have 
demonstrated remarkable performance in computer vision tasks by 
learning from vast datasets of natural images (14).

Unlike traditional machine learning methods, which require 
manual feature extraction, DL can process raw data and autonomously 
develop representations for pattern recognition. Despite its success 
in medical image analysis, no validated DL method exists for 
diagnosing and recommending treatments for orbital rejuvenation.

In this study, we introduce a novel intelligent decision-making 
system for periocular cosmetic surgery, utilizing a Hierarchical 
Attention Transformer (HATrans) model specifically designed for 
multi-label classification in periocular surgeries (15). The model was 
developed using data collected from cohorts of patients at Shanghai 
Jiao Tong University School of Medicine’s Ninth People’s Hospital 
between September 1, 2010, and April 30, 2024. Our method extends 
the Vision Transformer (ViT) architecture by incorporating two 
additional branches: the Region Recognition Branch and the Patch 
Recognition Branch. The Region Recognition Branch focuses on 
identifying foreground areas related to specific attributes of the 
periocular region, such as the lateral canthus, while the Patch 
Recognition Branch refines the representations of both foreground 
and background features using contrastive learning (16).

This architecture addresses the complexity of multi-label 
classification by simultaneously predicting multiple surgical 

interventions required for the periocular area. Extensive 
experiments demonstrate that HATrans significantly outperforms 
baseline models such as ResNet (17) and Swin Transformer (18), 
achieving superior accuracy across multiple evaluation metrics, 
including sensitivity, specificity, and overall classification accuracy. 
Additionally, ablation studies confirmed the importance of the 
hierarchical attention mechanism in HATrans, particularly its 
ability to capture subtle differences between foreground and 
background regions that are crucial for making accurate 
surgical recommendations.

The HATrans model also showed strong performance in 
identifying periocular aging from smartphone images alone, allowing 
for convenient, at-home assessments of eye conditions. This capability 
not only provides early diagnostic potential but also offers classified 
treatment recommendations based on a comprehensive analysis of 
the patient’s periocular characteristics. The results of this study 
establish a new state-of-the-art benchmark for multi-label 
classification in medical image analysis related to facial aesthetics, 
paving the way for AI-driven decision-making systems to support 
clinical judgment in cosmetic surgeries.

2 Dataset and problem

2.1 Patient cohorts

We collected two independent patient cohorts. The first cohort, 
originating from China, was divided into a training set and a 
validation set, used for model selection and hyperparameter 
optimization (19). This cohort consisted of 454 Chinese patients from 
the Ninth People’s Hospital, Shanghai Jiao Tong University School of 
Medicine, who received consultations and treatments between June 
2010 and April 2020 (Figure 1). The inclusion criteria were: patients 
who sought and were indicated for periocular cosmetic surgery and 
were completely satisfied with the results; exclusion criteria were: (a) 
patients with significant facial trauma; (b) those with facial 
deformities; (c) missing or poor-quality image data; and (d) 
incomplete or missing clinical follow-up data. Secondly, we gathered 
data for a test cohort, used solely to evaluate the final model. This 
cohort was composed of periocular cosmetic patients from the Ninth 
People’s Hospital, who received treatment between August 2003 and 
April 2021. The same inclusion and exclusion criteria were applied.

2.2 Photo acquisition

All photographs were taken using a mobile phone, capturing 
three angles: frontal, oblique, and lateral views. The images were 
taken using a smartphone from a distance of 0.5 m from the patient. 
The patient was instructed to remove their spectacles, maintain their 
head upright, and stare straight ahead. The study received ethical 
approval from the Ethics Committee at the Shanghai Ninth People’s 
Hospital affiliated to Shanghai Jiao Tong University School of 
Medicine (approval no. SH9H-2023-T279-1) (20). All procedures 
performed in the study were in accordance with the ethical standards 
of the institutional and national research committee, and with the 
1964 Helsinki declaration and its later amendments or comparable 
ethical standards (21).
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2.3 Problem description

This work addresses a multi-label classification problem in 
predicting required surgeries for eyes based on a labeled dataset. 
Unlike traditional single-label classification, where each sample 
belongs to one class, this task involves predicting multiple labels per 
sample, as an eye can require several surgeries simultaneously.

