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Chronic kidney disease (CKD) is a global public health issue characterized by 
progressive loss of kidney function, of which end-stage kidney disease (ESKD) 
is the last stage. The global increase in the prevalence of CKD is linked to the 
increasing prevalence of traditional risk factors, including obesity, hypertension, 
and diabetes mellitus, as well as metabolic factors, particularly insulin resistance, 
dyslipidemia, and hyperuricemia. Mortality and comorbidities, such as cardiovascular 
complications, rise steadily as kidney function deteriorates. Patients who progress 
to ESKD require long-term kidney replacement therapy, such as transplantation or 
hemodialysis/peritoneal dialysis. It is currently understood that a crucial aspect of 
CKD involves persistent, low-grade inflammation. In addition, increased oxidative 
and metabolic stress, endothelial dysfunction, vascular calcification from poor 
calcium and phosphate metabolism, and difficulties with coagulation are some of 
the complex molecular pathways underlying CKD-related and ESKD-related issues. 
Novel mechanisms, such as microbiome dysbiosis and apolipoprotein L1 gene 
mutation, have improved our understanding of kidney disease mechanisms. High 
kidney disease risk of Africa has been linked to APOL1 high-risk alleles. The 3-fold 
increased risk of ESKD in African Americans compared to European Americans 
is currently mainly attributed to variants in the APOL1 gene in the chromosome 
22q12 locus. Additionally, the role of new therapies such as SGLT2 inhibitors, 
mineralocorticoid receptor antagonists, and APOL1 channel function inhibitors 
offers new therapeutic targets in slowing down the progression of chronic kidney 
disease. This review describes recent molecular mechanisms underlying CKD and 
emerging therapeutic targets.
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1 Introduction

Chronic kidney disease (CKD) is characterized by progressive loss of kidney function, 
ultimately leading to end-stage kidney disease (ESKD), necessitating long-term kidney 
replacement therapy such as transplantation or hemodialysis/peritoneal dialysis. As kidney 
function declines, mortality and comorbidities, particularly cardiovascular complications, rise 
steadily (1).

CKD is a significant global public health challenge, particularly affecting the elderly 
population, with nearly half of CKD patients aged over 70 years. However, while younger 
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patients with CKD typically experience progressive loss of kidney 
function, 30% of patients over 65 years of age with CKD have stable 
disease (2–7). Currently, CKD affects 10–15% of the global population, 
significantly impacting overall health. The surge in CKD prevalence 
worldwide is primarily attributed to the escalating prevalence of 
traditional risk factors, such as obesity, hypertension, and diabetes 
mellitus (2). Additionally, metabolic factors, including insulin 
resistance, dyslipidemia, and hyperuricemia, have been associated 
with CKD development and progression. Some studies indicate a 
higher prevalence of CKD among men, with African Americans 
exhibiting a higher predisposition to kidney damage than 
Caucasians (8).

International guidelines currently describe CKD as a serious 
condition that typically progresses asymptomatically. It is 
characterized by reduced kidney function, indicated by a 
glomerular filtration rate (GFR) of less than 60 mL/min per 
1.73 m2, or markers of kidney damage, such as albuminuria 
(albumin: creatinine ratio ≥ 30 mg/g), or both, that persist for a 
minimum of 3 months, irrespective of the underlying cause (2, 
4, 7, 9).

The primary challenges associated with CKD include progression 
to kidney failure and the development of cardiovascular and metabolic 
diseases. Emerging evidence suggests that early detection and 
treatment can prevent or slow down some of these adverse outcomes. 
Blood pressure monitoring, urinalysis, and serum creatinine 
measurement with an estimation of GFR are some of the 
recommended screening measures for high-risk populations, which 
include people with hypertension, diabetes mellitus, and those older 
than 65 years (8).

This paper describes the recent advances in the molecular 
mechanisms underlying chronic kidney disease and new therapeutic 
targets that have emerged from these insights. These molecular 
mechanisms include oxidative stress, the role of the inflammatory 
cells, neutrophil gelatinase-associated lipocalin, matrix 
metalloproteinases, genetic mutations, and the gut–kidney axis (2, 8).

2 Pathophysiology of kidney diseases

The kidneys play a crucial role in the ability of the human body to 
maintain homeostasis. To accomplish this, a wide range of cell types 
are arranged in the intricate three-dimensional structure of the 
nephron, the functional unit of the kidney, enabling it to react with 
various intracellular and intercellular signals, as well as hormonal, 
neurological, and inflammatory stimuli (10).

CKD and ESKD are characterized by a complex interplay of 
molecular pathways. Inflammation, increased oxidative and metabolic 
stress, endothelial dysfunction, vascular calcification resulting from 
poor calcium and phosphate metabolism, and difficulties with 
coagulation contribute significantly to the pathogenesis of CKD- and 
ESKD-related complications. Furthermore, the decline in GFR in 
advanced stages of CKD leads to the accumulation of drugs and 
chemical compounds that are typically metabolized or eliminated by 
the kidneys. This accumulation exacerbates renal dysfunction and 
contributes to disease progression [1]This article will discuss the 
exogenous and endogenous substances, cell injury, and genetic-related 
mechanisms relevant to CKD and ESKD. Each section will also delve 
into the available treatments.

2.1 Exogenous and endogenous substances

2.1.1 Exogenous substances

2.1.1.1 Per- and poly-fluoroalkyl substances
Perfluoroalkyl chemicals, including perfluorooctanoic acid 

(PFOA) and perfluorooctane sulfonate (PFOS), are found in all 
populations worldwide, regardless of geographical location, due to 
their extensive use (11). The plasma concentrations of these substances 
exhibit geographical variation (12, 13). According to reports, the levels 
of per- and poly-fluoroalkyl substances (PFAS) in drinking water are 
consistent with PFAS exposure (14). Consequently, multiple regulatory 
entities have established the approved threshold for plasma 
concentration. For example, the National Food Agency in Sweden and 
the Environmental Protection Agency in the United  States have 
suggested limits of 90 ng/L and a range of 13 to 1,000 ng/L, respectively 
(15, 16). PFOA has a long half-life that may last for several years (1.2 
to 14.9 years) (17–21). The long half-life of PFOA is primarily due to 
its significant reabsorption in the renal tubules, which leads to sluggish 
urine excretion (22). PFAS substances build up in breast milk, liver, 
and kidneys upon absorption. Upon introduction into the body, 
perfluorooctanoic acid (PFOA) typically binds to proteins instead of 
lipids. As a result, it typically accumulates in tissues and organs that 
have a high protein content (21, 23, 24). Animal studies have 
demonstrated that PFAS are most highly concentrated in the kidney, 
liver, and lungs. The human body does not metabolize PFAS, leading 
to its excretion without any metabolic transformations (13, 22). The 
reabsorption of PFAS in the kidneys may result in progressive kidney 
damage over time. Epidemiological studies have demonstrated a 
correlation between exposure to perfluorooctanoic acid (PFOA) and 
various forms of kidney disease (25). PFOA exposure causes renal 
hypertrophy, tissue proliferation, and microvascular dysfunction (26).

Exposure to perfluorooctanoic acid (PFOA) alters many 
signaling pathways. These pathways include the inflammatory 
pathway, the oxidative stress pathway, the peroxisome proliferator-
activated receptor pathway, DNA methylation, and the autophagy 
pathway (26). Animal experiments have found that PFOA causes 
oxidative stress in the kidney and liver. Reactive oxygen species cause 
oxidation that exceeds the capacity of antioxidant defense system, 
leading to oxidative stress (26). This leads to detrimental effects on 
the peroxide of membrane phospholipids, DNA damage and 
mutation, oxidation and deactivation of proteins and enzymes, and 
the commencement of the apoptosis process (27). In order to 
demonstrate the causal relationship between PFAO and oxidative 
stress, scientists conducted an experiment where they administered 
an antioxidant known as N-acetylcysteine (NAC). The purpose of 
this experiment was to observe whether NAC might mitigate or 
reduce the biomarkers associated with liver and kidney damage 
caused by PFOA. The authors demonstrated that NAC decreased the 
biomarkers of PFOA-induced kidney and liver toxicity (28). PFOA 
has also been shown to activate the nuclear receptor peroxisome 
proliferator α (PPAR α), which changes how the kidneys work. 
However, the precise workings of this pathway are still poorly 
understood (29, 30). PPAR receptors have subtypes, namely PPARα, 
PPARβ, and PPARγ, which share the same core structure (31). 
Previous research suggests that the levels of PPARα are elevated in 
the kidney and adrenal glands. Additional studies have demonstrated 
that PFOA has the ability to stimulate the activation of mouse and 
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human PPARα and PPARδ/γ in mouse models (32). The immune-
damaging effects that PFAO caused in zebrafish kidneys showed that 
it changed the activity of NF-κB transcription factors, which, in turn, 
changed the transcription of cytokines. PFOA initially modulates the 
Toll-like receptors (TLR), hence regulating the MyD88 and NF-κB 
pathways to govern cytokine transcription and stimulate the immune 
system in zebrafish (33).

