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Postoperative neurocognitive disorders (PND) represent a significant challenge 
affecting patients undergoing surgical procedures, particularly in the elderly 
population. These disorders can lead to profound impairments in cognitive function, 
impacting memory, attention, and overall quality of life. Despite ongoing research 
efforts to identify risk factors and improve management strategies, PND remains 
underdiagnosed and poorly understood, complicating postoperative recovery and 
rehabilitation. This review aims to explore the recent advancement in the literature 
about PND, focusing on the underlying mechanisms, risk factors, and potential 
therapeutic approaches. We highlight recent advancements in the understanding 
of neuroinflammation, and it is implications for novel therapies to prevent PND. 
By synthesizing the latest research, we hope to provide insights that could lead to 
improved outcomes for patients at risk for PND and foster a shift towards more 
effective preventive measures in such population.
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1 Introduction

Postoperative neurocognitive disorders (PND) represent a growing, yet not well-
understood threat to the surgical patients, especially those aging ≥65 years undergoing a major 
surgical procedure under general anesthesia (GA) (1). PND is a syndrome characterized by a 
decline from a preoperative state in multiple cognitive domains including attention, memory, 
language, emotion and executive functions following anesthesia and surgery (2). Since 
consensus about neurocognitive tests used to diagnose the syndrome is yet to be achieved, 
incidence can vary hugely across literature, with studies reporting as high as 50 to 60% (3–5), 
making it the most common postoperative complication in the elderly. PND results in a major 
social and economic burden to both the patients and their families, and to the health care 
providers. It causes an increased morbidity and mortality, worsening of present neurological 
and mental diseases, longer hospital stay and overall higher costs of health services (6). Since 
the emerging of this new entity of neurocognitive syndrome, many strategies have been 
investigated to alter the course of the cognitive decline, both pharmacologically and 
non-pharmacologically (7–9). This review aims to provide an insight into the recent updates 
on prevention and protection against PND. A summary of this review is shown in 
Graphical abstract.
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2 Nomenclature

The lack of a unified and widely adopted terminology for 
postoperative cognitive complications has been a major issue in the 
literature, contributing significantly to the chaos in the existing 
literature. Authors and researchers have employed a wide variety of 
terms interchangeably, including postoperative cognitive impairment, 
postoperative cognitive dysfunction (POCD), perioperative cognitive 
disorder, and other related terms, often without clear distinctions or 
consistent definitions. This terminological inconsistency has created 
substantial challenges in several key areas including synthesizing 
research findings, comparing study results, establishing clear 
diagnostic criteria, and developing management guidelines.

In response to this significant heterogeneity in the definitions 
and classifications of postoperative cognitive complications, 
recommendations were published in 2018 regarding the 
nomenclature of cognitive decline in surgical patients (10), sharing 
the updated terminology across six accredited journals (Figure 1). 
This landmark effort aimed to bring much-needed standardization to 
the field, improving communication and collaboration among 
researchers and clinicians.

A crucial aspect of this nomenclature is its temporal limitation; 
it applies only within the 12-month period following the surgical 
event and anesthesia. This time limitation is based on the 
understanding that the physiological and psychological effects of 

surgery and anesthesia are expected to dissipate within a year. Any 
cognitive decline diagnosed after this 12-month period should not 
retain the “postoperative” specifier. Such cases should instead 
be classified according to the established criteria for mild or major 
neurocognitive disorder (NCD) as defined for the general 
population, recognizing that these conditions may have different 
etiologies and require distinct diagnostic and management 
approaches. This distinction is crucial for ensuring accurate 
diagnosis, appropriate treatment, and meaningful research 
comparisons. The adoption of these standardized terms is essential 
for advancing our understanding of PND and for improving 
patient care.

3 Potential mechanisms

Despite decades of intensive research, the precise mechanisms 
underlying PND remain elusive (11–14). While a single, definitive 
pathway responsible for post-surgical cognitive changes has yet to 
be identified, substantial evidence points to PND as a multifactorial 
disorder, influenced by a complex interplay of factors that directly or 
indirectly impact brain function and cognitive performance (15–17). 
These factors can be  broadly categorized into those related to 
neuroinflammation, the effects of anesthesia, and the influence of the 
gut microbiota.

