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Introduction: Sepsis is a global health threat that has a high incidence and 
mortality rate. Early prediction of sepsis onset can drive effective interventions 
and improve patients’ outcome.

Methods: Data were collected retrospectively from a cohort of 2,329 adult 
patients with positive bacteria cultures from a tertiary hospital in China between 
October 1, 2019 and September 30, 2020. Thirty six clinical features were selected 
as inputs for the models. We  trained models in predicting sepsis by machine 
learning (ML) methods, including logistic regression, decision tree, random 
forest (RF), multi-layer perceptron, and light gradient boosting. We evaluated 
the performance of the five ML models and the evaluation metrics were: area 
under the ROC curve (AUC), accuracy, F1-score, sensitivity and specificity. The 
data of another cohort of 2,286 patients between October 1, 2020 and April 1, 
2022 were used to validate the performance of the model performing best in 
the in the internal validation set. Shapley additive explanations (SHAP) method 
was applied to evaluate feature importance and explain the predictions of this 
model.

Results: Of the five machine learning models developed, the RF model 
demonstrated the best performance in terms of AUC (0.818), F1 value (0.38), 
and sensitivity (0.746). The RF model also has a comparable AUC (0.771) in the 
external validation set. The SHAP method identified procalcitonin, albumin, 
prothrombin time, and sex as the important variables contributing to the 
prediction of sepsis.

Discussion: The RF model we  developed showed the greatest potential for 
early prediction of sepsis in admitted patients, which could aid clinicians in 
their decision-making process. Our findings also suggested that male patients 
with bacterial infections and high procalcitonin levels, lower albumin levels, or 
prolonged prothrombin times were more likely to develop sepsis.
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1 Introduction

Sepsis is a serious and potentially life-threatening condition 
characterized by dysregulated host response to severe infection and 
resultant organ failure (1). It is a leading cause of death from infection 
(1), with an estimated 48.9 million cases and 11 million deaths 
worldwide in 2017, accounting for approximately 20% of all global 
deaths (2). Timely diagnosis and interventions are critical in sepsis 
management, as sepsis mortality increases significantly with each hour 
of delay in antimicrobials administration (3). The Sequential organ 
failure assessment (SOFA) score and quick SOFA are widely used tools 
for identifying sepsis in clinical practice (4), but they may not 
be sensitive enough to detect less critical symptoms and may lead to 
delayed diagnosis and intervention (5) due to the complexity and 
heterogeneity of the septic population. Therefore, there is an urgent 
need for more sensitive methods for early identification of sepsis.

Machine learning (ML) method, defined as the field of research 
that enables computers to learn without explicit programming (6), has 
been explored for the early predictions of sepsis and the identification 
of hidden interactions between early signs of the condition (7, 8). 
Many prediction algorithms have been proposed and successfully 
used in healthcare, such as decision tree (DT), random forest (RF), 
multi-layer perceptron (MLP) and light gradient boosting (LGB) (6). 
The most common approach is to predict sepsis before its onset, 
typically 6 to 48 h in advance (9, 10). For example, an ensemble 
algorithm developed by Goh (11) used structured data and 
unstructured electronic medical records texts to achieve impressive 
predictive performance 48 h before sepsis onset. Other researchers 
have focused on real-time prediction using continuous high-frequency 
physiologic data to predict sepsis earlier than traditional indicators 
(12, 13). However, many sepsis prediction models have been 
developed and evaluated using data from patients in intensive care 
units (ICUs) or emergency departments who have been extensively 
monitored for various biomarkers, and few models have been tested 
in real-world settings (14).

In this study, we  aimed to use ML method to develop a 
mathematical model for early prediction of sepsis in admitted patients 
in real-world settings.

2 Materials and methods

2.1 Participants and settings

We retrospectively reviewed adult inpatients at the Fifth Affiliated 
Hospital of Sun Yat-sen University (Zhuhai, P.R. China) admitted to 
hospital between October 1, 2019 and April 1, 2022. We included 
patients with pathogen culture-positive and analyzed their electronic 
records upon admission, converting the data into structured format 
including age, gender, previous history, vital signs, and laboratory test 
results (e.g., blood routine, biochemical index, coagulation). Then 
we  excluded patients with false positive culture results defined as 
contamination or colonization. Patients who were diagnosed as sepsis 
when they admitted in the hospital would be also excluded.