2.1.1.2 Heavy metals such as Al, mercury, and arsenic
Aluminum (Al) has favorable physical and chemical properties, 

making it the most widely used element in medicine, industry, and 
everyday life. The kidney primarily excretes Al, making it the primary 
location for Al accumulation and, consequently, a major site of 
Al-induced organ damage. A previous study found that chronic 
exposure to Al leads to kidney accumulation and, consequently, 
impairment in kidney function. On the other hand, our understanding 
of cause of kidney damage of Al remains incomplete. However, it may 
be because extracellular matrix (ECM) accumulation and apoptosis 
work together in several different pathogenic mechanisms to cause the 
injury and progression of kidney disease (34). In a related study, 
exposure to Al was found to upregulate TGF-β, thus inducing 
oxidative stress with an attendant increase in apoptosis-related protein 
expression and subsequent kidney cell apoptosis (35). Another study 
also showed increased ECM protein expression in animals exposed to 
Al (36). A recent study on animals showed that Al treatment increased 
apoptosis and increased TGF-β1 and its downstream Smad2 mediators 
(34). This suggests that an abnormality in the TGF-1/Smad2 signaling 
pathway likely causes Al-induced kidney damage. One of the main 
ways that progressive tubular and interstitial fibrosis occurs is through 
apoptotic death and the buildup of ECM (37, 38). Arsenic (As) is a 
noxious metallic element that is abundantly present on our planet and 
typically forms chemical bonds with oxygen, chlorine, and sulfur. 
Therefore, it is referred to as an inorganic arsenic (39). Humans are 
exposed to arsenic through dietary sources, the environment, and 
contaminated drinking water. Common dietary sources of arsenic, 
such as fish and other shellfish, may have elevated quantities of this 
element. In addition, youngsters may come into contact with As 
(arsenic) as a result of their regular interaction with sand (40–42). 
Following ingestion, the kidneys play a crucial role in eliminating it, 
making them a key site for absorption and buildup. Prior animal 
investigations indicate that glucose transporters GLUT1 (SLC2A1) 
and GLUT5 (SLC2A5) are likely to have important functions in the 
uptake of As at the basolateral membrane of the proximal tubular cells 
as well as at the peritubular capillaries into the proximal tubular cells 
(43). Additional animal research indicates that aquaporin 3 (AQP3) 
channels may also take in arsenic (As). Additional transporters 
potentially essential for arsenic uptake include inorganic anion-
transporting peptides, such as OATP2B1 (SLCO2B1). The mechanism 
by which As exits the kidney is still unclear. However, it is possible that 
GLUT1 and GLUT5, which have the ability to transport substances in 
both directions, may play a role in transporting As out of the renal 
tubular cells (44). In vitro studies demonstrate that arsenic (As) export 
relies on the interaction between glutathione (GSH) and As, forming 
a complex. The As-GSH complex is subsequently removed in 
transportable forms such as As(GS)3 and MAs(GS)2 (45). The metal 
and toxicant extrusion protein (MATE; SLC47A1) is another 
transporter found on the apical membrane of the proximal tubular 
cells that export As out of the renal tubular cells (46).

Acute poisoning can cause damage to the tubules and interstitium 
of the kidneys, leading to hypercalciuria, albuminuria, 
nephrocalcinosis, and renal papillary necrosis. Internalization of As 
can lead to alterations in intracellular signaling pathways (47, 48). 
Exposure to arsenic (As) leads to an increase in the generation of ROS 
and raises the levels of heme oxygenase (HMOX1), a crucial 
modulator of heme oxidation and reaction to stress in kidney 
epithelial cells (49). It also increases the likelihood of developing 
hypertension, kidney damage, albuminuria, and chronic kidney 
disease (CKD), ascribed to the death of nephrons and subsequent 
hyperfiltration in the surviving nephrons (50, 51).

Mercury, a poisonous metal, can be found in several industrial 
and ecological contexts. It can be  found in several organic and 
inorganic forms. Methylmercury (CH3Hg+) is the predominant form 
of organic mercury that humans are typically exposed to in the 
environment (52, 53). Mercury exposure can also happen when 
people come into contact with polluted water, consume contaminated 
food, engage in certain occupations, or interact with contaminated soil 
(54). After 2 weeks of being consumed, the body transforms 
CH3Hg + into Hg2+ (55). The kidneys are the primary location of 
mercury accumulation and toxicity, as they are responsible for 
eliminating both organic and inorganic forms of mercury from the 
body (47, 56). Exposure to any form of mercury can lead to renal 
diseases. However, kidney problems caused by Hg2+ conjugates are 
particularly severe. The first segment of the proximal tubule that is 
impacted upon exposure is the pars recta, which is particularly 
vulnerable to the toxic effects of mercury. Minimal amounts of 
mercury have no impact on the distal nephron segment and the pars 
convoluta. However, elevated levels can lead to damage and necrosis 
in these areas (57–59). Observable proof of kidney damage caused by 
mercury exposure includes alterations in mitochondrial morphology 
and the presence of pyknotic nuclei (60). After being exposed for a few 
hours, the cells experience a loss of microvilli, swelling of the 
mitochondria, and dilation of the endoplasmic reticulum. During the 
final phases following exposure, the plasma membrane ruptures, 
resulting in reduced interaction with the basement membrane (60). 
Prolonged exposure to mercury might also impact the glomeruli 
leading to glomerular fibrosis and membranous nephropathy (60).

2.1.2 Endogenous substances
Research increasingly suggests a bidirectional relationship 

between the gut microbiome and kidney health. Chronic kidney 
disease can alter the gut environment, which further promotes 
dysbiosis, which increases the risk of CKD progression and other 
CKD-related comorbidities, such as cardiovascular disease. These 
CKD-related events happen through many different mechanisms, 
such as microbiome metabolites, weakened intestinal barriers, and 
changes in the neuroendocrine immune system (61, 62). Three 
naturally occurring microbiome-derived toxins—indoxyl sulfate (IS), 
p-cresyl sulfate (pCS), and trimethylamine N-oxide (TMAO)—are 
linked to the development of cardiovascular disease, the worsening of 
kidney disease, and death from these conditions (61, 62).

IS is a uremic toxin that forms complexes with proteins. It is 
produced when bacteria digest tryptophan in meals and is eliminated 
from the body through urine (61, 62). The liver metabolizes IS into 
indole, which raises the likelihood of peripheral vascular disease and 
vascular access thrombosis (61–63). As renal function deteriorates, 
the level of IS in the plasma rises, confirming previous findings that 
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the baseline concentration of IS can serve as an indicator of renal 
insufficiency (63). A scientific study has demonstrated that IS controls 
the expression of genes in the kidneys that are linked to 
tubulointerstitial fibrosis, such as transforming growth factor β1 and 
a tissue inhibitor of metalloproteinases (62, 64). Another study 
demonstrated that mouse podocytes, when exposed to IS for a 
prolonged duration, exhibited indications of a pro-inflammatory 
phenotype, a disrupted actin cytoskeleton, decreased expression of 
podocyte-specific genes, and diminished cell survival (65).

During the later stages of erythropoiesis, it has been observed that 
human primary CD34+ cells experience the apoptotic impact of IS on 
erythropoiesis. Furthermore, both human primary CD34+ cells 
treated with IS and a mouse model with 5/6 Nx exhibited a blockage 
at the BFU-E stage of erythropoiesis. Ultimately, IS eliminates 
regulatory mechanisms on several genes associated with 
erythropoiesis. The proteins involved are GATA-1, EPO-R, and 
β-globin. IS may impair the viability and differentiation of erythroid 
progenitor cells. This could hinder the process of erythropoiesis and 
contribute to the development of anemia in individuals with 
CKD (66).

Tyrosine and phenylalanine undergo anerobic bacterial 
fermentation in the colon, resulting in the production of 
pCS. Following absorption, the liver undergoes conjugation of pCS 
with other molecules through the addition of sulfate (67–69). In 
animal models of CKD, pCS increased the formation of reactive 
oxygen species (ROS), which triggered nicotinamide adenine 
dinucleotide phosphate oxidase and elevated caspase-3 activity, 
leading to accelerated apoptosis (70). In a prior investigation involving 
mice with partial nephrectomy, the activation of either IS or pCS 
stimulated the renin–angiotensin–aldosterone system (RAAS) in the 
kidneys, leading to interstitial fibrosis and glomerulosclerosis (71).

TMAO is produced by the consumption of dietary choline, 
phosphatidylcholine, and L-carnitine. Prior investigations discovered 
an inverse relationship between TMAO and glomerular filtration rate 
in individuals with CKD and established a connection between 
elevated levels of TMAO and tubulointerstitial fibrosis, suggesting an 
unfavorable prognosis for CKD patients (72, 73). Another study 
indicates that TMAO enhances the synthesis of SMAD3, a crucial 
regulator of fibrosis, and elevates the likelihood of atherosclerosis and 
thrombosis, hence increasing the risk of ischemic heart disease (74). 
Therefore, for individuals with chronic kidney disease TMAO was 
identified as an indicator of cardiovascular disease risk in the 
early stages.

