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Introduction: Pathological myopia (PM) is a serious visual impairment that 
may lead to irreversible visual damage or even blindness. Timely diagnosis and 
effective management of PM are of great significance. Given the increasing 
number of myopia cases worldwide, there is an urgent need to develop an 
automated, accurate, and highly interpretable PM diagnostic technology.

Methods: We proposed a computational model called PMPred-AE based on 
EfficientNetV2-L with attention mechanism optimization. In addition, Gradient-
weighted class activation mapping (Grad-CAM) technology was used to provide 
an intuitive and visual interpretation for the model’s decision-making process.

Results: The experimental results demonstrated that PMPred-AE achieved 
excellent performance in automatically detecting PM, with accuracies of 98.50, 
98.25, and 97.25% in the training, validation, and test datasets, respectively. In 
addition, PMPred-AE can focus on specific areas of PM image when making 
detection decisions.

Discussion: The developed PMPred-AE model is capable of reliably providing 
accurate PM detection. In addition, the Grad-CAM technology was also used 
to provide an intuitive and visual interpretation for the decision-making process 
of the model. This approach provides healthcare professionals with an effective 
tool for interpretable AI decision-making process.
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1 Introduction

Pathological myopia (PM) is a serious visual disease that can lead 
to irreversible visual damage or even blindness (1–3). In recent years, 
PM has become one of the main causes of visual impairment and 
permanent blindness worldwide, especially in Asian countries. 
According to the research by Holden et al. (4), by 2050, nearly half of 
the global population will be affected by myopia, with approximately 
10% suffering from high myopia, which will also become the leading 
cause of permanent blindness. In addition, retinopathy and 
complications related to myopia may also increase the risk of visual 
damage (5–7). Therefore, timely diagnosis and early detection of PM 
are crucial. Currently, develop an automated, accurate, and 
non-invasive method PM diagnosis method is an urgent task.

With the development of artificial intelligence (AI) and the 
accumulation of myopia data, a variety of computational methods 
have been developed (8–10). For example, Liu et al. (10) introduced a 
method using texture features and Support Vector Machine (SVM) 
(11–13) to automatically detect PM. This method processed retinal 
fundus images by extracting region of interest (ROI) and detecting the 
optic nerve head. Subsequently, texture-based metrics were generated, 
categorized and grouped into zones for context-based generation of 
features. Finally, SVM was used to detect PM based on these features, 
achieving an accuracy (ACC) of 87.5% (14). Zhang et al. (15) proposed 
an automatic detection method for PM based on max-relevance and 
min-redundancy (mRMR). This method built a feature space from 
information extracted from fundus images and medical screening 
data, created a ranked feature library using mRMR, searched for the 
most compact feature set with a forward selection wrapper, and then 
used SVM for detection. As a result, they achieved an ACC of 89.3% 
for the right eye and 88.5% for the left eye (15). Xu et al. (16) developed 
a detection method for PM based on bag-of-feature and sparse 
learning. During the training phase, the codebook for the bag-of-
feature model and the classification model were learned, and the top 
related visual features were discovered through sparse learning.

In the detection phase, local features were first extracted from a 
given retinal fundus image, quantified using the learned codebook to 
obtain global features. Finally, the classification model was used to 
determine the presence of PM, achieving an ACC of 90.6% (16). 
Zhang et al. (17) also developed an automatic diagnostic method for 
PM based on heterogeneous biomedical data, integrating data from 
various sources including imaging data, demographic/clinical data, 
and genotyping data, and ultimately using a multiple kernel learning 
(MKL) approach to accurately detect PM, achieving an average Area 
Under Curve (AUC) of 0.888. Chen et al. (18) introduced a deep 
learning architecture for automating the diagnosis of glaucoma. This 
method used a convolutional neural networks (CNN) (19, 20) model 
with four convolutional layers and two fully connected layers, 
combined with dropout and data augmentation strategies to enhance 
diagnostic performance. The method achieved AUC values of 0.831 
and 0.887 on the ORIGA and SCES datasets, respectively (18). Xu 
et al. (21) proposed an automated detection method for tessellated 
fundus based on texture features, color features and SVM. The method 
could achieve an ACC of 98%. Xu et al. (22) proposed a method for 
detecting ocular disease based on multiple informatics domains. This 
method combined pre-learned SVM classifiers effectively merging 
personal demographic data, genome information, and visual 
information from retinal fundus images. The final model obtained an 