GRAPHICAL ABSTRACT
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3.1 Neuroinflammation

One of the most extensively studied hypotheses centers on the 
role of neuroinflammation in the development of PND (18), as 
illustrated in Figure  2. Surgical trauma induces a systemic 
inflammatory response, leading to the release of proinflammatory 
cytokines and molecules into the bloodstream. These mediators enter 
the cerebral circulation, where they act upon endothelial cells of the 
blood–brain barrier (BBB), disrupting tight junctions and increasing 
permeability. The resulting uncontrolled influx of peripheral 
inflammatory molecules into the CNS contributes to 
neuroinflammation and oxidative stress. Within the CNS, 
proinflammatory cytokines activate resident immune cells, including 
astrocytes and microglia, initiating a pathological inflammatory 
response. Activated microglia and astrocytes release cytotoxic 
mediators resulting in transient or permanent cognitive impairment, 
depending on the severity of neuroinflammation, the extent of 
neuronal damage, and the patient’s baseline cognitive reserve. In some 
cases, neuronal function may recover following the resolution of 
inflammation, while in others, prolonged neuroinflammation may 
lead to irreversible neuronal loss and long-term neurocognitive 
decline (15).

3.1.1 Microglia: the CNS’s first responders
Microglia, the resident immune cells of the CNS, play a crucial 

role in maintaining CNS homeostasis. Similar to peripheral 
macrophages, microglia are responsible for clearing cellular debris 
and promoting neuronal survival (19). However, in the elderly, 
microglia often undergo age-related changes, including a shift 

towards a pro-inflammatory phenotype. This imbalance in the 
production of pro- and anti-inflammatory cytokines creates a 
neurotoxic environment within the CNS, contributing to neuronal 
damage and dysfunction (20). Further research is needed to 
understand the specific microglial alterations that contribute to PND 
and to identify potential therapeutic targets to modulate 
microglial activation.

3.1.2 Astrocytes: guardians of neuronal health
Astrocytes, the most abundant glial cells in the CNS, are essential 

for maintaining neuronal health and function. They play a vital role 
in transporting essential nutrients, such as glucose and lactate, to 
neurons and regulating the extracellular environment by controlling 
glutamate levels (21). As brain ages, astrocytic functions deteriorate, 
leading to disruptions in energy metabolism and an accumulation of 
neurotoxic glutamate (22). This disruption in astrocytic function can 
further contribute to the neuroinflammatory processes implicated in 
PND. Investigating the specific mechanisms by which aging affects 
astrocytes and their contribution to PND is a crucial area for 
future research.

3.2 Role of anesthesia

The contribution of anesthesia to PND remains a subject of 
considerable debate. While some studies have shown a strong 
association between certain anesthetic agents and cognitive decline 
(23, 24), others have failed to establish a clear causal link (25, 26). This 
discrepancy may be due to several factors, including variations in 

FIGURE 1

The updated nomenclature timeline of perioperative neurocognitive disorders. The new guideline classifies perioperative neurocognitive disorders 
(p-NCD) based on their onset and duration, outlining their progression from postoperative delirium (POD) (up to 7 days) to delayed neurocognitive 
recovery (up to 30 days), postoperative neurocognitive disorders (PND) (up to 12 months), and persistent neurocognitive disorders (beyond 
12 months).
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study design, patient populations, and the specific anesthetic 
techniques employed.

3.2.1 General versus non-general anesthesia
A key area of investigation focuses on the differential effects of GA 

versus non-GA (regional or local anesthesia) on PND. GA agents 
cross the BBB and suppress CNS activity, potentially contributing to 
neurocognitive decline. However, the extent and duration of these 
effects remain debated.

A meta-analysis by Gao et al. (27) examined seven randomized 
controlled trials (RCTs) involving 1,031 patients (526  in the GA 
group and 505  in the non-GA group) to assess the impact of 
anesthesia type on PND. The results showed that PND incidence was 
significantly higher in GA patients in the early postoperative period. 
On postoperative day one, three studies reported a nearly fourfold 
increase in PND risk in GA patients. By day three, two studies 
confirmed an increased risk, with GA patients experiencing twice the 
likelihood of PND. However, by day seven, five studies found no 
significant difference between groups, and at 3 months, two studies 
reported comparable PND incidence. These findings suggest that 
GA-related cognitive impairment is primarily transient, affecting 
patients in the immediate postoperative period but resolving 
over time.

3.2.2 Total intravenous anesthesia versus 
inhalational anesthesia

Another area of focus involves comparing the effects of propofol-
based total intravenous anesthesia (TIVA) versus inhalational 
anesthetics such as sevoflurane or isoflurane on PND in elderly patients. 
Pang et al. (28) conducted a meta-analysis of 15 RCTs involving 1,854 
elderly patients undergoing non-cardiac surgery, evaluating PND 
incidence and postoperative cognitive status at different time points.