Formally, given a dataset ( ) ( ){ }1 1 N Nx ,y , , x ,y= … , where each 
d

ix ∈  represents the feature vector of an eye, and 
{ }k

i i,1 i,2 i,ky y ,y , ,y 0,1= … ∈    is a binary label vector indicating the 
required surgeries out of k  possible types, the objective is to learn a 
mapping function { }kdf : 0,1→  such that:

 ( ) 1,ˆ , ,i iy f x for i N= = …

where iŷ  represents the predicted label vector. The key challenge 
is accurately predicting multiple labels while considering 
interdependencies among surgery types.

2.4 Evaluation metric

We evaluate model performance using subset accuracy, a strict 
metric commonly applied in multi-label classification. Subset accuracy 

measures the proportion of samples for which the predicted label 
vector exactly matches the ground truth across all k  labels. It is 
defined as:

 
( )

1

1 ,ˆ
N

i i
i

Accuracy y y
N =

= =∑

where ( )·  is an indicator function that returns 1 if the 
predicted label vector iŷ  matches the ground truth iy , and 
0 otherwise.

3 Methods

Figure 2 illustrates the structure of our proposed Hierarchical 
Attention Transformer (HATrans), which enhances the basic ViT 
model by introducing two additional decoder branches. The primary 
Region-recognition branch focuses on identifying attribute-relevant 
foreground regions and separating them from background areas. The 
two additional Patch-recognition branches explore finer-grained 
attribute contexts within the foreground regions and learn attribute-
specific foreground-background representations through contrastive 
learning. The architecture of HATrans is detailed in the 
following subsections.

FIGURE 1

Overview of the first cohort.
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3.1 Region-recognition branch

The Vision Transformer (ViT) adopts the Transformer 
architecture for image recognition by viewing an image as a 
sequence of patches, transforming image processing into a sequence 
modeling task. Given an input image H W Cx × ×∈ , ViT splits the 
image into N patches of size P P× . Each patch is flattened into a 
vector ( )2N P ·C

pz ×∈ . Learnable position embeddings 
( )N 1 D

posE + ×∈  are added to retain positional information. A class 
token D

classz ∈  is prepended to the sequence, which is used 
for classification:

 
1 1

0 0 0; ; ; N N
class pos posz z z E z E = + … + 

The resulting sequence 0z  is fed into the Transformer encoder, 
which consists of alternating layers of multi-head self-attention 
(MHSA) and multi-layer perceptrons (MLPs). Each Transformer 
encoder layer applies LayerNorm (LN), followed by MHSA and 
MLP layers:

 ( )( )1 1L L Lz MHSA LN z z− −′ = +

 ( )( )L L Lz MLP LN z z= ′ + ′

where L denotes the layer index.
The Region-recognition branch extends the ViT framework by 

integrating a mechanism to distinguish attribute-relevant foreground 
regions from background areas. Inspired by TransFG, this branch 
leverages the attention weights from each encoder layer to guide 
region separation.

After the patch embeddings are processed through the 
Transformer encoder, we  aggregate the multi-head self-attention 
(MHSA) weights across all layers using the Hadamard product, 
enabling relevant attention features to accumulate and gradually 
enhance through layers. Formally, the accumulated attention map for 
each patch i after L layers is defined as:

 
1
0

L
m llA A−

==

where   denotes the Hadamard product applied across all layers’ 
attention maps lA .