AUCs of 0.935 for glaucoma, 0.822 for age-related macular 
degeneration (AMD), and 0.946 for PM (22). Septiarini et al. (23) 
introduced a method based on statistical features to automatically 
detect peripapillary atrophy in retinal fundus images. This method 
involved four steps: optic nerve head (ONH) localization, ONH 
segmentation, preprocessing, and features extraction. Through these 
steps, three key features were extracted: standard deviation (σ), 
smoothness (S), and third moment (μ3). By using a backpropagation 
neural network (BPNN), they achieved an ACC of 95% (23). Rauf 
et  al. (24) proposed a CNN-based method for PM detection and 
obtained an ACC of 95%. Although these studies have achieved 
positive results, there are still several challenges: (1) Many advanced 
deep learning methods are emerging, but in the field of PM detection, 
these advanced technologies have not yet been applied. (2) Due to the 
uniqueness of the medical industry and the high requirements for 
model accuracy, model performance still needs to be improved. (3) 
Due to the differences in actual medical facilities, the efficiency of 
these models in poorly equipment medical environments is an 
important problem that needs to be overcome. (4) As an auxiliary 
diagnosis method, the interpretability of models was an important 
task, but current research in this area is still insufficient (25–28).

To address the aforementioned challenges, this study designed an 
improved model named PMPred-AE based on EfficientNetV2-L to 
automatically identify and diagnose PM. This study further enhanced 
the model’s ability to identify key features in the retina images by 
introducing the attention mechanism, thereby improving the accuracy 
of the diagnosis of PM. In order to provide visual explanations for the 
decision-making process of the model, we also adopted the Gradient-
weighted class activation mapping (Grad-CAM) technique. Our study 
provides an efficient, accurate, and explainable model for the 
detection of PM.

2 Materials and methods

2.1 Dataset construction

The study utilized the PALM Challenge dataset, comprising 
training images, verification images and test images. The training 
dataset contains 187 non-PM and 213 PM. Similarity, the verification 
set consists of 400 images, with 189 labeled as non-PM and 211 as 
PM. Additionally, test set includes 400 images with corresponding 
labels: 187 categorized as non-PM and 213 as PM (29). This dataset 
configuration enabled rigorous evaluation and validation of the 
proposed methodologies.