Their findings suggested that propofol anesthesia was associated 
with a lower risk of early PND. Between postoperative days 2 and 6, 
patients receiving propofol had a significantly lower incidence of PND 
compared to those receiving inhalational anesthesia. Additionally, 
Mini-Mental State Examination (MMSE) scores were higher in the 
propofol group, suggesting better postoperative cognitive function. 
The analysis also showed that propofol anesthesia was linked to lower 
levels of systemic inflammation, with reduced Interleukin-6 (IL-6) and 
Tumor Necrosis Factor-alpha (TNF-α) compared to inhalational agents.

3.3 Microbiotas of the gut

The gut microbiota, the complex community of microorganisms 
residing in the gastrointestinal tract (GIT), is now recognized as a 

FIGURE 2

Neuroinflammatory cascade following surgical trauma and its role in postoperative neurocognitive disorders. Surgical trauma induces a systemic 
inflammatory response, leading to the release of proinflammatory cytokines and molecules such as IL-1β, IL-6, TNF-α, and HMGB1 into the 
bloodstream. These mediators enter the cerebral circulation, where they act upon endothelial cells of the blood–brain barrier (BBB), disrupting tight 
junctions and increasing permeability. The resulting uncontrolled influx of peripheral inflammatory molecules into the CNS contributes to 
neuroinflammation and oxidative stress. Within the CNS, proinflammatory cytokines activate resident immune cells, including astrocytes and microglia, 
initiating a pathological inflammatory response. Activated microglia and astrocytes release cytotoxic mediators, including glutamate, complement 
proteins, reactive oxygen species (ROS), and nitric oxide (NO). This excessive neuroinflammatory response leads to neuronal dysfunction, synaptic 
impairment, and neurotoxicity, which may result in transient or permanent changes to the local neuronal cells. IL-1β, Interleukin 1 beta; IL-6, Interleukin 
6; TNF-α, tumor necrosis factor alpha; HMGB1, high mobility group box-1; CNS, central nervous system.
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significant modulator of various physiological processes, including 
immune responses, metabolic pathways, and even brain function (17, 
29). Emerging evidence suggests that alterations in the gut microbiota 
may contribute to PND by influencing the gut-brain axis, the 
bidirectional communication pathway connecting the digestive 
system and the CNS (30–33).

Surgery and general anesthesia significantly alter gut microbiota 
composition through multiple mechanisms. Surgical stress and 
immune dysregulation disrupt gut barrier integrity, reducing 
beneficial bacteria while promoting pathogenic overgrowth (34). 
General anesthesia further alters microbial diversity and increases 
intestinal permeability, allowing bacterial metabolites like 
lipopolysaccharides to trigger neuroinflammation (35). Antibiotic 
prophylaxis exacerbates dysbiosis by reducing microbial diversity, 
increasing the risk of PND (36).

Microbiota-targeted interventions are being explored to 
mitigate PND by restoring gut microbial balance and reducing 
neuroinflammation. Probiotics, particularly strains like 
Lactobacillus rhamnosus and Bifidobacterium longum, have shown 
neuroprotective effects in animal models, though clinical evidence 
on their role in PND prevention remains limited (37, 38). Fecal 
Microbiota Transplantation (FMT), primarily used for 
Clostridioides difficile infections, has demonstrated cognitive 
benefits in neurological disorders, with animal studies suggesting 
its potential for PND prevention by improving microbiota 
composition and reducing inflammation (39, 40). Additionally, 
dietary interventions rich in fiber, polyphenols, and fermented 
foods may support a healthy gut-brain axis, while exercise and 
stress reduction have been linked to improved gut microbial 
composition and cognitive resilience (41).

Recent studies highlight the role of gut microbiota in PND 
development, with postoperative shifts in microbial composition 
linked to neuroinflammation and cognitive decline. Zhang et al. (30–
33) found that reduced anti-inflammatory gut bacteria and increased 
Bacteroides levels were associated with PND in mice, suggesting gut 
microbiota modulation as a potential preventive strategy. Similarly, 
Zhang et  al. (30–33) identified a correlation between higher 
Parabacteroides distasonis levels and POD in elderly surgical patients. 
While promising, further clinical studies are needed to validate the 
long-term efficacy of these approaches in improving postoperative 
cognitive outcomes.

4 Risk factors

The development of PND is not a universal outcome following 
surgery under GA. Identifying key risk factors is crucial, particularly 
in the elderly, who are more vulnerable due to age-related neurological 
and physiological changes.

The first international study of postoperative cognitive 
dysfunction (ISPOCD 1) identified various patient-related and 
non-patient-related factors contributing to PND. These risk factors 
can be categorized as modifiable and non-modifiable, as outlined in 
Table 1 (6, 9, 42–45).