Research has shown that epigenetic disruptions play a crucial role 
in the progression of CKD, and metabolic conditions such as uremia 
can trigger changes in epigenetic-regulated gene expression (75). The 
end result is the creation of uremic memory, which has the potential 
to initiate DNA methylation (76). This process creates an enduring 
epigenetic memory that can significantly alter the expression of genes 
(77). This involves a network of epigenetic regulators and transcription 
factors, specifically SIX2, HNF, and TCFAP, located within the 
methylation areas of DNA (78, 79). Researchers have demonstrated 
that DNA methylation alters the expression of genes involved in 
inflammation, fibrosis, kidney development, and renal function. 
Additionally, elevated levels of homocysteine, hypoxia, and 
inflammation have the potential to alter the epigenetic control of 
genes in CKD (76, 80, 81). As a result, it can initiate the 
progression of CKD.

2.1.2.1 Gut–kidney axis
Multiple studies have demonstrated that the gut microbiota affects 

the nutrition, metabolism, and immune system under physiological 
settings of the host. On the contrary, diseases such as obesity, diabetes, 
and cardiovascular diseases, have been linked to microbiome 
disturbances in the gut. The capacity of the gut microbiota to adapt is 
crucial for maintaining gut homeostasis, although drastic alterations 
caused by antibiotics or food might be harmful (2, 82–84). The gut 
microbiota, as an ecosystem, primarily plays trophic and defensive 
roles, but it also has several impacts on human physiology. One of 
these is the ability of commensal bacteria to enhance the intestinal 
epithelial barrier (8, 85).

In addition to their trophic and defensive activities, the gut 
microbiota acts as an ecosystem that has several impacts on human 
physiology. Commensal bacteria perform a variety of functions, one 
of which is enhancing the intestinal epithelial barrier (8, 86). Protein 
fermentation by the bacteria is the principal pathomechanism. The 
process is responsible for the formation of urea solutes such as indoxyl 
sulfate, p-cresyl sulfate, phenyl sulfate, cholate, hippurate, 
dimethylglycine, Î3-guanidino-butyrate, glutarate, 2-hydroxy-
pentanoate, trimethylamine N-oxide, and phenaceturate. Reduced 
function of the epithelial barrier has the potential to cause oxidative 
stress damage to the kidneys by increasing the transfer of uremic 
toxins made by bacteria. Endotoxemia is common in uremic patients, 
even when a clinical infection is not present (8, 87, 88).

.The “gut–kidney crosstalk” is about how CKD, the digestive 
system, and changes in the permeability of the intestinal epithelial 
barrier affect each other” (2). Gut dysbiosis and subsequent bacterial 
translocation can lead to chronic systemic inflammation in persons 
with CKD. It is also known that microbiome dysbiosis can result in 
cardiovascular disease, insulin resistance, and diabetes mellitus, 
increasing the risk of CKD. Gut dysbiosis is characterized by the 
excessive growth of harmful bacteria, leading to the increased release 
of substances such as LPS, peptidoglycans, bacterial DNA, and outer 
membrane proteins into the bloodstream of the host. This, in turn, 
causes prolonged activation of the immune system. The 
aforementioned harmful substances alter the ability of the intestines 
to allow substances to pass through and activate the immune system 
of the intestinal lining. This leads to the creation of substances that 
cause inflammation, such as interferon-γ (IFN-γ), TNF-α, and IL-6 
(89, 90).

Additionally, the uremic milieu that results in elevated expression 
of TLR2 and TLR4 may be the reason why neutrophils and monocytes 
from CKD patients exhibit an excessive response to stimulation with 
lipopolysaccharides (LPS) (2, 87, 90–95).

In order to maintain the balance of the gastrointestinal system, it 
is crucial to stimulate the development of mucosal immune responses. 
This is achieved through the activation of pathogen sensors, such as 
TLRs, NLRs, and RIG-I-like receptors, which are distributed 
throughout the intestinal lining. These sensors are capable of 
identifying PAMPs and initiating a series of signaling pathways and 
molecular processes. As a result, the production of anti-infective 
cytokines and other defensive molecules in the intestinal mucosa is 
generated (96).

Dendritic cells, which are adept at presenting antigens, are part of 
the gut immune system together with intestinal intraepithelial 
lymphocytes and T lymphocytes in the lamina propria. Numerous 
immunological and epithelial cells exhibit the important 
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inflammasome family member NLRP3. Reactive oxygen species and 
toxins from gut bacteria cause the NLRP3 inflammasome to make 
more IL-1 and IL-18, which are usually activated by caspase-1 
downstream effector proteins (2, 96, 97).

Both CKD and the gut microbiome are influenced by one another. 
The gut microbial composition is greatly affected by chronic kidney 
disease (CKD) and is highly sensitive to the number of UTs, just as gut 
dysbiosis can affect kidney function (2, 98). Urease-positive microbes 
hydrolyze elevated quantities of urea to ammonium hydroxide in the 
intestinal lumen. The disruption of tight junctions accelerates the 
subsequent progression of kidney dysfunction. Furthermore, it 
impairs the IEB and makes it more permeable, which opens the door 
for bacterial toxins to enter the bloodstream (2, 99–104).

The inflammatory mediators produced by microbiome dysbiosis 
(IFN-γ, TNF-α, and IL-6) may increase the expression of 
apolipoprotein A-1 (APOL1). IFN-γ and TNF-α increase the 
expression of APOL1 in endothelial cells and podocytes (105, 106). 
The increased expression of G1 and G2 risk variants of APOL1 has 
been linked to a decline in kidney function and albuminuria (107).

2.1.2.2 Acrolein and phosphorus (enterohepatic 
circulation)

Cellular metabolism has the capacity to generate acrolein, a 
compound that is commonly found in both the environment and food 
that we consume. It is an α,β-unsaturated aldehyde that is released 
during the breakdown of petroleum fuels, biofuel, plastic, paper, and 
wood (108). Direct contact with this primary constituent of tobacco 
smoke results in immediate damage to the skin and lungs. Individuals 
who are at high risk of exposure include cigarette users, firefighters, 
workers in the acrolein industry, and residents of densely polluted 
cities (108–110). Cooked, fried, and charred food and beer, wine, rum, 
and bread are noteworthy sources of acrolein, which is produced when 
vegetable and animal fats are overheated (111). Cells synthesize 
acrolein through various metabolic pathways, including the 
metabolism of polyamines such as spermine and spermidine by amine 
oxidase, the breakdown of threonine by neutrophil-derived 
myeloperoxidase, the breakdown of cancer drugs such as 
cyclophosphamide, and the lipid peroxidation of polyunsaturated fatty 
acids (PUFAs) (110, 112). Research conducted in vivo and in vitro has 
shown that acrolein causes oxidative stress, resulting in the rupture of 
cell membranes, DNA and mitochondria damage, endoplasmic 
reticulum (ER) stress, and the potential to initiate apoptosis (112, 
113). Furthermore, both high and low doses of acrolein, as well as 
prolonged exposure to acrolein, result in cellular damage through 
immunological and inflammatory mechanisms. These processes 
involve (1) enhancing inflammatory responses by activating NF-κB, 
IL-8, COX-2, IL-1β, IL-6, TNF, IFN-γ, KC, MCP-1, 5-lipoxygenase, 
LTB4, and MMP, resulting in tissue damage and inflammation (114, 
115); and (2) suppressing immune responses by activating NF-κB, 
TNFα, IL-10, IFN-γ, and GM-CSF, thereby increasing the 
susceptibility to infections (116, 117).

Acrolein can induce ischemia and reperfusion damage via 
inflammatory mechanisms (118). Acrolein contributes to the 
development of diabetic nephropathy by promoting the accumulation 
of extracellular matrix, increasing the production of angiotensin II 
(Ang II), activating MAPK signaling pathways that phosphorylate 
JNK, ERK, or p38, increasing the expression of inflammatory 
cytokines such as IL-6, IL-1beta, IL-18, and TNF-alpha, and cleaving 

caspase 9, caspase 3, and PARP (119). Cyclophosphamide and 
ifosfamide, both used in cancer treatment, undergo metabolism to 
produce acrolein, which is a significant concern because it induces 
oxidative stress and can lead to hemorrhagic cystitis (120).

2.1.3 Treatment

2.1.3.1 Toxin absorbents: phosphate binders and active 
charcoals

AST-120 is commonly used in CKD patients as an oral charcoal 
adsorbent to absorb uremic toxins and their derivatives, including 
IS. Previous studies revealed that AST-120 contributes to changes in 
the gut microbiome composition, reduces ROS production from 
endothelial cells, and thus blocks the resultant oxidative stress and 
inflammation (121, 122). Again, other research reports indicate that 
AST-120 reduced proteinuria, signs of uremia, and prolonged time to 
dialysis (121, 123). Nevertheless, recent studies revealed that AST-120 
reduced uremic symptoms but did not have much impact on renal 
function or all-cause mortality (124). Some studies have proven that 
phosphate binders such as sevelamer can bind uremic toxins, but their 
effectiveness in removing uremic toxins such as IS and pCS has been 
inconsistent in other studies (125).