2.2 Model design

The PMPred-AE architecture consists of two core components: a 
feature extractor and a classifier. In the feature extraction stage, 
we  chose EfficientNetV2-L, an advanced CNN model aimed at 
accelerating image processing and improving its performance. As an 
upgraded version of the EfficientNet series, EfficientNetV2-L 
underwent pre-trained on a massive ImageNet dataset that covers 
millions of images and thousands of categories. Through its scalable 
architecture, EfficientNetV2-L cleverly balances the network depth, 
width, and resolution to achieve optimal performance and efficiency. 
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EfficientNetV2-L is an upgraded version of the EfficientNet series. It 
optimizes the balance of network depth, width, and resolution to 
achieve high efficiency and accuracy in image processing tasks. 
Compared to advanced vision transformer (ViT) series’ ViT-L/16, 
EfficientNetV2-L achieves higher accuracy. Meanwhile, the training 
speed could increase by 7 times (30). In particular, the model utilizes 
lightweight depthwise separable convolution techniques, significantly 
reducing computational burden and model size while maintaining 
efficient feature extraction capabilities. Therefore, in the context of 
PM-detection, EfficientNetV2-L could efficiently identify key features 
in images and provide accurate data input for classifiers, significantly 
improving the performance of the model. Moreover, its superior 
computing speed and efficiency made it very suitable for application 
in medical environments with rudimentary equipment, providing 
strong technical support for early diagnosis and treatment. In the 
classification stage, we  used an improved fully-connected neural 
network based on the attention mechanism. The core function of this 
improvement is to enhance the model’s attention to the most 
important parts of the input features. By assigning different weights 
to the input features, the attention mechanism allows the model to 
prioritize the features that contribute the most to the final 
classification decision, rather than treating all input features equally. 
This dynamic weight allocation method not only improves the 
model’s understanding of the data, but also increases the adaptability 
and flexibility of the model, enabling it to automatically focus on the 
most critical information. Specifically, we  used a linear layer to 
transform all the features into a one-dimensional space, and then 
map them to a value between 0 and 1 using the Softmax function. 
Finally, this weight is multiplied by the original input features to 
emphasize the features that contribute the most to the classification 
result. This improvement was particularly important for the detection 
of PM. It allows the model to pay special attention to the areas that 
revealed the pathological features of myopia. Through this 
mechanism, our model provided an efficient tool for the early 
diagnosis and treatment of PM.

2.3 Grad-CAM

In order to visually explain the decision-making process of CNN 
in PM detection tasks, we used Grad-CAM technique to generate a 
heatmap. Through Grad-CAM, we can clearly see which areas are 
given more attention when the model makes detection. This approach 
relies on the gradient information of the model, particularly focusing 
on the gradients of the feature layers from the last convolutional layer, 
to highlight the regions that contribute most to the model predictions. 
The working principle of Grad-CAM can be briefly described by the 
following mathematical expression.

First, for each channel in the feature layer A, the global average 
pooling of these slopes is calculated to obtain the weight coefficient 
(Equation 1):
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where, cy  is the output score of the model for category c, ijA  is the 
activation value of the feature layer at position ( ),i j , k is the k-th 

channel in the feature layer A, and Z  is the total number of units in 
the feature layer.

Then, the weight coefficient is multiplied by the activation value 
of the feature layer and then accumulated. The final heatmap is 
generated by filtering through the ReLU function (Equation 2):
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This process ensures that only features that have positive impact 
on l prediction category c of the mode were visualized, thereby 
enhancing the clarity and interpretability of the model’s decision. 
By applying Grad-CAM to the PMPred-AE model, the heatmap 
clearly reveals that the model focuses on the location of key 
pathological changes in the retina image when identifying PM. The 
heatmap provided by Grad-CAM not only demonstrates the reason 
behind the model’s high performance, but also proves its focusing 
ability, which is crucial to improve the reliability and trust of the 
model in practical medical applications. Through this way, 
Grad-CAM provides healthcare professionals with an intuitive tool 
to better understand and explain the decision-making process of 
the PMPred-AE, especially in medical diagnosis and 
treatment planning.

2.4 Parameter setting

The learning rate is set to 0.0001, the batch size is 8, the number 
of epochs is 50, and the optimizer is AdamW.

2.5 Evaluation index

Several widely used evaluation indicators (31–37), including 
precision (Pre) (Equation 3), recall (Rec) (Equation 4), accuracy 
(ACC) (Equation 5), F1-score (F1) (Equation 6), and Matthew’s 
coefficient of association (MCC) (Equation 7), were utilized to 
evaluate model’s performance, defined as follows:

 
TPPre

TP FP
=

+  
(3)

 

TP
TP FN

Rec =
+  

(4)

 
TP TNACC

TP FP TN FN
+

=
+ + +  

(5)

 
21 PreRecF
Pre Rec

=
+  

(6)

 ( )( )( )( )
TP TN FP FNMCC

TP FP TN FN TP FN TN FP
× − ×

=
+ + + +  

(7)

https://doi.org/10.3389/fmed.2025.1529335
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2025.1529335

Frontiers in Medicine 04 frontiersin.org

where TP, TN, FP, and FN represented the true positive, true 
negative, false positive, and false negative of the sample, respectively. 
We also drew the receiver operating characteristic curve (ROC) and 
precise recall curve (PRC), and obtained the area under the curve 
(AUC, AUPRC) (27, 38–41).