Among non-modifiable risk factors, advanced age, frailty, 
and pre-existing cognitive impairment significantly increase 
susceptibility to PND. Older adults have reduced cognitive reserve, 
making them more prone to POD and long-term cognitive decline. 

Other factors such as male sex, surgery type and duration, and a 
higher ASA classification (≥III) also correlate with increased 
neurocognitive vulnerability.

In contrast, modifiable risk factors provide opportunities for 
intervention. Optimizing anesthetic protocols, maintaining 
hemodynamic stability, ensuring effective pain management, and 
promoting adequate sleep can help reduce the risk of PND. Addressing 
these factors is particularly important for elderly patients, as they are 
more susceptible to perioperative neurocognitive decline.

Given the rising number of surgeries in older adults, a targeted 
approach focusing on modifiable risk factors is essential for improving 
postoperative cognitive outcomes.

5 PND prevention

Despite the many attempts to ameliorate the harm of PND, 
currently, there is no definitive evidence-based management plan for 
patients who develop postoperative cognitive impairment. This may 
be due to variations in defining, testing, and diagnosing this disorder 
across the literature. The current focus of many RCTs is examining 
various neuroprotective measures to stop the development of PND (9, 
27, 46, 47).

5.1 Non-pharmacological interventions

5.1.1 Depth of anesthesia
Depth of anesthesia (DoA), the level of unconsciousness during GA, 

is achieved through anesthetic agents that suppress CNS activity, reducing 
responsiveness to stimuli. Traditionally, DoA assessment relied on 
subjective methods such as monitoring vital signs and patient movement, 
which are prone to bias and inaccuracy, sometimes leading to 
intraoperative awareness and psychological distress, including 
Posttraumatic stress disorder (48). This underscores the need for objective 
and precise monitoring, particularly in elderly patients, who are more 
sensitive to anesthetics and require lower doses to achieve the same level 
of unconsciousness. The development of EEG-based monitoring, such as 
the BIS monitor, has significantly improved anesthesia precision and 
safety by providing a numerical value (0–100) that correlates with 
anesthesia depth (49, 50). Maintaining an optimal BIS range of 40–60 
during surgery balances anesthesia with reduced intraoperative and 
postoperative complications, including a lower risk of awareness (51), 
attenuated inflammatory responses (52) and a decreased 
incidence of PND.

TABLE 1 Modifiable and non-modifiable risk factors.

Modifiable risk factors Non-modifiable risk factors

Anesthetic type Old age

Anesthesia depth Male sex

Intraoperative hypotension Surgery type

Postoperative pain Surgery duration

Sleep quality Frailty

Pre-existing cognitive decline

ASA III or above

ASA, American society of anesthesiologist.
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Numerous studies suggest that excessive anesthesia depth is more 
strongly associated with PND than insufficient anesthesia. A 
sub-analysis of the BALANCED study (53) found that light anesthesia 
(BIS 50) resulted in a lower incidence of POD (19% vs. 28%) compared 
to deep anesthesia (BIS 35). This is particularly significant in elderly 
patients, as deeper anesthesia has been linked to greater neurocognitive 
impairment due to increased anesthetic sensitivity. Similarly, a 
Cochrane review (54) and a meta-analysis (55) support BIS-guided 
light anesthesia as a strategy to reduce POD, reinforcing its 
neuroprotective role in the elderly.

However, some studies present conflicting findings. The 
ENGAGES trial (56) recorded only a mild reduction in POD incidence 
with BIS monitoring (26% vs. 23%). Likewise, a meta-analysis by 
Wang et  al. (57) found no consistent correlation between light 
anesthesia (BIS 50) and lower POD incidence compared to 
deeper anesthesia (BIS 35). These discrepancies suggest that while BIS 
monitoring optimizes anesthesia depth, its direct impact on PND 
prevention remains debated.

Despite this, BIS monitoring remains particularly valuable in 
elderly patients, who face a higher risk of PND, intraoperative 
awareness, and prolonged recovery. Given age-related changes in drug 
metabolism and anesthetic sensitivity, BIS helps prevent both under-
sedation and over-sedation, minimizing neurocognitive 
complications. Integrating BIS into anesthesia protocols for older 
adults offers benefits beyond PND prevention, including reduced 
anesthetic exposure and enhanced postoperative recovery.