2.1.3.2 Prebiotics
Although some clinical trials have produced encouraging findings, 

there are currently few studies evaluating the impact of therapies 
meant to alter the microbiome in individuals with chronic kidney 
disease. A meta-analysis of studies investigating the effect of prebiotics 
on renal function revealed that supplementing with fiber markedly 
reduced serum urea levels. In pilot research, probiotics such as 
Lactobacillus acidophilus, Bifidobacterium longum, and Streptococcus 
thermophilus were administered, with favorable results showing 
significantly lowered blood urea levels. However, subsequent clinical 
trials failed to validate these findings.

The SYNERGY randomized trial aimed to assess whether 
symbiotic therapy, involving the combined use of pre- and probiotics, 
modifies the gut microbiota and lowers blood levels of uremic toxins 
produced by the microbiome in CKD patients. The findings of the 
study showed that while blood levels of P-Cresol sulfate (PCS) 
considerably decreased along with a shift in the microbiota of the stool 
toward a healthier one, levels of indoxyl sulfate (IS) did not change as 
a result of the intervention (126).

Scientists recently used gene sequencing to manufacture disease-
specific probiotics. For example, the next generation of probiotics 
(NGP) has shown potential as disease-specific therapeutics and will 
help us understand the effectiveness and safety of probiotic 
microorganisms (127, 128). As a result, investigations have shown that 
nanoprobiotics and nanoprebiotics are effective therapies for dysbiosis 
(129). Researchers have demonstrated the potential benefits of 
synbiotic foods, a combination of prebiotic and probiotic foods, for 
both host organisms and human health (130). The benefits of synbiotic 
food will have to be examined in people with CKD.

2.1.3.3 Laxatives and dietary fiber
High-amylose maize-resistant protein (HAMRS) is a type 2 starch 

found in potato, banana, and maize. It is resistant to digestion and 
reaches the large intestine, where it serves as an energy source for 
beneficial bacteria such as Bifidobacterium and Lactobacillus (131, 
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132). Prior studies have demonstrated that HAMRS may slow the 
advancement of CKD and enhance microbial diversity (131–133). 
Additionally, animals administered HAMRS exhibited a significant 
rise in the ratio of Bacteroidetes to Firmicutes. Another study 
exhibited a reduction in oxidative stress and inflammation (133). 
Moreover, diets high in fiber were advantageous for decreasing 
inflammation and overall mortality (134).

2.2 Cell injury and related markers

2.2.1 Oxidative stress and endothelial dysfunction 
in CKD

Inflammation and CKD are closely associated with elevated levels 
of oxidative stress. Immunological function is impaired when 
oxidative stress stimulates several inflammatory signaling pathways. 
Metabolic syndrome, insulin resistance, hyperuricemia, CKD, high 
blood pressure, and other health problems are all linked to chronic 
inflammation-induced pro-oxidative stress (2, 135–137). 
Overproduction of reactive oxygen and nitrogen species (ROS and 
RNS, respectively) is the principal cause of oxidative stress, 
characterized by an imbalance between antioxidants and pro-oxidants. 
Covalent crosslinks, single- and double-strand breaks, and 
disturbances in redox signaling can emerge from the oxidation and 
molecular damage that this causes to biological components such as 
lipids, proteins, and DNA (8, 138).

.The kidneys are especially vulnerable to redox imbalances and 
oxidative stress because ROS has a substantial impact on the 
physiological regulation of renal function. An overabundance of 
reactive oxygen species (ROS) intensifies the inflammatory response 
in kidney diseases by setting in motion pathways that promote 
inflammation. Normally, cells produce small amounts of pro-oxidative 
agents, which serve important defensive roles, but antioxidant enzyme 
systems like glutathione and others inactivate them due to their ability 
to neutralize free radicals. The main sources of ROS are enzymes like 
NADPH oxidase (NOX1, NOX2, NOX4, and NOX5) and the 
mitochondrial respiratory chain reaction (138–140).

Several uremic toxins have been associated with a decline in 
kidney function and an increase in oxidative stress in CKD. Indoxyl 
sulfate builds up in the blood of chronic kidney disease patients and 
triggers the production of superoxide by cells by activating 
nicotinamide adenine dinucleotide phosphate oxidases (NOX4). In 
addition, indoxyl sulfate raises levels of proalpha1(I) collagen, tissue 
inhibitor of metalloproteinase-1, transforming growth factor-beta1, 
and free radicals in vascular endothelium and smooth muscle cells. 
While renal dysfunction progresses, the most important indicators of 
oxidative stress are plasma F2-isoprostanes, 8-oxo-7,8-dihydro-2-
deoxyguanosine, malondialdehyde (MDA), carbamylated proteins, 
advanced oxidation protein products, asymmetric dimethylarginine, 
and oxidized lipoprotein particles (138, 141, 142).

In the early stages of CKD, there is evidence of elevated 
oxidative stress, which is linked to the progression to end-stage 
renal disease. Plasma total F2-isoprostanes is the most reliable 
indicator of oxidative stress damage, which occurs as a result of 
lipid peroxidation. Furthermore, protein carbonylation may be a 
secondary occurrence rather than a direct contributor to 
pathology, even though protein carbonyl concentrations are often 
higher than other biomarkers. Protein carbonylation is a useful 

indicator of oxidative stress associated with chronic kidney 
disease (8, 143, 144). Inflammation in the kidneys not only 
triggers endothelial dysfunction and activates glomerular and 
tubular epithelial cells but also releases inflammatory substances. 
These substances draw additional immune cells to the 
damaged kidneys.

In chronic kidney disease, recent research has linked changes in 
the lipid metabolic profile to endothelial dysfunction. Obesity and 
diabetes mellitus, two metabolic diseases, frequently coexist and cause 
endothelial damage. Patients with higher proteinuria and lower eGFR 
have more pronounced dyslipidemia from the onset of the disease, 
which is associated with quantitative and qualitative changes in 
lipoproteins, lipolytic enzymes, and lipoprotein receptors. These 
alterations may have contributed to the progression of the disease. 
Increased inflammation leads to worsening renal function, which, in 
turn, causes higher triglyceride levels, lower HDL-C, and variable 
amounts of oxidized LDL-C. CKD leads to changes in not only lipid 
and lipoprotein concentrations but also structural changes that alter 
the function of HDL and LDL that trigger pro-inflammatory and 
pro-atherogenic processes and oxidative stress. Serum fatty acid levels 
are also altered, leading to changes in fatty acid metabolism, causing 
mitochondrial dysfunction and cellular damage. Combining other 
metabolic conditions, such as diabetes and obesity, with an imbalanced 
fat metabolism—which is a pro-atherosclerotic factor—may 
significantly increase the risk of cardiovascular disease (CVD), 
especially in people with CKD (145).

.Excess extracellular matrix deposition, a hallmark of kidney 
fibrosis, is a significant contributor to CKD. In CKD patients, the 
degree of tubulointerstitial fibrosis is the best predictor of future renal 
function decline. Renal fibrosis development is influenced by elements 
such as oxidative stress, cytokines, and cell growth factors, particularly 
transforming growth factor-β1 (TGF-β1). TGF-β1 is a crucial protein 
that impacts fibroblast transition into myofibroblasts. ROS, a 
byproduct of NAD(P)H oxidase, supports the conversion of fibroblasts 
to myofibroblasts, making it similar to TGF-β1. TGF-β1 enhances 
NOX2 and NOX4 expression, as well as NADPH oxidase activity. 
P-cresyl sulfate, another uremic toxin linked to CKD progression, 
helps renal tubular cells make more NOX4, p22phox-NADPH, and 
ROS. Inflammatory and profibrotic cytokines cause reduced cell 
viability. Oxidative stress and TGF-1 produce chronic kidney damage, 
leading to kidney fibrosis (8, 146–148).

.Nitric oxide synthase in endothelial cells transforms arginine into 
nitric oxide. It reduces oxidative stress by inhibiting cytochrome C 
oxidase, the final enzyme in the electron transport chain connected to 
membrane potential of mitochondria. Asymmetric dimethylarginine 
(ADMA) accumulates in the plasma of CKD patients, potentially 
decreasing endothelial NO production. ADMA causes ROS generation 
to rise when NO levels fall. There is an inverse connection between 
GFR and ADMA concentrations (8, 149).

2.2.2 Inflammation
Inflammation is a characteristic aspect of deteriorating renal 

function (2, 150–152). CKD leads to the development of an 
environment that promotes inflammation, which can be caused by 
tissue ischemia, the presence of uremic substances, or infection. Sterile 
inflammation frequently occurs as a consequence of several clinical 
diseases associated with kidney disorders and nephropathies caused 
by toxic substances, ischemia, hypertension, or diabetes.
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An increase in pro-inflammatory cytokines, such as interleukin-6 
(IL-6) and tumor necrosis factor-α (TNF-α), which are negatively 
associated with a decrease in GFR, is the characteristic feature of 
CKD. The worldwide STABILITY trial found that lower glomerular 
filtration rate (GFR) and higher interleukin-6 (IL-6) levels were signs 
of acute myocardial infarction (AMI), stroke, and death from any 
cause. It is believed that IL-6 is the most powerful inflammatory 
biomarker for chronic kidney disease. The risk of cardiovascular 
events and all-cause mortality is increased in patients with CKD when 
there are elevated levels of cytokines such as TNF-α and IL-6 and 
when interleukin-1α (IL-1α) is expressed on the surface of circulating 
monocytes. Thus, inflammation is a “non-traditional” risk factor for 
cardiovascular disease in CKD (2, 153–155). Research has shown that 
interleukin-6 (IL-6) has a role in renal damage and contributes to the 
pathogenesis of CKD. The levels of IL-6 in the blood rise as chronic 
kidney disease progresses. In addition, individuals in the latter stages 
of CKD are more likely to have adverse outcomes and death if their 
circulating IL-6 levels are higher.