3 Results

3.1 Overview of experiment

In our experiment, we first adopted data augmentation techniques 
to enrich and expand the original data set, and created more diverse 
training samples. Data enhancement included operations such as 
image rotation, resizing, and cropping. It was designed to simulate 
different shooting conditions and perspectives to improve the model’s 
generalization and robustness. The data-enhanced dataset was used to 
train our PMPred-AE model, which was based on the EfficientNetV2-L 
architecture and optimized to meet the specific requirements of 
PM-detection. EfficientNetV2-L is the foundation of our model. It has 
been pre-trained on the ImageNet data set, and therefore has strong 
feature extraction capabilities (42, 43). In order to further improve the 
performance of the model, we introduced an attention mechanism in 
the fully connected layer of the model. This mechanism enables the 
model to focus more on the key areas related to PM diagnosis in the 
image, thereby improving the accuracy of diagnosis. During the 
model training process, the model parameters were adjusted based on 
the performance on the verification set to achieve the optimal 
configuration. After training, we visualized the output of the model at 
different levels (shallow, middle, and deep). This step helped us 
understand how the model gradually extracted and utilized image 
features. In addition, we also used Grad-CAM technology to generate 
a heatmap that highlight the areas that the model focuses on when 
making predictions. In this way, we can not only verify the decision-
making process of the model, but also provide intuitive visual 
explanations for doctors to help them better understand the basis of 
the model. Overall, our experiment combined data augmentation, 
attention mechanisms, and advanced model architecture and 
explanatory techniques to develop an efficient, accurate, and 
explainable model for the detection of PM (Figure 1).

3.2 Data augmentation

Due to the difficulty of collecting and annotating pathological 
images, only a small number of data samples could be collected 
under normal circumstances. Therefore, data augmentation was a 
very necessary task. It can effectively reduce the over-fitting degree 
of the model, and allow the model to learn more general knowledge 
instead of focusing too much on noise and some unique features, 
thereby improve the generalization and robustness of the model 
(44–46). In this study, we employed a combination approach for 
sample augmentation. The detailed procedure included initially 
resizing the images to 256×256 pixels. Subsequently, they are 
randomly cropped to 224×224 pixels. Then anti-aliasing techniques 
were applied to ensure image quality. In addition, to increase visual 
variety, the probability of horizontal and vertical flipping was set to 
50%. This method also incorporated subtle random affine 

transformations, including rotations between −10 to 10 degrees, 
translations of 10% of the image width or height, and scaling 
between 90 to 110%. Furthermore, random erasure is applied with 
a 50% probability, randomly covering a small portion of the image, 
enhancing the model’s ability to handle image occlusion (Figure 2). 
Finally, the images were converted into tensors and normalized 
according to a specific mean and standard deviation to suit the needs 
of model training. We mainly used these methods to address the 
following issues: by randomly cropping and resizing, we simulated 
the scene where doctors observe the eyes from different distances 
and angles, and random rotation and affine transformation helped 
the model identify pathological features from multiple angles. 
Random erasure simulates potential occlusions during actual 
medical image acquisition. Normalization ensures consistency of 
image data during training, while anti-aliasing maintains the clarity 
of image details, which is crucial for identifying pathological 
features. By introducing various visual perturbations, this 
comprehensive data augmentation strategy facilitates the model in 
extracting valuable features from diverse image transformations, 
thereby enhancing performance and robustness in real-world 
application scenarios.