5.1.2 Intraoperative blood pressure
Intraoperative hypotension (IOH), defined as a systolic blood 

pressure (SBP) below 90 mmHg or a mean arterial pressure (MAP) 
below 60 mmHg, is a common complication during surgical 
procedures and anesthesia (58). Various factors contribute to IOH, 
including the effects of anesthetic agents, hypovolemia, and patient 
positioning (59). IOH significantly compromises perfusion to vital 
organs, and if left untreated, can lead to serious complications, 
including myocardial infarction (MI), cerebrovascular events, and 
acute kidney injury (AKI) (60, 61). Given the age-related decline in 
cerebrovascular autoregulation, elderly patients are particularly 
susceptible to the adverse effects of IOH. Reduced vascular elasticity, 
impaired baroreceptor sensitivity, and pre-existing comorbidities such 
as hypertension increase their vulnerability to cerebral hypoperfusion, 
potentially exacerbating postoperative neurocognitive impairment.

Researchers have hypothesized a link between IOH and PND, 
particularly in elderly patients, where compromised cerebral perfusion 
may increase POD and long-term cognitive decline (62). Some studies 
support this association, particularly when IOH episodes are 
prolonged. For instance, Mohr et al. (63) found that IOH episodes 
lasting more than 2 min were associated with a higher incidence of 
POD following cardiac surgery. Additionally, Krzych et  al. (64) 
proposed targeting IOH as a modifiable risk factor for PND, 
reinforcing the importance of maintaining stable blood pressure 
during surgery. However, many of these studies are retrospective, 
limiting their ability to establish causality.

Conversely, other studies have failed to demonstrate a significant 
correlation between IOH and subsequent neurological dysfunction. 
Langer et  al. (65) compared non-cardiac surgical patients with 
targeted higher MAP maintenance to a control group without targeted 
MAP management, finding no significant difference in PND incidence 

between the two groups. Similarly, a post-hoc analysis of the DECADE 
trial reported a negative association between IOH and POD (66). 
These conflicting findings suggest that the relationship between IOH 
and PND remains complex, potentially influenced by patient-specific 
factors such as cerebral autoregulation, pre-existing cognitive 
impairment, and individual susceptibility to hypoperfusion.

While current evidence does not definitively establish a causal link 
between IOH and PND, maintaining adequate intraoperative blood 
pressure is particularly critical in elderly patients. Given their reduced 
physiological reserve, strategies should focus on personalized blood 
pressure management, avoiding both hypotension, which may 
exacerbate cerebral ischemia, and excessive hypertension, which could 
increase the risk of cerebrovascular complications.

5.1.3 Perioperative warming
Hypothermia, defined as a core body temperature below 36°C, is 

a common occurrence in surgical patients (67). Several factors 
contribute to intraoperative hypothermia, including the effects of 
anesthesia, cool operating room temperatures, and heat loss during 
surgical procedures (68). Hypothermia is associated with various 
adverse postoperative outcomes, including coagulopathy, delayed 
wound healing, and increased risk of surgical site infections (SSIs) 
(69). These complications highlight the importance of effective 
perioperative warming strategies, particularly in elderly patients, who 
are more vulnerable to hypothermia due to impaired thermoregulation, 
reduced metabolic heat production, and altered vasomotor responses.

Perioperative warming techniques can be broadly categorized as 
active or passive. Active methods, such as forced-air warming systems 
and heated intravenous fluids, actively raise core body temperature, 
while passive methods rely on thermal insulation to minimize heat 
loss (70). Maintaining normothermia perioperatively has been 
consistently linked to reduced rates of wound infections, shivering, 
intraoperative blood loss, and even mortality (71, 72). Given that 
elderly patients experience greater difficulty in maintaining core body 
temperature, proactive temperature management is particularly 
crucial in reducing their perioperative risks.

However, the relationship between perioperative temperature and 
neurocognitive outcomes remains complex, particularly in the elderly. 
While normothermia is generally preferred, some studies suggest that 
mild hypothermia (34–35°C) may have neuroprotective effects in 
certain high-risk surgical contexts. RCTs have indicated that inducing 
mild hypothermia can reduce brain injury following aortic dissection 
repair and improve cognitive outcomes after cardiopulmonary bypass 
(CPB) (73, 74). These findings suggest that targeted temperature 
modulation could potentially benefit older adults undergoing specific 
high-risk procedures. Conversely, other studies have demonstrated a 
positive correlation between intraoperative hypothermia and the 
development of POD (75–77).

Elderly patients are already at increased risk for PND, and 
intraoperative hypothermia may exacerbate neurocognitive dysfunction 
by impairing cerebral autoregulation and reducing metabolic activity in 
the brain. However, inconsistencies in the literature regarding the impact 
of hypothermia on PND may be due to variations in surgical procedures, 
patient demographics, and differences in PND diagnostic criteria.