After obtaining the accumulated attention map mA , we focus on 
its diagonal elements, which represent the self-attention scores of 
each token, reflecting the importance of each token relative to itself 
and other tokens. Let g  be the vector of diagonal elements, defined as:

 ( ) [ ]0 1 2, , , , , ,m i Ng diag A g g g g g= = … …

FIGURE 2

The architecture of the proposed Hierarchical Attention Transformer (HATrans). The model includes a Region-recognition branch for identifying 
attribute-relevant regions and a Patch-recognition branch that refines foreground and background features, using Binary Cross-Entropy and Triplet 
loss for optimization.
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Each ig  represents the importance score of the i-th token. 
We  apply a threshold ô to g  to determine the foreground and 
background regions. Tokens with importance scores above ô are 
classified as foreground, while those below ô are classified 
as background:

 

1,
0,

i
F

if g
M

otherwise
τ>

= 


The background mask is defined as B FM 1 M= − . By leveraging 
the diagonal elements of the accumulated attention map, this method 
effectively captures the tokens most critical for identifying 
discriminative regions, enabling the model to focus on important 
areas for fine-grained recognition tasks.

3.2 Patch-recognition branch

The Patch-recognition branch in HATrans is designed to further 
refine the feature representations by focusing separately on the 
foreground and background regions identified in the Region-
recognition branch. This branch consists of two sub-branches: a 
foreground sub-branch and a background sub-branch. Both 
sub-branches share the same transformer architecture as the main 
Region-recognition branch, ensuring consistent feature extraction 
while adapting to the specific context of each region.

The foreground sub-branch shares parameters with the 
transformer layers in the Region-recognition branch, allowing the 
learned attention and feature representations to be directly leveraged. 
This shared parameter strategy maintains consistency across different 
stages of feature extraction while reducing the overall 
model complexity.

Formally, let Fz  and Bz  represent the patch tokens from the 
identified foreground and background regions, respectively. Both Fz  
and Bz  are processed through their respective transformer structures:

 ( ) ( )1 1,l l l l
F F B Bz Transformer z z Transformer z− −= =

where l denotes the layer index. The foreground sub-branch uses 
shared parameters with the main Region-recognition branch, while 
the background sub-branch has independent parameters, allowing it 
to focus specifically on the unique characteristics of 
background regions.

This separation and specialization of the two sub-branches 
enhance the model’s ability to capture subtle distinctions between 
foreground and background features. The refined feature 
representations are later integrated for final classification, providing 
more robust attribute-specific predictions.

3.3 Multi-scale branch training objectives

The training objectives for HATrans involve a combination of 
Binary Cross-Entropy (BCE) loss and Triplet loss. These losses jointly 
optimize global classification and the distinction between foreground 
and background features across the multi-scale branches.

The BCE loss is applied to the output of the main Region-
recognition branch. Specifically, the class token’s final feature is used 
for classification. Given the predicted logits py  from the linear 
classifier and the ground truth labels ty  for a batch of size B, the BCE 
loss is defined as:

 

( ) ( )( ) ( )( ) ( )( )
1

1 ·log 1 ·log 1
B i i i i

B p pt t
i

y y y y
B =

 = − + − −  ∑

To enhance the discriminative power between the learned 
foreground and background features, we introduce a Triplet loss. The 
anchor, positive, and negative samples are derived from the features 
extracted by the three different branches: the Region-recognition 
branch, the foreground Patch-recognition branch, and the background 
Patch-recognition branch. Specifically, Rz , Fz , and Bz  represent the 
feature embeddings from these branches, respectively. The Triplet loss 
is calculated as follows:

 

( ) ( )( ) ( ) ( )( )
1

1 max , , ,0
B i i i i

T R F R B
i

sim z z sim z z
B

α
=

 = − + 
 ∑

where ( )sim ·,·  denotes the cosine similarity function, and á  is a 
margin parameter.

The final training objective combines the BCE loss and the Triplet 
loss as:

 B B T Tλ λ= +  

where Bë  and Të  control the relative importance of each loss term. 
This combination allows the model to jointly optimize global 
classification and region-specific distinctions, leading to improved 
fine-grained recognition performance.