3.3 Model validation

A series of experiments have shown that the PMPred-AE model 
exhibits excellent performance in PM classification tasks. Firstly, the 
model is trained on the training set to ensure that it has sufficient 
learning foundation and can capture the key features and patterns in 
the data (47–50). Then, the validation set was used to adjust the 
parameters of the model, which further improved its performance 
and ensured its generalization ability on unseen data (51, 52). The 
experimental results showed that PMPred-AE performed well on the 
test set, and all evaluation indicators reached a very high level, such 
as ACC, F1, Pre, Rec and MCC with values of 0.9725, 0.9744, 0.9676, 
0.9812 and 0.9448, respectively. This indicates that PMPred-AE has 
excellent ability to effectively distinguish PM from non-PM 
(Figure  3A, Table  1). In addition, by plotting ROC and PRC, 
we observed that the PMPred-AE model had good AUC and AUPRC 
under both conditions, with values of 0.9955 and 0.9962, respectively. 
This further demonstrated the efficiency of PMPred-AE model in 
feature extraction and capability in recognizing PM (Figures 3B,C). 
Finally, we  used t-SNE technology to visualize the output of the 
model (Figure 3D) (53). The results showed that PM and non-PM 
can be clearly distinguished in a low-dimensional space, indicating 
that the model can effectively represent their features in a 
low-dimensional space and capture the complex patterns and 
structural differences between them. This further suggests that the 
PMPred-AE model has broad application prospect in clinical practice.

3.4 Model explanations

To further confirm that PMPred-AE could effectively extract 
features, we visualized the output of the model’s shallow, middle, 
and deep layers. It can be clearly observed that as the depth of the 
model increases, the model can extract more abstract and higher-
level features. This proves that the hierarchical structure of 
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PMPred-AE model effectively promoted the gradual extraction and 
refinement of features (Figure  4A). Later, in order to further 
investigate why PMPred-AE could efficiently distinguish PM and 
non-PM, we used the Grad-CAM technology to generate a heatmap 
that could reveal the areas that the model focused on when making 
predictions, thus providing an explanation for the model’s 

decision-making process (Figure 4B). The heatmap revealed that the 
PMPred-AE model could effectively focus on the location of the key 
pathological changes in the image when identifying PM. These 
positions were often the key for distinguishing between PM and 
non-PM, which explained why the model could achieve high 
accuracy. This focusing ability not only improved the prediction 

FIGURE 1

Experimental workflow overview diagram.
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performance of the model, but also increased its reliability and 
credibility in practical applications, especially in medical diagnosis 
and treatment planning.

3.5 Comparisons with existed works

To further demonstrate the performance of PMPred-AE in 
detecting PM, we should compare the proposed model with existed 
studies. However, those studies we mentioned earlier did not share 
their source code and used different datasets, making it impossible for 
use to make a fair comparison. Fortunately, we could use the PALM’s 
benchmark data from 2023 (Base-2023) (29). The experiment results 
showed that among all evaluation metrics, PMPred-AE is superior to 
Base-2023 (Figure  5, Table  2). By comparing with Base-2023, 
we further consolidated the validation of the PMPred-AE model and 
provided more reliable support for its application in clinical practice.

4 Discussion

In this study, we designed an improved EfficientNetV2-L model 
based on the attention mechanism (PMPred-AE) for the automatic 
detection of PM. By using EfficientNetV2-L as the basic architecture for 
feature extraction and introducing improvements based on the attention-
based mechanism in the classification stage, the PMPred-AE model 
could efficiently identify key features in eye image and significantly 
improve the prediction performance of the model. In the research, data 

augmentation techniques were used to expand the training samples, 
including image rotation, resizing, and cropping to improve the model’s 
generalization ability and reliability. In addition, Grad-CAM technology 
was introduced during the model training process to generate heatmaps, 
which provided a visual means to explain the decision process of the 
PMPred-AE in the identification of PM. The heatmap generated by 
Grad-CAM can clearly show the areas that the model focused on when 
making predictions, thereby enhancing the clarity and interpretability of 
the model’s decisions. Compared with existing work, PMPred-AE had a 
significant improvement in ACC, Rec, ROC, and F1. This confirmed its 
leading position in the field of PM-detection and provided strong 
support for its application in clinical practice.