5.1.4 Enriched environment
An Enriched Environment (EE) consists of cognitive, sensory, and 

social stimuli that enhance brain function. EE has been shown to 
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improve memory, learning, attention, mood, and overall cognitive 
resilience (8, 78). The mechanisms underlying EE’s benefits include 
increased neuroplasticity, synaptogenesis, and neurogenesis, which 
may be  particularly valuable in mitigating age-related cognitive 
decline and neurodegenerative diseases.

Numerous animal studies highlight EE’s cognitive benefits in 
aging. Speisman et al. (79) demonstrated that aged rats housed in EE 
exhibited better cognitive functions potentially via enhanced 
hippocampal neurogenesis and modulating neuroimmune cytokine 
signaling. Similarly, Mate et  al. (80) found that EE reduced tau 
pathology and neurodegeneration, suggesting a potential 
neuroprotective role against age-related cognitive impairment. 
Speisman et al. (81) reported that EE improved synaptic plasticity and 
reduced oxidative stress in aging rodents, reinforcing its role in 
preserving cognitive function. These findings suggest that EE may 
slow cognitive decline and could be particularly relevant for elderly 
populations at risk of PND, dementia, or postoperative 
cognitive dysfunction.

While much of the clinical research on EE has focused on early 
development (82, 83), an increasing number of studies suggest its 
potential cognitive benefits in aging. For instance, one meta-analysis 
found that virtual reality-based exergames, an enriched and interactive 
form of cognitive and physical stimulation, significantly improve 
overall cognitive function, memory, and depressive outcomes in older 
adults, with greater effects observed in interventions of longer 
duration (84). Similarly, a randomized trial showed physical, cognitive, 
and combined training enhance cognition differently—physical 
training sustained concentration gains, cognitive training improved 
cognitive speed over time, and combined training had immediate and 
lasting benefits (85). These findings highlight the diverse yet 
complementary effects of enriched interventions in aging.

In older adults, these mechanisms could be particularly beneficial 
in mitigating PND and long-term postoperative cognitive dysfunction. 
However, clinical trials specifically targeting EE interventions in the 
elderly remain limited. While the evidence for EE’s cognitive benefits 
is compelling, further research is needed to optimize EE protocols for 
elderly individuals and assess their long-term effects on postoperative 
cognitive function.

5.1.5 Acupuncture
Acupuncture, a therapeutic modality originating from Traditional 

Chinese Medicine (TCM), involves the insertion of thin needles into 
specific points on the body. While its precise mechanisms remain 
under investigation, recent studies suggest that acupuncture 
modulates neuronal activity, connective tissue, and muscle fibers (86, 
87). These effects may influence neurotransmission, inflammation, 
and cerebral blood flow, factors that are particularly relevant to 
cognitive health in elderly patients, who are more susceptible to 
neuroinflammation and vascular impairment.

Beyond its well-established role in pain management (88, 89) and 
treatment of various medical conditions (90, 91), acupuncture has 
gained interest as a potential non-pharmacological intervention for 
cognitive enhancement. Emerging research suggests that acupuncture 
may positively influence memory, attention, and executive function, 
with applications in neurodegenerative and vascular conditions such 
as Alzheimer’s disease (92), Parkinson’s disease (93), post-stroke 
cognitive impairment (94), and vascular dementia (95). Given the 
age-related decline in cognitive function and increased risk of PND in 

the elderly, acupuncture could serve as a potential adjunct therapy to 
mitigate cognitive impairment following surgery.

In the postoperative period, acupuncture presents a cost-effective 
and low-risk intervention for reducing PND in older adults, a 
population particularly vulnerable to surgery-related cognitive decline. 
A review by Ho et  al. (96) examined trials from 2009 to 2018, 
encompassing both clinical and preclinical studies. While the quality 
of evidence varied, findings indicated that acupuncture reduced 
inflammatory biomarkers, including S100β, Neuron-Specific Enolase 
(NSE), IL-6, and TNF-α, compared to controls. Given that 
neuroinflammation and oxidative stress play key roles in PND 
pathogenesis, these findings suggest a potential neuroprotective 
mechanism for acupuncture in surgical patients, particularly the elderly.

5.2 Pharmacological interventions

5.2.1 Dexmedetomidine
Dexmedetomidine (DEX), a selective alpha-2 adrenergic agonist, 

is widely used as a sedative and anesthetic adjunct (97). Unlike 
traditional sedatives, DEX modulates sympathetic outflow, reducing 
norepinephrine release to induce sedation while preserving respiratory 
function (98).