By stimulating the innate immune system and encouraging the 
infiltration of inflammatory cells, interleukin-1 (IL-1) is an essential 
mediator of inflammation, host defense, and acute-phase responses. 
A study in animal models of CKD found that the degree of IL-1 
expression affects anemia and kidney damage. In this study, elevated 
levels of IL-1, which impair kidney function, were more strongly 
associated with anemia and kidney failure. Researchers found that 
interleukin-1 regulates the accumulation of macrophages and 
neutrophils in tissues, which, in turn, regulates inflammatory damage 
in cardiorenal disorders. IL-1 also promotes renal tissue fibrosis, 
which is the ultimate pathological process for kidney damage (8, 
156–159).

.A new study shows that IL-20, another interleukin, can affect the 
development of chronic kidney disease. Serum IL-20 levels were much 
higher in people with advanced-stage chronic kidney disease. A study 
on animals with CKD supports this claim. The study found that 
immune cells in the interstitium, mesangial cells in the glomeruli, and 
tubule epithelial cells all increased the amount of IL-20. IL-20 also 
caused tubular epithelial cells to die and increased mesangial cells’ 
production of pro-inflammatory molecules. IL-20 also causes kidney 
fibrosis by producing more TGF-1 and other growth factors that cause 
chronic inflammation. Animal studies show that IL-20 may cause 
kidney fibrosis, damage, and renal insufficiency by activating 
interstitial fibroblasts in the kidneys. More research is necessary to 
confirm the potential link between changes in IL-20 levels and CKD 
(83, 160–162).

.In the development of CKD, macrophages and nod-like receptor 
protein 3 (NLRP3) play an essential role. The mononuclear phagocyte 
system includes macrophages and monocytes, both of which are 
innate immune cells. Normally, monocytes are present in the blood, 
bone marrow, and spleen; however, when inflammation is present, 
they rapidly recruit to inflamed tissues and undergo a process of 
differentiation into macrophages. It is possible for macrophages to 
release a range of substances, including fibrotic factors such as TGF-Î2, 
anti-inflammatory cytokines such as IL-10, and mediators of 
inflammation such as IL-1, IL-6, and TNF. Key to immune system 
function are two phenotypic types of macrophages, M1 and M2 (8, 
163, 164). M1 macrophages kill pathogens, whereas M2 macrophages 
reduce inflammation and aid in tissue healing. It is common for 
macrophages to enter the kidneys in CKD. Because of this, all kidney 

diseases are marked by an excess of macrophages in renal tissue, which 
includes the glomerulus, renal cortex, and interstitium of the medulla. 
Inflammation begins with M1 macrophages, whereas M2 macrophages 
facilitate fibrosis and healing. According to research conducted in rats, 
the start of CKD may be  influenced by the ratio of monocytes to 
macrophages (M1/M2) (8, 163–168).

The protein complex called nod-like receptor protein 3 (NLRP3) 
is another crucial component of the immune system. An extremely 
inflammatory type of programmed cell death in reaction to infectious 
stimuli, pyroptosis, is triggered by NLRP3-induced caspase-1 
activation, which in turn triggers the production of pro-inflammatory 
cytokines. CKD is one of the prevalent human disorders associated 
with NLRP3 dysregulation, which, in turn, compromises the ability of 
host immune system to fight infections. CKD and AKI both have 
ischemia–reperfusion injury (IRI) as a contributing component. 
Literature reviews have shown that NLRP3 plays a role in IRI (154). 
The study by Zheng et  al. established a link between NLRP3 and 
insufficient recovery after AKI (166). Overexpression of tubular 
NLRP3 has been linked to inflammation, fibrosis, and poor tubular 
repair in mouse models of mild or severe acute kidney injury. 
Consequently, research demonstrated a persistent overexpression of 
NLRP3 in post-AKI kidneys. The NLRP3 inflammasome is likely a 
target for treatment in chronic kidney disease; thus, it would be good 
to understand its full mechanism in kidney illness. This would help us 
comprehend the pathophysiology of renal disease (8, 166, 169, 170).

2.2.3 Cell injury-related markers

2.2.3.1 Neutrophil–gelatinase-associated lipocalin
Neutrophil–gelatinase-associated lipocalin (NGAL) levels are 

typically low in healthy tubules; however, NGAL production rises in 
response to renal tubular epithelial cell injury. Because tubular cells 
express NGAL due to kidney injury, elevated gene transcription in this 
chronic disease could suggest ongoing kidney damage. NGAL is an 
emerging biomarker for kidney injury, including AKI and 
CKD. Furthermore, there is a direct link between high NGAL levels 
and albuminuria in people with chronic kidney disease, and NGAL as 
a biomarker for AKI has been extensively studied. Research into the 
role of NGAL in kidney injury could lead to novel approaches to 
treating chronic kidney disease (8, 171–181). Additionally, NGAL is a 
promising biomarker for CKD and its progression (182).

2.2.3.2 Matrix metalloproteinases
Several physiological processes rely on matrix metalloproteinases 

(MMPs), a class of proteolytic enzymes. These include cell 
differentiation, angiogenesis, inflammation, proliferation, vascular 
damage, and apoptosis. Collagenases, gelatinases, stromelysins, 
matrilysins, and other matrix metalloproteinases (MMPs) are among 
the about 20 varieties of mammalian MMPs. MMPs affect some 
clinicopathological conditions, including kidney diseases. 
Inflammation, matrix deposition, fibrosis, and fibroblast/
myofibroblast activation, are all stages of CKD that involve multiple 
matrix metalloproteinases (MMPs) (8, 183, 184) (Table 1).

Many scientists have hypothesized that MMP-7-induced 
alterations to the extracellular matrix contribute to the onset of 
chronic kidney disease (CKD). It is possible that MMP-7 has a more 
important function than other MMPs in the development of kidney 
diseases (8, 184, 185).
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.According to Tan et al., normal mice injected with an MMP-7 
expression vector experienced proteinuria. Additionally, 
removing MMP-7 shielded the mice against glomerular damage 
and proteinuria (186). As stated earlier, new biomarkers must 
be created to identify kidney diseases early and determine their 
prognosis (170). They highlighted the possibility of MMP-7 levels 
in urine as a non-invasive marker of renal impairment. 
Furthermore, MMP-7 in urine may be a useful indicator of acute 
kidney injury, according to some studies (8, 187). Renal fibrosis 
non-invasively can be  detected by measuring urinary MMP-7 
levels because urine MMP-7 levels were shown to be positively 
associated with renal fibrosis scores and inversely associated with 
renal function, according to research by Zhou et  al. (188). 
Gelatinases MMP-2 and MMP-9 are produced by tubular and 
glomerular cells, respectively. Research has shown that the 
activation of matrix metalloproteinases 2 and 9 (MMP-2 and 
MMP-9) sets in motion events that cause inflammation, 
abnormalities in the extracellular matrix, tubular atrophy, and 
fibrosis (84, 189–191).

2.2.3.3 Mincle receptor and the transition of acute kidney 
disease to chronic kidney disease

Mincle cell receptor is an innate immune protein expressed by 
macrophages such as monocytes, neutrophils, and dendritic cells, and 
some types of B cells also upregulate it. It is an innate immunity 
protein in the cell membrane, and a number of factors trigger its 
expression (192). The mincle receptor identifies necrotic cells by 
binding to Sap-130. For instance, mincle, in conjunction with splenic 
tyrosine kinase (Syk) and caspase recruitment domain proteins, 

induces an inflammatory response to infections by mycobacterium 
and fungi is controlled (193).

A study demonstrated that during the early phases of cisplatin-
associated acute kidney injury (AKI), mincle cells were produced 
mainly in the macrophages of the kidney. Using Immunofluorescence 
techniques, the authors were able to show that macrophages that 
expressed mincle entered the damaged kidney on the third day after 
cisplatin was introduced. They noted a rise in serum creatinine on 
the third day of cisplatin intake. Additionally, an elevation of mincle 
protein was found on day 1 of the kidney injury. The authors used 
flow cytometry and immunohistochemistry to demonstrate that 
macrophages that entered the kidneys (F4/80+ or CD68+) largely 
created mincle. They discovered that M1 macrophages were 
responsible for mincle production. Furthermore, a study found an 
association between AKI and macrophages that express mincle (192), 
while another research also showed that macrophages deprived of 
mincle could protect against kidney damage caused by cisplatin. In 
addition, the researchers showed that adoptive transfer with 
macrophages lacking mincle greatly decreased AKI (192). Again, 
through both gain-of-function and loss-of-function reactions, it was 
found that regulating the expression of mincle in macrophages can 
have an effect on the degree of AKI. Largely, M1 macrophage mincle 
expression is a critical trigger for acute kidney injury (AKI). This 
could potentially slow down the progression of AKI to CKD. A 
recent study (2024) found that macrophages and neutrophils 
expressed mincle throughout the transition from AKI to CKD, 
revealing its impact on the process. The authors demonstrated a 
substantial elevation of mincle level on day 1 of AKI and another 
elevation on day 14. These mincle-laden neutrophils and 
macrophages promoted kidney tissue inflammation by secreting 
tumor necrosis factor (TNF). They also discovered that mincle-
deficient mice had no significant renal injury or fibrosis (194). Thus, 
mincle may become a future therapeutic target for the prevention of 
AKI transitioning to CKD.