4 Experiments and discussion

In this section, we present experiments conducted to evaluate the 
proposed Hierarchical Attention Transformer (HATrans) model, 
exploring its performance in the given multi-classification task.

4.1 Experimental setting

4.1.1 Dataset
We utilized our proposed eye dataset, which includes four types 

of recommended surgical procedures: eye bag removal, double eyelid 
surgery (blepharoplasty), medial canthoplasty (inner canthus 
correction), and lateral canthoplasty (outer canthus correction). The 
dataset consists of a total of 1,507 images collected from 454 patients 
who met the research criteria: 94 images for identifying eye bags, 801 
images for recognizing ptosis, single eyelids, and upper eyelid skin 
laxity, 243 images for identifying short palpebral fissures and overly 
elevated lateral canthi, and 369 images for recognizing epicanthal 
folds. The dataset is divided into a training set and a test set, with 
about 20% of the images allocated to the test set: 18 images for 
identifying eye bags, 162 images for recognizing ptosis, single eyelids, 
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and upper eyelid skin laxity, 48 images for identifying short palpebral 
fissures and overly elevated lateral canthi, and 75 images for 
recognizing epicanthal folds. Each image is annotated with multiple 
labels to indicate the relevant surgical procedures, allowing us to 
address this task as a multi-label classification problem. The dataset is 
balanced to ensure diverse representation across different surgical 
types, and the images have been preprocessed to normalize the input 
for model training.

4.1.2 Implementation details
Our proposed model is implemented in three variants—Base, 

Large, and Huge—each corresponding to the pre-trained Vision 
Transformer (ViT) models. The Base, Large, and Huge variants are 
initialized with the pre-trained weights from ViT-Base, ViT-Large, and 
ViT-Huge, respectively, allowing us to leverage the transfer learning 
capabilities of the original models.

The input resolution for all models is set to 224 × 224 pixels. During 
training, we use the AdamW optimizer with a learning rate of 410− , a 
weight decay of 0.05, and a momentum parameter of 0.9. The learning 
rate follows a cosine annealing schedule, with a linear warm-up phase 
of 10 epochs. The total number of training epochs is set to 100, with the 
learning rate reduced after 60 and 80 epochs. To ensure a consistent 
evaluation, a batch size of 16 is employed for all training processes. Data 
augmentation techniques, such as random cropping, horizontal flipping, 
and color jitter are used to enhance the model’s generalization.

In our experiments, we also compare our model against several 
widely adopted baselines, including ResNet-50, ResNet-101, 
EfficientNet, Swin Transformer, and DeiT. Since these baseline models 
are primarily designed for binary classification tasks, we adapted them 
to the multi-label classification scenario by employing a Binary Cross 
Entropy Loss function. This modification ensures a fair comparison 
and allows evaluation of their effectiveness in the context of predicting 
multiple required eye surgeries.

4.2 Quantitative analysis

Table  1 presents a comparison of our proposed Hierarchical 
Attention Transformer (HATrans) model against several baseline 
architectures, including ResNet-50, ResNet-101, EfficientNet, Swin 
Transformer, Vision Transformer (ViT), and DeiT, across multiple 
evaluation metrics. Our model, in all configurations—Base, Large, and 
Huge—outperforms the baseline models, demonstrating the 
effectiveness of the proposed hierarchical attention mechanism for the 
multi-label eye surgery classification task.

The ResNet models show comparatively lower performance, 
reflecting the limitations of purely convolutional architectures in 
capturing complex dependencies across image patches (22). 

Transformer-based models, such as ViT and DeiT (23), exhibit a 
significant improvement due to their self-attention mechanisms, 
which are better suited for learning relationships among diverse image 
features (24, 25).