Beyond its sedative and analgesic effects, DEX exerts anti-
inflammatory properties. Preclinical studies demonstrate its ability to 
attenuate systemic inflammation. Zhang et al. (30) found that DEX 
reduced sepsis-induced organ injury by increasing IL-10 and nuclear 
receptor 77, while suppressing TNF-α and IL-1β. Similarly, Gao et al. 
(99) reported reduced neuroinflammation and preserved white matter 
in spinal cord-injured rats, effects reversed by α2-adrenergic receptor 
antagonism. Clinical evidence supports these findings; a sub-analysis 
of the DESIRE trial showed significantly lower C-reactive protein 
(CRP) and procalcitonin levels in DEX-treated sepsis patients (100).

These anti-inflammatory properties have led to investigations into 
DEX’s role in preventing PND, particularly in elderly surgical patients. 
Shin et al. (47) compared DEX-based vs. propofol-based sedation in 
elderly patients undergoing lower limb surgery, reporting a 
significantly lower incidence of POD in the DEX group, though with 
lower MAP and heart rate (HR) in the post-anesthesia care unit 
(PACU). Similarly, Ge et al. (101) found that DEX infusion improved 
cognitive function post-carotid endarterectomy (CEA), with higher 
MMSE and MoCA scores and reduced IL-6 and TNF-α levels in the 
first 72 h. While Brain-Derived Neurotrophic Factor levels were 
initially similar across groups, only the placebo group returned to 
baseline after 24 h. Further supporting this, Tang et  al. (102) 
demonstrated that sufentanil plus DEX reduced POD incidence and 
severity after thoracoscopic-laparoscopic esophagectomy (TLE), 
accompanied by lower IL-6 and TNF-α, and higher IL-10 at 
24 h postoperatively.

DEX’s mechanism, anti-inflammatory properties, and favorable 
safety profile make it a promising agent for PND prevention, 
particularly in the elderly and those with pre-existing cognitive 
impairment. Future research should refine optimal dosing strategies 
to maximize cognitive benefits while mitigating hemodynamic effects.

5.2.2 Parecoxib sodium
Parecoxib sodium, a selective cyclooxygenase-2 (COX-2) 

inhibitor, is a potent analgesic and anti-inflammatory agent widely 
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used in perioperative care (103). As the only injectable COX-2 
inhibitor, it undergoes rapid hepatic metabolism to its active form, 
valdecoxib, and is typically administered intravenously or 
intramuscularly for acute pain management. Parecoxib sodium’s 
COX-2 selectivity provides effective pain relief while minimizing 
gastrointestinal and renal complications compared to non-selective 
NSAIDs (104).

Surgical stress-induced systemic inflammation is implicated in 
PND pathogenesis (105). Given parecoxib sodium’s anti-inflammatory 
properties, studies have investigated its neuroprotective effects in 
elderly surgical patients. Mu et al. (106) conducted a multicenter, 
double-blind RCT in elderly orthopedic patients under spinal 
anesthesia, finding that PND incidence decreased from 11 to 6.2% 
when parecoxib sodium was added to a postoperative morphine 
regimen. Similarly, Zhu et al. (107) examined elderly knee arthroplasty 
patients, reporting lower PND incidence at 1 week (16.7% vs. 33.9%), 
improved POP relief within the first 12 h, and reduced IL-1β, IL-6, 
and TNF-α plasma levels. However, differences in 3-month PND 
incidence and CRP levels were not statistically significant.

Parecoxib sodium offers potent analgesia, reduced opioid reliance, 
and a favorable safety profile in the perioperative setting. While its 
neuroprotective role in PND prevention remains promising, further 
high-quality trials are needed to establish definitive benefits and 
optimize perioperative anti-inflammatory strategies for elderly 
surgical patients at risk of PND.

5.2.3 Dexamethasone
Dexamethasone, a synthetic glucocorticoid, is widely used in 

perioperative care due to its anti-inflammatory, immunomodulatory, 
analgesic, antiemetic, and anti-shivering properties (108–111). These 
effects contribute to improved postoperative recovery by reducing 
inflammation, nausea, pain, and thermoregulatory disturbances, 
making dexamethasone a valuable adjunct in multimodal anesthesia 
protocols (112).

Dexamethasone’s anti-inflammatory and neuroprotective 
properties have led to increasing interest in its potential role in 
reducing PND. Inflammation is a key contributor to PND 
pathogenesis, and glucocorticoids like dexamethasone may mitigate 
surgery-induced neuroinflammation, thereby improving postoperative 
cognitive outcomes. Several studies have examined dexamethasone’s 
impact on PND and POD in elderly surgical patients. Huang et al. 
(113) found that a single 10 mg dose of dexamethasone significantly 
reduced POD incidence compared to placebo in elderly patients 
undergoing intertrochanteric fracture surgery. Similarly, Kluger et al. 
(114) reported that a 20 mg dose reduced PND severity scores in hip 
fracture patients, though it did not significantly alter overall 
PND incidence.