2.2.4 Treatment

2.2.4.1 Antioxidants
Antioxidants such as edaravone, which lowers ROS levels, and 

ebselen, a glutathione peroxidase mimetic, have shown promising 
results in studies involving kidney disease models, improving renal 
function, lowering lipid peroxidation, and increasing endothelial and 
epithelial cell survival (126).

Various lipid-soluble tocopherols in vitamin E stop lipid 
peroxidation chain reactions and remove oxygen-free radicals. They 
do this by entering the plasma membrane (195). Vitamin E-rich foods 
contain antioxidant-rich such as α-tocotrienols (196). CKD patients 
do not have enough α-tocotrienol (197). Extra α-tocotrienol 
supplementation for end-stage kidney disease or dialysis patients 
reduces heart disease risk and oxidative stress and boosts antioxidants 
such as SOD, Gpx, and CAT (198). Some studies found no mortality 
benefits from high-dose vitamin E, whereas others found an 
increased prostate cancer risk. Trolox (± − 6-hydroxy-2,5,7,8-
tetramethylchromane-2-carboxylic acid), a chemical comparable to 
α-tocopherol, helps eliminate free radicals more effectively. Due to its 
significant water solubility, studies have shown it can treat acute renal 
damage resulting from ischemia reperfusion (199). Combining 

TABLE 1 Pathophysiological mechanisms in CKD due to different MMPs 
are divided into groups (8).

MMP category Pathogenesis of CKD

Gelatinases (MMP-2, MMP-9)  • Cell differentiation and angiogenesis

 • Inflammation and proliferation of cells

 • Tubular atrophy and fibrosis

 • Extracellular matrix deposition

 • Fibrosis of kidney tissue

 • Calcification of blood vessels

Matrilysins (MMP-7)  • Cell differentiation and angiogenesis

 • Inflammation and proliferation of cells

 • Tubular atrophy and fibrosis

 • Extracellular matrix deposition

 • Fibrosis of kidney tissue

 • Calcification of blood vessels

Stromelysins (MMP-3)  • Cell differentiation and angiogenesis

 • Inflammation and proliferation of cells

 • Tubular atrophy and fibrosis

 • Extracellular matrix deposition

 • Fibrosis of kidney tissue

 • Calcification of blood vessels

Membrane-type MMPs (MMP-14)  • Tubular atrophy and fibrosis

 • Extracellular matrix deposition

 • Fibrosis of kidney tissue

 • Calcification of blood vessels
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α-tocopherol and Trolox may be more effective due to fast-acting 
qualities of Trolox and sustained scavenging abilities of 
α-tocopherol (200).

Omega-3 polyunsaturated fatty acids such as docosahexaenoic 
and eicosapentaenoic acids are anti-inflammatory and antioxidant 
(201). These compounds boost glutamyl-cysteinyl ligase and 
glutathione reductase (202). Eicosapentaenoic and docosahexaenoic 
acidtherapy decreases inflammation and oxidative stress, increasing 
kidney function and reducing renal fibrosis risk (201).

N-acetyl cysteine (NAC) decreases oxidative stress and boosts cell 
glutathione (203). Research on NAC therapy for CKD is unclear. 
Uremic toxins cause endothelial damage, whereas NAC therapy 
reduces NF-κB upregulation, which requires reactive oxygen species 
(203). In end-stage kidney disease and dialysis patients, NAC lowered 
serum 8-isoprostane and IL-6 (204, 205). Studies have shown that 
allopurinol protects against diseases where oxidative stress plays a role 
in their pathogenesis (206). Treatment of diabetic patients with 
allopurinol reduced high uric acid levels, albuminuria, and 
tubulointerstitial damage (207).

The kidneys have elevated concentrations of CoQ9 and CoQ10 
due to their strong dependence on aerobic metabolism and high 
mitochondrial density (208). CoQ10 has two primary antioxidant 
roles: directly preventing lipid peroxidation and indirectly interacting 
with α-tocopherol to prevent lipid peroxidation (209). In a study 
conducted by Ishikawa et al. (210), it was discovered that CoQ10 
supplementation had a positive impact on renal function and reduced 
kidney O2 levels in rats that had undergone hemi-nephrectomy, 
although the effects were not always consistent.

2.2.4.2 Anti-inflammatory
An expanding understanding of molecular mechanisms of 

chronic kidney disease has unveiled new therapeutic options. 
However, an incomplete comprehension of the pathophysiology 
impedes the quest for treatment targets for inflammation in the kidney 
(8). Two drugs, sirukumab and siltuximab, that directly target IL-6 
ligands and block classical signaling and trans-signaling can 
be  distinguished based on the inflammatory mechanism of CKD 
development. Moreover, antibodies such as tocilizumab and sarilumab 
block all three forms of IL-6 signaling (8, 158). Hsu et al. described 
another antibody, finding that anti-IL-20 (7E) therapy reduced 
glomerular area and blood glucose levels in mice with diabetic 
nephropathy, alongside improvements in kidney function (8, 161). 
The non-inflammatory mechanisms of CKD are linked to initially 
marked increases in glomerular permeability, which subsequently 
cause proteinuria or proliferation. It is well understood that podocyte 
depletion leads to proteinuria. When more than 40% of podocytes are 
damaged, it results in numerous dangerous side effects, including 
mesangial growth, adhesions, focal segmental glomerulosclerosis, or 
global sclerosis (211). Given that nephrotic non-inflammatory 
glomerulonephritis is a hallmark of many glomerular disorders, 
treatment approaches aimed at modifying podocyte activity are likely 
to be beneficial (8).

A complex network of cytokines/chemokines, growth factors, 
adhesion molecules, and signaling pathways is involved in kidney 
fibrosis (8, 212). Studies by Moon et al. demonstrate the potential to 
modulate TGF-β signaling in progressive fibrosis in the kidney. Their 
findings suggest that kidney damage from unilateral ureteral blockage 
can be significantly reduced by molecularly targeting the transforming 

growth factor-beta1 signaling pathway. An effective treatment option 
to prevent or mitigate the progression of renal fibrosis is IN-1130, an 
ALK5 inhibitor (8, 213).

In a diabetic nephropathy (DN) model, rats treated with 
coenzyme Q10 (CoQ10) or similar drugs, such as mitoquinone 
mesylate (MitoQ), exhibited improvements in renal function and 
tubular damage. Another mitochondria-targeting drug, dithiol 
a-lipoic acid, demonstrated renoprotective benefits in an animal 
model of hypertension and renal illness. Additionally, in mice 
with experimental tubulointerstitial nephritis, renoprotection was 
observed in conjunction with a reduction in the expression of 
inflammatory molecules when allopurinol or the blockade of 
genes linked to the NLRP3 inflammasome response (apoptosis-
associated speck-like protein containing C-terminal caspase 
recruitment domain [CARD] (ASC) and caspase 1) was 
administered (126).

2.3 Gene-related effect

2.3.1 APOL1 gene variant
High kidney disease risk of Africa has been linked to APOL1 

high-risk alleles. Recent studies have shown that Africans with two 
apolipoproteins L1 (APOL1) variations (G1 or G2) have a higher risk 
of CKD with proteinuria and ESKD than those with low-risk alleles. 
Substitution of two amino acids (S342G and 1,384 M) in the C 
terminus of the APOL1 gene causes G1 risk variants (214, 215). Like 
G1, the G2 risk variant has two amino acids (N388del and Y389del) 
deleted at the same APOL1 position (214). The G0 APOL1 allele is 
non-risk despite having several functional sequences. One possesses 
zero, one, or two APOL1 risk alleles because each parent transmits the 
gene. Two high-risk APOL1 alleles (G1G1, G2G2, or G1G2) raise 
kidney disease risk significantly while inheriting one low-risk allele 
(G0G1 and G0G2) does not increase the risk of CKD. However, these 
high-risk polymorphisms improve APOL1 channel function, which 
promotes podocyte injury (216–218) and progressive glomerular 
dysfunction and proteinuria. It is associated with various histological 
patterns such as FSGS, hypertension-associated CKD, HIV-associated 
nephropathy, COVID-19-associated nephropathy, and end-stage 
kidney disease risk (219–222).