The HATrans model achieves the best performance, with the Huge 
variant showing substantial gains across key metrics. This performance 
improvement can be  attributed to the hierarchical attention 
mechanism, which enhances the basic ViT model by incorporating 
the Region-recognition and Patch-recognition branches. The Region-
recognition branch allows for effective separation of attribute-relevant 
regions, while the Patch-recognition branches refine the feature 
representation through contrastive learning between foreground and 
background areas. These enhancements enable HATrans to capture 
subtle attribute-specific contexts more effectively, resulting in 
improved classification capabilities compared to the baseline models.

4.3 Ablation studies

To evaluate the contributions of the different components within 
our proposed Hierarchical Attention Transformer (HATrans) model, 
we conducted a series of ablation experiments, as summarized in 
Table 1. Specifically, we aim to understand the impact of each major 
architectural addition, including the Region-recognition branch, the 
Patch-recognition branches, and the use of contrastive learning 
between foreground and background features.

4.3.1 Effect of region-recognition branch
The Region-recognition branch plays a critical role in 

distinguishing attribute-relevant foreground regions from the 
background. To assess its impact, we compare the performance of the 
full model with a variant where the Region-recognition branch is 
removed, effectively making the model a standard Vision Transformer 
without the capability to separate foreground from background 
regions. The results show a noticeable decline in accuracy and 
F1-score, indicating that explicitly modeling foreground-background 
separation allows the model to focus on more informative regions, 
which is essential for fine-grained classification.

4.3.2 Effect of patch-recognition branches
To evaluate the benefit of the Patch-recognition branches, 

we conducted experiments by removing these branches while keeping 
the Region-recognition branch intact. The resulting model only 
distinguishes between foreground and background but does not refine 
attribute-specific representations. The absence of Patch-recognition 
branches led to a reduced performance across all metrics, highlighting 
the importance of further exploring finer-grained attribute contexts 
through separate foreground and background learning.

TABLE 1 Ablation study results for different components of the HATrans model.

Variant ACC Rec F1 AUC

Baseline ViT (without region-recognition or patch-recognition) 0.7632 0.7485 0.7510 0.8250

+ Region-recognition branch 0.8145 0.8022 0.8080 0.8715

+ Patch-recognition branches (without contrastive learning) 0.8273 0.8150 0.8182 0.8820

+ Contrastive learning in patch-recognition branches 0.8602 0.8575 0.8550 0.9087

Each row shows the performance after adding a specific component, highlighting the impact of Region-recognition, Patch-recognition branches, and contrastive learning.
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4.3.3 Effect of contrastive learning
The Patch-recognition branches employ contrastive learning 

to enhance the distinction between foreground and background 
features. We performed an ablation where contrastive learning 
was replaced with a standard classification loss applied separately 
to each sub-branch. The results indicate that the contrastive 
learning objective significantly improves model performance, 
particularly in distinguishing subtle variations between the 
foreground and background features. This suggests that explicitly 
contrasting the two regions helps in learning discriminative 
features, enhancing the overall model’s capability to identify 
distinct attributes.

4.3.4 Combined impact
Finally, we analyzed the combined impact of removing both the 

Region-recognition and Patch-recognition branches. This resulted in 
a substantial drop in performance, approaching that of the baseline 
Vision Transformer. These results validate that both branches play 
complementary roles, with the Region-recognition branch providing 
essential spatial context and the Patch-recognition branches 
enhancing feature discrimination through multi-scale learning and 
contrastive objectives.

4.4 Quality analysis

To further assess the effectiveness of our proposed Hierarchical 
Attention Transformer (HATrans) model, we  conducted a 
qualitative analysis by visualizing the attention maps generated by 
the final layer of the model. Specifically, we visualized the attention 
weights from the Region-recognition branch to highlight the 
attribute-relevant regions that the model focuses on during 

prediction (26). We  compared these attention maps with those 
generated by ResNet, Vision Transformer (ViT), and our 
HATrans model.