The PMPred-AE model demonstrates significant potential and 
scalability in the field of medical image analysis. In addition to 
effectively detecting PM, PMPred-AE is also applicable to various 
medical imaging tasks, including the analysis of tumors, brain 
diseases, and lung diseases. Despite the unique characteristics of 
different medical images, PMPred-AE offers an efficient and 
interpretable framework that can be applied across diverse medical 
scenarios, showcasing substantial clinical application potential. The 
clinical value of PMPred-AE lies not only in its high accuracy and 
efficiency but also in its seamless integration with existing healthcare 
systems. The model can directly process images generated by standard 
medical devices without requiring additional workflows. Furthermore, 
PMPred-AE uses Grad-CAM technology to generate heatmaps that 
visualize the regions the model focuses on, helping physicians make 
more precise clinical decisions. The model’s lightweight design ensures 
efficient operation even in resource-constrained environments, 

FIGURE 2

Data augmentation result diagram.
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making it particularly suitable for regions with limited healthcare 
resources. However, there are several challenges to be addressed in the 
deployment of PMPred-AE in practice. First, the quality and diversity 
of fundus images may vary due to differences in imaging devices and 
conditions, potentially affecting model performance. To address this, 
we can enhance the model’s generalization ability by expanding the 
training dataset and incorporating data augmentation techniques. 
Second, although the model employs an efficient network architecture, 
inference speed and computational resource requirements could 
become limiting factors in resource-constrained environments. To 
mitigate this, we plan to deploy the model on the cloud, leveraging 
cloud computing resources for inference to reduce the local 

computational burden. In summary, while the deployment of 
PMPred-AE faces several challenges, improvements in data quality, 
optimization of computational resources, and enhanced model 
robustness can effectively address these issues, ensuring the successful 
application of the model in clinical practice.

In summary, this research successfully developed an efficient, 
accurate, and explainable model for the detection of PM by combining 
advanced model architecture, attention mechanism, and explanatory 
techniques. This comprehensive method not only improved the 
performance of the model, but also provided a valuable reference for 
clinical diagnosis, demonstrating the great potential of deep learning 
in the field of medical image analysis. In the future, with the 

FIGURE 3

Model validation result diagram. (A) Evaluation results of the model. (B) ROC results of the model. (C) PRC results of the model. (D) t-SNE visualization 
the model.

TABLE 1 The performance evaluation of model.

Method ACC Pre Rec F1 ROC MCC

Train 0.9850 0.9814 0.9906 0.9860 0.9974 0.9699

Val 0.9825 0.9857 0.9810 0.9834 0.9986 0.9649

Test 0.9725 0.9676 0.9812 0.9744 0.9955 0.9448
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FIGURE 4

Model explanation display diagram. (A) Visualize the output results of shallow, middle, and deep layers of the model. (B) Visualization results of Grad-
CAM.
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continuous advancement of algorithms and technology, such models 
are expected to play a greater role in improving the efficiency and 
accuracy of PM diagnosis. The source code has been uploaded to 
GitHub and can be accessed at: https://github.com/ZhangHongqi215/
PMPred-AE.
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FIGURE 5

Comparison diagram of Base-2023.

TABLE 2 Comparison with published results.

Method ACC Pre Rec F1 ROC MCC

Base-2023 0.968 / 0.962 0.969 0.994 /

PMPred-AE 0.9725 0.9676 0.9812 0.9744 0.9955 0.9448

The bold font indicates the classifiers that work best.
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