Research has demonstrated that human embryonic kidney 
cells are capable of expressing APOL1 in the G0, G1, or G2 alleles. 
Additionally, APOL1 is responsible for the formation of cation 
channels in mammalian cells’ plasma membranes. The specific 
mechanism by which high-risk variants of G1 and G2 cause 
kidney disease is, for the most part, not well understood. It has 
been proven through the utilization of cell-based and transgenic 
animal models that high-risk variants are responsible for cellular 
damage and mortality, whereas the reference APOL1 G0 is 
relatively non-toxic (105, 107, 216). It is thought that high-risk 
variants cause APOL1-mediated kidney disease in a way that is 
very similar to how it causes cytotoxicity in laboratory animals. 
Researchers attribute the trypanolytic potential of the APOL1 risk 
variants to the passage of cations through these pores (223–225). 
The results of previous studies show that APOL1 risk variants can 
create a pore in a lipid layer that only allows the passage of Na+ 
and K+ ions (223, 224). The only two cells that are capable of 
causing an anomalous outflow of sodium and potassium ions are 
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G1 and G2. This process ultimately leads to cell death, activation 
of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated 
protein kinase (MAPK), and swelling of the cell (216, 226). These 
studies directly attribute the cytotoxicity of high-risk variants to 
their cation pore function. However, these studies have not 
established whether or not this is the primary mechanism by 
which these alleles cause cytotoxicity (227, 228). Other 
investigations have shown that high-risk variations induce K+ to 
efflux mammalian cells and Na+ influx. Nevertheless, a recent 
study found that the APOL1 alleles (G0, G1, and G2) can facilitate 
the passage of Ca2+ through a lipid bilayer (218). Furthermore, the 
researchers found that the expression of G1 and G2 resulted in a 
consistent increase in the quantity of cytoplasmic Ca2+ in cell-
based models. They concluded that the main cause of cell death is 
the import of Ca2+ and Na+ through APOL1 channels (218).

Not all people with high-risk APOL1 variants develop kidney 
disease. Thus, the development of APOL1-associated nephropathy 
requires the presence of a second factor (229). These second-hit 
factors may be viral or non-viral. Some of the non-viral factors may 
include the toxins mentioned in this manuscript, inflammatory 
mediators, and oxidative stress. Additionally, the APOL1 gene may 
interact with other genes to cause kidney disease.

2.3.2 Lack of erythropoietin
In individuals with CKD, anemia is a frequent consequence that 

increases morbidity and mortality rates. The glycoprotein hormone 
erythropoietin (EPO) primarily regulates erythropoiesis. The 
plasma EPO level is disproportionate to the level of anemia. The 
liver is the primary site for the production of EPO in a fetus; 
however, the kidney takes over this role after birth. The kidney 
regulates EPO production at the mRNA level. Experiments 
performed in mice revealed that phlebotomy and anemia were 
associated with increased expression of EPO mRNA. Several 
recognized factors contribute to anemia in CKD; however, EPO 
insufficiency is the most important (230–232). The erythropoietin-
producing cells within the kidneys diminish as kidney disease 
progresses (233). Reduced oxygen sensing and, consequently, 
reduced erythropoietin-producing cell (REPC) production in the 
kidney have been associated with low levels of EPO. Regardless of 
the original underlying condition that causes kidney injury, 
interstitial fibrosis is present in all cases of chronic kidney disease 
(CKD). This leads to the irreversible loss of normal kidney tissue 
and function (230).

Renal hypoxia is the primary trigger for erythropoietin synthesis. 
Hypoxia stops the degradation of HIF-1α, which lets HIF-1α attach to 
hypoxia-responsive parts of oxygen-regulated genes when hypoxia is 
present. The erythropoietin gene in the kidneys is controlled by these 
response elements, and when HIF-1α binds, it makes more 
erythropoietin (233–237). The bone marrow is where erythropoietin 
works best. It boosts erythropoiesis by attaching to its receptor, which 
is found on the surface of erythroid progenitor cells. Colony-forming 
unit-erythroid (CFU-E) cells are the most responsive to erythropoietin 
because they have the highest concentration of erythropoietin 
receptors (233, 238).

HIF is a basic helix–loop–helix heterodimer protein that belongs 
to the PER-ARNT-SIM (PAS) family. In addition to erythropoiesis, 
HIF binding across the genome turns on many target genes 
transcriptionally and helps with many physiological and 

developmental processes, such as blood vessel growth, energy 
metabolism, iron homeostasis, cell proliferation, differentiation, and 
iron homeostasis. There are three isoforms of HIF: HIF-1, HIF-2, and 
HIF-3. Each isoform possesses a common β-subunit and a unique 
α-subunit. The isoform that regulates the production of EPO is HIF-2. 
HIF-2 also helps the duodenum absorb iron by increasing the 
transcription of genes that make proteins that help move iron around, 
such as duodenal cytochrome B and divalent metal transporter 1. 
HIF-1 promotes the transcription of other genes, such as transferrin 
and ceruloplasmin, that code for iron-mobilizing proteins (239).

2.3.3 ADH antagonist for PCKDs
One of the most important hormones for preserving bodily 

homeostasis is vasopressin, sometimes referred to as antidiuretic 
hormone or arginine vasopressin. Experimental investigations have 
demonstrated that vasopressin directly influences cyst formation, and 
researchers have linked elevated vasopressin concentrations to both 
disease severity and illness progression in polycystic kidney 
disease (240).

Vasopressin has three distinct known receptors, all of which 
belong to the G-protein-coupled receptor subgroup of rhodopsin. 
Nonetheless, the V2 receptor is the receptor that matters in this 
conversation. The thick ascending limbs of the loops of Henle and the 
collecting ducts are home to the majority of the V2 receptor (240, 
241). Recent studies on PKD have focused on two possible treatments: 
lowering the amount of vasopressin in the blood and stopping 
vasopressin from working on the kidneys through the vasopressin V2 
receptor (240).

2.3.4 Treatment

2.3.4.1 VX 147
Inaxaplin (VX-147) was recently, shown to be a small-molecule 

blocker of APOL1 channel function (242). This APOL1 channel 
inhibitor prevents cell swelling and preserves cell viability and thus 
blocks cytotoxicity caused by G1 and G2 variants (243). A recent study 
by Egbuna et  al. among participants with focal segmental 
glomerulosclerosis showed a significant reduction in proteinuria 
(244). Pharmacological strategies for slowing down the progression of 
kidney disease involve the use of drugs such as angiotensin-converting 
enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB), and 
sodium-glucose transporter-2 inhibitors (SGLT-2i) to reduce 
proteinuria and retard the progression of kidney disease. Thus, the 
APOL1 pore function inhibitor can potentially complement the effects 
of these drugs in the treatment of kidney disease patients, especially 
among Africans with a high burden of kidney disease and where the 
frequency of APOL1 high-risk alleles is high.

2.3.4.2 EPO and HIF stabilizer
Iron supplements and erythropoiesis-stimulating agents (ESAs) 

are the two main therapies currently available for renal anemia. For 
example, there are concerns about the use of exogenous ESAs, which 
can lead to more death and heart problems in patients who do not 
respond well or who have cancer. This means that a new treatment 
method for renal anemia is needed. For the treatment of renal anemia, 
prolyl hydroxylase (PHD) inhibitors offer a novel therapeutic option. 
PHD inhibitors boost the transcription of EPO mRNA in REPCs by 
blocking the proteasomal degradation of HIFα, which activates the 
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HIF pathway (230). Two of the most used ESAs for treating anemia in 
CKD patients are recombinant human erythropoietin and darbepoetin 
alfa. Except for longer half-life of darbepoetin alfa, which permits less 
frequent dosage, they are substantially comparable in terms of efficacy 
and adverse effect profile (245).

The half-life of human erythropoietin is approximately 6–10 h. It 
is a 30,400-Dalton glycosylated protein with a backbone consisting of 
165 amino acid residues. The amino acid sequence of natural hormone 
is identical to that of recombinant human erythropoietin (rHuEPO) 
products. Darbepoetin alfa (Aranesp., Amgen), epoetin beta 
(Neo-Recormon, Roche), epogen (Amgen; Procrit, Centocor Ortho 
Biotech Products; Eprex, Janssen), and continuous erythropoietin 
receptor activators (Mircera, Roche) are some of the recombinant 
erythropoietin products that are on the market (233, 246, 247). There 
are specific negative effects associated with epoetin. Some of these 
negative effects are similar to both IV and SC; however, they vary in 
frequency and degree. Both routes share the following common 
outcomes: pain at the injection site, hypertension development, 
arteriovenous fistulae thrombosis, hyperkalemia, iron store depletion, 
flu-like symptoms, prolonged dialysis, and, infrequently, pure red cell 
aplasia (PRCA) and seizures. There is also an increased risk of 
thrombotic, cardiovascular, and cerebrovascular events overall (248).

To trigger the transcription of HIF-responsive element genes, the 
HIF-α and HIF-β subunits travel together in a heterodimer to the cell 
nucleus. Oxygen causes the prolyl hydroxylase (PH) enzyme to 
become active, which leads to the hydroxylation of two proline 
residues on HIF-α, making it susceptible to degradation. HIF-α 
survives degradation in the absence of oxygen and can dimerize with 
the always-available HIF-β. For this PH, 2-oxoglutarate is a necessary 
cofactor. It has been demonstrated that small-molecule oral 
2-oxoglutarate analogs inactivate HIF-PH in the presence of oxygen, 
serving as HIF stabilizers. These substances are referred to as HIF-PH 
inhibitors (HIF-PHIs) based on their mode of action (239, 249, 250). 
By imitating hypoxia through HIF prolyl hydroxylase domain enzyme 
(HIF-PHD) inhibition, HIF stabilizer increases endogenous 
erythropoietin (EPO). HIF stabilizers have been demonstrated in 
phase 2 and phase 3 clinical trials to be equally effective as ESA in 
treating renal anemia (251). Numerous HIF stabilizers have been 
studied in a number of clinical trials, including enarodustat, 
molidustat, desidustat, vadadustat, roxadustat, and daprodustat (252).