Figure 3 presents the attention maps produced by these models 
on representative samples from the eye surgery dataset. The 
attention maps from HATrans demonstrate a more focused and 
well-defined separation of the foreground regions, effectively 
highlighting the areas most relevant for predicting the required 
surgeries. In contrast, ResNet, which relies on convolutional feature 
extraction, shows less distinct attention and often fails to capture 
specific regions of interest accurately. The Vision Transformer 
produces more coherent attention maps compared to ResNet, but 
the attention is still diffused across irrelevant background regions. 
Our HATrans model, by leveraging the Region-recognition and 
Patch-recognition branches, achieves superior localization, allowing 
it to concentrate on the most critical features while excluding 
unnecessary background information. This targeted focus results in 
more accurate predictions, illustrating the advantages of our 
hierarchical attention mechanism over traditional convolutional 
networks and baseline transformer models.

The qualitative results demonstrate that our hierarchical 
approach allows for a more targeted focus on discriminative features. 
The Region-recognition branch enables the model to effectively 
differentiate between significant foreground areas and irrelevant 
background, leading to sharper  and more interpretable attention 
maps. Additionally, the Patch-recognition branches refine these 
attribute-specific regions through contrastive learning, further 
enhancing the model’s ability to discern subtle distinctions. As a 
result, the HATrans model exhibits superior localization capabilities 
compared to other state-of-the-art transformer-based models, 
thereby achieving higher accuracy in multi-label periocular 
surgery classification.

FIGURE 3

Grad-CAM visualizes the attention mechanisms of ResNet, Vision Transformer (ViT), and our proposed model when focusing on different regions of 
the eye, specifically the eyelid bags, double eyelid, outer canthus and inner canthus.
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5 Results

5.1 Data characteristics

Among the 454 patients meeting the research criteria, a total of 
1,507 images were collected to construct the model: 94 images for 
identifying eye bags, 801 for recognizing ptosis, monolids, and eyelid 
laxity, 243 for identifying short palpebral fissures and excessive 
upward tilt of the lateral canthus, and 369 for detecting epicanthal 
folds (Figure 1).

The specific patient counts were as follows: 31 patients with 
infraorbital hollowing, ptosis, or herniation; 241 patients with ptosis, 
monolids, or upper eyelid laxity; 73 patients with short palpebral 
fissures or excessive upward tilt of the lateral canthus; and 109 patients 
with epicanthal folds.

Moreover, some patients presented with comorbidities. For 
example, 23 patients (5%) underwent simultaneous eye bag and upper 
eyelid surgery, 41 patients (9%) underwent both epicanthal and lateral 
canthal surgeries, 74 patients (16%) underwent epicanthal and upper 
eyelid procedures, and 52 patients (11%) had upper eyelid and lateral 
canthal surgeries.

5.2 Model performance

Sensitivity, specificity, and accuracy of the model are presented, as 
shown in Table 2. The model exhibited comparable performance in 
recognizing periocular aging and providing recommendations for 
both male and female subjects.

5.3 Model interpretation via heatmaps

We employed GradCAM++ to assess the influence of different 
regions in the periocular area on the AI model’s classification 
outcomes. The heatmaps, generated from network weights combined 
with feature maps, illustrated the importance of individual pixels in 
image classification. Warmer colors in the heatmap indicate areas of 
higher significance. As depicted in Figure 3, the model assigns varying 
weights to different periocular regions when identifying the four types 
of periocular deformities.

5.4 Permission to reuse and copyright

Permission must be obtained for use of copyrighted material from 
other sources (including the web). Please note that it is compulsory to 
follow figure instructions.

5.5 Surgical descriptions

5.5.1 Lower blepharoplasty
Lower blepharoplasty, commonly known as eye bag surgery, is 

a procedure designed to correct signs of aging around the lower 
eyelids, such as skin laxity, herniation of orbital fat, and hypertrophy 
of the orbicularis oculi muscle. The surgery involves precise 
separation of skin and muscle, repositioning of orbital fat, and 
removal of excess skin and muscle tissue to restore the lower 
eyelid’s anatomical structure and rejuvenate the periocular 
contour (27).