The development set included 2,329 patients from October 1, 
2019 to September 30, 2020. The external validation set included 2,286 
patients from October 1, 2020 to April 1, 2022. Patients in both two 
set had the same inclusion and exclusion criteria.

2.2 Definition of sepsis

Sepsis is defined as “Life-threatening organ dysfunction caused by 
a dysregulated host response to infection, with organ dysfunction 
being identified as an acute increase in the total SOFA score of two or 
more points due to infection” (Sepsis-3 definition) (1).

2.3 Variable selection

The specific selection process is outlined in Figure 1. The authors, 
including senior physicians (XL and FX) in infectious diseases, held a 
consensus meeting to identify possible features that might be related 
to sepsis, and a total of 36 features were selected.

To reduce the risk of over-fitting, we  applied a two-step 
variable selection procedure. In the first step, we  conducted 
univariate tests to exclude variables that were not significantly 
related to sepsis (P > 0.05, Supplementary Table S1), and 27 
variables were remained as extracted subset. In the second step, 
we used the recursive feature elimination method with support 
vector machine (SVM) as the base learner to select the best 
combination of features based on their area under the ROC curve 
(AUC) value (15) (Figure 2). As a result, a total of 13 variables 
were ultimately selected as feature subset. The binary classification 
variables used in the model construction were derived by 
structuring the original unstructured variables.

Out of the all 36 features, 33 had a missing rate lower than 5%. The 
remaining 3 features, prothrombin time (PT), lactate dehydrogenase 
(LDH) and procalcitonin (PCT), had missing rates higher than 10%. 
Details of the missing variables are shown in Supplementary Table S2. 
We used the k-Nearest Neighbors (KNN) imputer to predict and fill in 
missing values. The imputer chose the best fit value based on the KNN 
algorithm and trends in related columns to fill the missing points (16). 
Additionally, we conducted necessary statistical hypothesis testing to 
ensure that there was no statistical significance between the before data 
imputation and after data imputation (Supplementary Table S2).

2.4 Development and evaluation of 
machine learning models

We used the data of development set to develop models. Among 
the 2,329 patients in the development set, sepsis occurred in 238 
(10.22%) patients. The data sample would be labeled as positive if the 
patient met the Sepsis-3 definition. To handle sample imbalance and 
improve prediction accuracy, we  used an ensemble method to 
conduct modeling multiple times with sampled datasets. During 
each modeling procedure, randomly selected patients without sepsis 
were included to match the same amount of positive data. Five 
algorithms were selected as base learners for training: logistic 
regression (LR), DT, RF and LGB. The LGB model was implemented 
using the lightgbm (3.2.1) package. The other four models were 
implemented using the Scikit-learn (0.24.0) package.1 To measure 
the performance of the models, we randomly divided the data of the 
development set into the training set (70% of the data, 1,630 patients) 
and the internal validation set (30% of the data, 699 patients). The 

1 https://github.com/scikit-learn/scikit-learn
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training set was used to train the models, and the internal validation 
set was used to evaluate the models. The five trained models were 
evaluated based on AUC, accuracy, sensitivity, specificity and 
F1-score. Additionally, we  conducted 1,000 times of bootstrap 
sampling to obtain confidence intervals for these five metrics.

Then we selected the model with best performance in the study, and 
for further verification, evaluated it using the data of external validation 
set. The Shapley additive explanations (SHAP) (17) method was also 
applied on this model in the external validation set to analyze the 
influence of each feature on the sepsis prediction results during the 
prediction process. SHAP values have been shown to have high potential 
for understanding the predictions made by complex ML models (15). 
SHAP global explanations are based on calculations of the SHAP 
explanations for all individual patients and averaging them by feature to 
obtain a cohort view. The larger the mean absolute SHAP value of a 
feature, the more important that feature is to the model prediction.

2.5 Statistical analysis

The pandas (0.25.1) and numpy (1.18.5) packages of Python 
(Anaconda Distribution, Version 3.7.4) were used for data cleaning. The 
scipy (1.6.3) package was used for data statistic and examination. For 
continuous variables, we used mean and standard deviation for statistical 

description and the Shapiro–Wilk test to test for normal distribution. 
We used independent samples t-test to compare the variables with normal 
distribution and Mann–Whitney U test for non-normal distribution 
variables. For categorical variables, we conducted Chi-squared test and 
Fisher exact test for variables with cell counts less than five.