2.3.4.3 ADH antagonist
One clinically proven mechanism of action for the therapy of 

autosomal dominant polycystic kidney disease is vasopressin V2 
receptor inhibition (253). Tolvaptan, which is a V2-receptor 
antagonist, has been demonstrated in experimental studies and a large 
randomized controlled trial involving 1,445 patients with autosomal 
dominant PKD to limit the progression of the disease. There was also 
a considerable drop in the size of the kidneys from 5.5 to 2.8% as well 
as the reciprocal slope of the serum creatinine level from −3.81 to 
−2.61 mg per mL-1/year (240, 254).

2.3.4.4 SGLT2 inhibitor and CV benefit/renal benefit
Recent research has focused on the therapeutic effects of glucose-

lowering therapy in kidney injury using sodium-glucose 
cotransporter-2 (SGLT2) inhibitors. Research on diabetic rats 
administered with streptozotocin (STZ) demonstrated that phlorizin 

and empagliflozin, which block SGLT2, reduce glomerular 
hyperfiltration and hypertrophy, oxidative stress, inflammation, and 
fibrosis. Empagliflozin therapy reduced albuminuria and mesangial 
matrix growth in hypertensive BTBR ob/ob mice. The benefits of 
SGLT2 inhibitors occur through various mechanisms (255).

Autophagy is the cellular process of breaking down and recycling 
cytosol components, which are used as building blocks for the 
regeneration of tissue (256). This process involves lysosomes. 
Defectiveness or absence of autophagy leads to kidney damage. Recent 
studies have demonstrated that SGLT2 inhibitors trigger autophagy 
via the mammalian target of rapamycin (mTOR), 5′adenosine 
monophosphate-activated protein kinase (AMPK), sirtuin 1 (SIRT1), 
and hypoxia-inducible factor (HIF) signaling pathways (257–259).

The mTOR protein complex 1 (mTORC1) is a protein complex 
that acts as a serine–threonine kinase and plays a crucial role in 
integrating signals related to nutrients such as glucose and amino 
acids. In a state of calorie excess, mTORC1 promotes anabolism (the 
synthesis of complex molecules) and inhibits autophagy (260). The 
role of proximal tubular mTORC1 in DKD is considered significant 
(261). SGLT2 inhibitors decrease mTORC1 function in proximal 
tubule cells, preventing tubulointerstitial fibrosis (261). AMPK, in 
contrast to mTOR, functions as a detector of insufficient cellular 
energy (low ATP to 5′adenosine monophosphate ratio). It promotes 
the breakdown of molecules and triggers autophagy by suppressing 
mTORC1 when the body is in a low-calorie state (262). AMPK 
activates the catabolic process, which, in turn, provides ATP to cells 
that need sufficient energy. Canagliflozin stimulates AMPK-mediated 
autophagic stimulation, presumably via increasing calorie loss, 
without relying on insulin or glucagon signaling (263). Various studies 
have shown that SGLT2 inhibitors promote autophagy by using 
mTOR-AMPK-mediated pathways, which, in turn, help protect the 
kidneys against various types of renal damage (264–266).

SIRT1 relies on nicotinamide adenine dinucleotide to deacetylate 
and serve as a nutrient deficiency sensor (267). It removes acetyl 
groups from tumor protein 53, which augments the autophagy 
signaling pathway (268). In glucose deficiency states, SIRT1 and 
AMPK activate each other to increase autophagy and biosynthesis 
through mitochondria (269). SIRT1 can inactivate mTORC1 in the 
absence of AMPK (270). Activation of SIRT1 reduces kidney injury 
(271). Animal studies have shown that SGLT2 inhibitors increase the 
expression of SIRT1 (272, 273).

The transcription factors that react to low oxygen levels in cells are 
from the HIF family. HIF-1α and HIF-2α are isoforms that are activated 
by low oxygen levels and start processes that improve oxygen delivery 
and reduce oxygen usage (274). Activation of HIF-1 upregulates 
inflammation, fibrosis, angiogenesis, and mitochondrial clearance 
through autophagy, whereas activation of HIF-2 reduces inflammation 
and fibrosis and increases erythropoietin synthesis clearance of the 
peroxisome by autophagy (274). The inhibition of SGLT2 decreases the 
expression of HIF-1α in human proximal tubules under hypoxic 
conditions, leading to a reduction in tubular damage and interstitial 
fibrosis (274, 275). Furthermore, SGLT2 inhibitors can enhance 
HIF-2α activity via a mechanism that relies on SIRT1 (276). Therefore, 
SGLT2 inhibitors could offer kidney protection by re-establishing the 
equilibrium of HIF-1α and HIF-2α activities in renal cells.

SGLT inhibitors may protect kidneys by remodeling F-actin and 
α-actinin-4 filaments, reducing β1-integrin loss on podocyte surfaces, 
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blocking macrophage infiltration, activating M1-M2 polarization, and 
preventing profibrotic M2 macrophages. They also maintain cellular 
redox homeostasis and reduce oxidative stress by activating 
Kelch-L. (276–279).

SGLT2 inhibitors have revolutionized CKD management. Regardless 
of their impact on glucose regulation, these medications prevent the 
deterioration of kidney function by lowering glomerular hypertension, 
which is mediated by tubuloglomerular feedback (280). Research has 
shown that SGLT2 inhibitors benefit patients with and without type 2 
diabetes mellitus (T2DM) by reducing proteinuria and slowing the 
progression of CKD (239, 281). In a 12-week study, researchers randomly 
assigned 52 T2DM patients 1:1 to either dapagliflozin or a placebo; 
during this period, dapagliflozin significantly raised transferrin levels 
and reduced hepcidin and ferritin levels. The rise in the hemoglobin 
levels versus placebo was 0.5 g/dL (p = 0.02) (239, 282).

In a systematic review and meta-analysis, Mavrakanas et  al. 
found that SGLT2 inhibitors were associated with a decreased 
incidence of CKD progression among patients with preexisting CKD 
(RR: 0.77; 95% CI: 0.68–0.88), compared with placebo. SGLT2 
inhibitors were also linked to a lower risk of AKI (RR: 0.82; 95% CI: 
0.72–0.93) and stopping treatment in CKD patients than a placebo. 
For patients with CKD, SGLT2 inhibitors provide significant 
protection against cardiovascular and renal outcomes. These findings 
provide compelling evidence in support of its use in patients with 
CKD and its continued use as renal function diminishes (283). 
Examples of SGLT2 inhibitors, or gliflozins, are canagliflozin, 
dapagliflozin, empagliflozin, and ertugliflozin. A study called 

DAPA-CKD (dapagliflozin in patients with CKD) and EMPA-
KIDNEY (empagliflozin in patients with CKD) found that 
dapagliflozin and empagliflozin help patients with and without T2D 
by protecting the kidneys (284, 285) (Figure 1).

3 Conclusion and future perspectives

CKD is a debilitating illness that increases the risk of cardiovascular 
problems and is typified by persistent inflammation. It is currently 
understood that a crucial aspect of CKD involves persistent, low-grade 
inflammation. Inflammation contributes to cardiovascular and all-cause 
mortality in CKD and has a distinct function in its pathophysiology. 
Chronic and recurring infections, altered adipose tissue metabolism, 
intestinal dysbiosis, increased synthesis and impaired clearance of 
pro-inflammatory cytokines, oxidative stress, and acidosis are some of 
the variables that lead to chronic inflammatory status in CKD. There is 
evidence of a reciprocal relationship between gut dysbiosis and CKD, 
which could influence the development and course of CKD by 
producing uremic toxins and/or mediating elevated inflammation. 
Additionally, APOL1 genetic polymorphism with its attendant 
cytotoxicity has been linked to the excess risk of CKD among people of 
recent African descent. Furthermore, not everyone with high-risk 
APOL1 variants develops kidney disease. Therefore, the development 
of kidney disease in people with high-risk alleles may require additional 
factors, known as secondary hits, such as infections, environmental 
factors (heavy metals), infections, and the microbiome, among others.

FIGURE 1

Molecular mechanisms and targets for treatment of kidney diseases. Indoxyl sulfate (IS), p-cresyl sulfate (pCS), trimethylamine N-oxide (TMAO), arsenic 
(As), mercury (Hg3+), per- and polyfluoroalkyl substances (PFAS), aluminum (Al), sodium-glucose cotransporter 2 (SGLT2).
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To better understand the course of CKD and identify new therapy 
targets, it is crucial to unravel the molecular interplay between 
inflammation, oxidative stress, MMPs, and other contributing 
factors (2, 8).
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