The model’s accuracy in identifying patients requiring eye bag 
surgery is 71.43%. In practical applications, the recommendations 
provided by the model were accepted in 92% of cases. Early 
intervention with eye bag surgery can effectively eliminate eye bags, 
restore a youthful appearance, reduce skin laxity, and lower the 
difficulty of surgery, thereby accelerating recovery and mitigating 
long-term skin damage caused by eye bags (Figure 4).

5.5.2 Double eyelid surgery
In East Asia, double eyelid surgery is a popular cosmetic 

procedure, with a wide audience across genders. According to 
statistical data, female patients constitute the majority of double eyelid 
surgery recipients, accounting for approximately 80–90%, while male 
patients represent 10–20%. This gender disparity reflects women’s 
greater focus on periocular aesthetics. However, this ratio may vary 
across regions, cultures, and over time. Notably, the proportion of 
male patients undergoing double eyelid surgery is rising, reflecting 
evolving societal views and increased acceptance of cosmetic 
procedures among men.

Beyond creating the double eyelid appearance, the procedure 
plays a significant role in periocular rejuvenation. With age, skin laxity 
and fat accumulation contribute to periocular aging.

The model’s accuracy in identifying ptosis, monolids, and upper 
eyelid laxity is 89.56%. In practical applications, 89.5% of the 
recommendations were accepted. Early double eyelid surgery can 
leverage the skin and tissue’s elasticity to promote faster recovery, reduce 
the risk of complications, and yield more natural and lasting aesthetic 
outcomes, boosting patients’ confidence and quality of life (Figure 5).

5.5.3 Double eyelid surgery
Epicanthoplasty is a precise surgical procedure aimed at 

correcting epicanthal folds and improving the length and shape of the 
palpebral fissure. Studies indicate that the prevalence of epicanthal 
folds ranges from 50 to 90% in East Asian populations, significantly 
affecting the aesthetic appearance of the eyes. The surgery typically 
involves making a 1.5–2.0 cm micro-incision at the epicanthus, 
through which approximately 1.0–1.5 mm of skin and muscle tissue 

TABLE 2 Model performance in predicting palpebral pocket, double eyelid, outer canthus and inner canthus.

Performance 
variant

Sensitivity Specificity Accuracy AUC NLR NPV PLR PPV F1-
score

Palpebral pocket 0.8113 0.7789 0.7143 0.8190 0.2115 0.8766 0.289 0.8178 0.7871

Double eyelid 0.8001 0.8156 0.8956 0.8588 0.1917 0.8956 0.2728 0.7901 0.8723

Outer canthus 0.7917 0.8312 0.8467 0.8328 0.1978 0.8798 0.531 0.8276 0.8564

Inner canthus 0.8267 0.8577 0.8535 0.8413 0.2018 0.8465 0.412 0.8158 0.8322
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is removed. The medial canthal ligament is then released and 
repositioned. Depending on the patient’s condition, epicanthoplasty 
can increase the palpebral fissure length by 2–5 mm, visibly 
enhancing the horizontal width of the eyes and achieving more 
balanced proportions according to aesthetic standards.

Postoperative evaluations reveal a patient satisfaction rate of 85–95%, 
with a low complication rate (infection, bleeding, or scarring risk less 
than 5%). The model’s accuracy in identifying epicanthal folds is 85.35, 
and 94% of the recommendations were adopted in clinical practice.

5.5.4 Lateral canthoplasty
Lateral Canthoplasty is a procedure designed to extend the 

horizontal width of the palpebral fissure. The surgery involves severing 
part of the lateral canthal ligament and fixing it in a new position, 
coupled with excising an appropriate amount of skin and muscle 
tissue from the outer eyelid. According to clinical data, the procedure 
can increase the palpebral fissure width by 3–6 mm, significantly 
enhancing the aesthetic appeal of the eye shape.