These findings suggest that while dexamethasone may not 
completely prevent PND, it could help reduce its severity, potentially 
improving functional recovery and quality of life in elderly surgical 
patients. The mechanisms underlying dexamethasone’s 
neuroprotective effects remain an area of active investigation. 
Proposed pathways include suppression of pro-inflammatory 
cytokines (IL-6, TNF-α, IL-1β), reduction of blood–brain barrier 
dysfunction, and attenuation of neuroinflammation-induced oxidative 
stress (115, 116).

Dexamethasone’s broad-spectrum perioperative benefits, 
including its anti-inflammatory, analgesic, and antiemetic effects, 

make it a strong candidate for inclusion in perioperative anesthetic 
plans. Given its favorable safety profile with short-term use, 
dexamethasone represents a promising intervention for reducing 
PND risk. However, future studies should focus on determining 
the optimal dosage, particularly in elderly patients, to maximize 
its neuroprotective benefits while minimizing potential 
side effects.

5.2.4 Melatonin
Melatonin, a pineal gland hormone, regulates the sleep–wake 

cycle and influences mood, immune function, and cognitive health 
through its widespread CNS and peripheral receptor distribution 
including the retina, GIT, and immune cells (117, 118). Exogenous 
melatonin has demonstrated benefits in insomnia, depression, anxiety, 
and migraines, with evidence suggesting neuroprotective effects in 
Alzheimer’s and Parkinson’s disease (119–121).

Sleep disturbances are common in surgical patients, with 
preoperative insomnia rates up to 79% (122). Melatonin 
supplementation improves sleep quality, reduces anxiety, and 
enhances recovery (123, 124). Its antioxidant and anti-inflammatory 
properties may also protect against PND (125, 126). A meta-analysis 
indicated melatonin reduces PND incidence, though results vary 
(127). For Elbakry et  al. (128) found that 5 mg oral melatonin 
preoperatively reduced POD in elderly colorectal surgery patients, 
whereas Ford et al. (129) observed no effect with 3 mg in cardiac 
surgery, suggesting dose and surgical context may influence efficacy.

Melatonin shows potential for PND prevention, particularly 
in elderly patients, by addressing sleep disturbances and reducing 
neuroinflammation. Further research should optimize dosing 
and administration timing to enhance its perioperative 
neuroprotective benefits.

5.2.5 Minocycline
Minocycline, a semisynthetic tetracycline antibiotic, is used for 

bacterial infections and has shown potential in treating chronic pain, 
epilepsy, and diabetic neuropathy due to its anti-inflammatory, anti-
apoptotic, and immunomodulatory properties (130–132). Its 
lipophilic nature allows it to cross the BBB, suggesting neuroprotective 
effects (133, 134).

Animal studies indicate that minocycline regulates microglia, 
astrocytes, and neurons, inhibiting microglial activation and reducing 
pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 (135, 
136). Li et al. (137) demonstrated that older rats exposed to isoflurane 
anesthesia exhibited lower neuroinflammatory marker levels with 
minocycline treatment. However, some studies caution that while 
minocycline initially inhibits microglial activation, delayed 
microgliosis may negatively affect the hippocampus, potentially 
impairing long-term cognitive function (138).

Regarding PND, Liang et al. (139) suggested minocycline may 
mitigate anesthetic-induced cognitive impairment by protecting 
against sevoflurane-induced neuroinflammation. However, an RCT 
conducted by Takazawa et  al. (140) in elderly knee arthroplasty 
patients found no significant difference in PND incidence or 
postoperative pain between minocycline and control groups. These 
conflicting results highlight the uncertain clinical efficacy of 
minocycline in perioperative neuroprotection.

While preclinical studies support minocycline’s neuroprotective 
and anti-inflammatory properties, clinical evidence remains 
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inconclusive. Further rigorous trials are needed to clarify its efficacy 
in preventing PND, particularly in elderly surgical patients. 
Understanding optimal dosing, treatment duration, and patient 
selection will be  essential in determining minocycline’s role in 
perioperative neuroprotection.

6 Conclusion

PND poses a significant threat to elderly patients, impacting their 
quality of life and placing a substantial burden on healthcare systems. 
The current lack of a standardized approach to diagnosis, assessment, 
and management, coupled with marked heterogeneity in research 
methodologies, hinders progress. Future research should prioritize the 
development of robust tools for quantifying PND risk factors and 
identifying specific biomarkers. Equally important is the creation of 
evidence-based management plans to effectively address PND in 
affected patients, thereby improving post-surgical outcomes and 
reducing the overall healthcare burden.
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