The model’s accuracy in identifying lateral canthal deformities is 
84.67, and 94% of its recommendations were accepted. Clinical 
observations suggest that appropriate lateral canthoplasty may correct 

certain cases of strabismus, although the exact mechanism requires 
further investigation.

6 Discussion

To our knowledge, this study represents the first instance of using 
patient facial photographs to simultaneously identify infraorbital 
hollowing, ptosis, monolids, short palpebral fissures, and epicanthal 
folds. The use of smartphone-based applications to detect periocular 
aging and recommend four common periocular rejuvenation surgeries 
alleviates some of the burdens on healthcare systems. However, this 
study has limitations. First, as a single-center, cross-sectional study 
with a small sample size, further multi-center investigations are 
necessary to improve the algorithm’s generalizability. Additionally, due 
to insufficient recording of patient baseline characteristics (such as 
age, occupation, skin type, and exercise habits), the algorithm’s 
functionality is constrained. Collecting more comprehensive patient 
information may enhance the model’s performance. Moreover, the 
uneven distribution of cases among the four conditions may explain 
the model’s lower sensitivity in detecting eye bags (28, 29). Increasing 

FIGURE 4

The ROC curve for the classification model concerning palpebral pocket, double eyelid, outer canthus, and inner canthus illustrates the situation 
between the true positive rate (TPR) and the false positive rate (FPR).
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the number of images of patients with infraorbital conditions could 
improve the model’s performance.

7 Conclusion

This study demonstrates that AI-based detection models 
exhibit strong performance in accurately identifying periocular 
aging from smartphone images. These results indicate that such 
models can assist individuals in identifying infraorbital hollowing, 
ptosis, monolids, short palpebral fissures, and epicanthal folds. 
Some types of periocular aging can potentially lead to 
complications such as trichiasis, corneal, and conjunctival 
irritation, or vision problems. In some cases, they may also induce 
forehead wrinkles or headaches due to compensatory mechanisms 
such as excessive eyebrow raising (30). Early identification and 
intervention can prevent these issues from worsening, optimizing 
patient experience by reducing delays in diagnosis and treatment. 
This pre-diagnostic tool can thus play a critical role in timely 
medical decision-making, saving patients time and improving 
overall outcomes.

Furthermore, by facilitating the early detection of periocular aging, 
the model can contribute to a more equitable distribution of limited 
medical resources. Individuals with significant periocular aging that 

impacts facial aesthetics may benefit from specific algorithmic 
assessments that detect early signs of aging. Based on historical 
datasets, the model is designed to provide treatment recommendations 
under simple and practical conditions, with the aim of maximizing 
overall aesthetic improvement through a single surgical procedure.

The model can also serve as an auxiliary diagnostic tool for 
physicians in primary healthcare settings (31). As the dataset 
continues to expand, it is expected that the accuracy and 
personalization of the model’s recommendations will improve, thus 
better serving clinical diagnosis and patient care (32).

Overall, the improvements made in this study in addressing multi-
label classification issues within the domain of medical image analysis 
for facial aesthetics establish a new high standard (33). The 
development of this model not only enhances current technologies but 
also suggests its potential for wide application in supporting decision-
making in clinical plastic surgery. Specifically, the findings from this 
study are expected to provide scientific and precise decision support 
for a variety of cosmetic surgeries, promoting the advancement and 
refinement of plastic and cosmetic surgery practices.

This completes the enhanced and formalized conclusion section, 
reinforcing the academic rigor and clinical relevance of the study. The 
refined structure and content ensure clarity in presenting the model’s 
clinical implications while highlighting its potential future  
development.

FIGURE 5

The confusion matrix for palpebral pocket, double eyelid, outer canthus, and inner canthus.
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