3 Results

3.1 Patient characteristics

Supplementary Table S1 showed the demographics, disease 
history and lab test information of the patients in the study. There 
were significant differences (p < 0.05) in admission white blood cell 
count, admission neutrophil count, admission neutrophil ratio, 
admission lymphocyte count, PCT and other indicators between 
patients with and without sepsis.

3.2 Performance of the five ML models

The performance of the five models are shown in 
Supplementary Table S3 and Figure 3. According to the fitting results 
of the internal validation set, the RF model showed the best 

FIGURE 1

Flow chart of the study. The flow chart illustrates the design and analytic strategy used to train, test, and validate the machine learning algorithms for 
sepsis prediction. SVM, support vector machine; DT, decision tree; LR, logistic regression; MLP, multi-layer perceptron; LGB, light gradient boosting; 
SHAP, shapley additive explanations.
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performance in terms of AUC (0.818, 95% CI: 0.761–0.862), F1 value 
(0.38, 95% CI: 0.316–0.447) and sensitivity (0.746, 95% CI: 0.646–
0.837) among the five ML models. The accuracy of RF model is 0.753 
(95% CI: 0.72–0.78) and the specificity is 0.754 (95% CI: 0.721–0.783).

3.3 External validation

To evaluate the RF model, we used a temporal dataset comprising 
2,286 patients from October 1, 2020 to April 1, 2022 (Supplementary 
Table S4). Supplementary Table S5 and Figure  4 showed the 
performance of the RF model in the external validation set. It had the 
AUC of 0.771 (95% CI: 0.749–0.790), accuracy of 0.719 (95% CI: 
0.704–0.738), F1 value of 0.472 (95% CI: 0.441–0.505), sensitivity of 
0.646 (95% CI: 0.607–0.686) and specificity of 0.737 (95% CI: 0.720–
0.758). The performance was relatively close but slightly lower, 
possibly due to differences in the distribution of the training set and 
the external validation set (Supplementary Table S6).

3.4 SHAP values of individual prediction for 
interpretation

To identify the important features used by the models for predicting 
sepsis in admitted patients, we computed the feature importance score 
for all variables. The specific correlation of predictors and sepsis 
illustrated in the SHAP dependency plot in Figure  5. The SHAP 
summary plot demonstrated that PCT, albumin, PT and sex were the top 
four important features. It showed that patients with higher levels of PCT 
or PT were much more likely to develop sepsis than those with lower 
levels, while patients with higher levels of albumin were less likely to 
develop sepsis. Additionally, males were more likely to develop sepsis. 
When the PCT or PT value grown higher, the corresponding SHAP 
value also grown higher, indicating a positive correlation (Figures 6A,C). 
But when albumin value grown higher, the corresponding SHAP value 

became lower, indicating a negative correlation (Figure 6B). In addition, 
male was associated with a high SHAP value (Figure 6D).

4 Discussion

Reducing the global burden of sepsis is owning important clinical 
implications. It is crucial for treatment and prognosis to identify and 
diagnose sepsis as early as possible. To achieve early identification of 

FIGURE 3

ROC of the five models. The figure shows that the AUC of the RF 
model is 0.818, which shows the best performance of the five ML 
models in our study.

FIGURE 2

Number of features and AUC. The figure shows the relationship between the number of features and the corresponding AUC. When the number of 
feature decreases, the cross validation score (AUC) slightly decreases, then increases to a peak, and then drastically goes down. The combination of 13 
features had the highest AUC, indicating possible best features to build models.
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sepsis, many researchers have applied ML method to the diagnosis of 
sepsis, and most of these models have analyzed performance 
indicators such as sensitivity or specificity (16, 18). However, there are 
still limitations to the use of these ML models in the early identification 
of sepsis. Some models may input a few of complex laboratory test 
indicators which are hard to get access in the early admission stage. 

Additionally, current ML models rely on a large number of available 
open access datasets and typically analyze a limited number of 
structured patient variables (14), and these data may come from ICU 
or emergency department. Besides, it is indispensable to explain the 
meaning between each feature and the prediction result of the model.

We had noticed these limitation and tried to get over in our study. 
We developed novel ML models for early prediction of sepsis in the 
stage of patients’ admitting, using related and accessible features. In 
addition, we collected both structured and unstructured data from all 
departments’ inpatients, and analyzed the correlation between these 
variables and sepsis. Based on its nature of bagging ensemble of large 
amount of decision trees, RF model performed best among all 
attempted models. We also conducted external validation and the 
results showed that our model was effective.

Besides, we  also used the SHAP method for analysis and 
explanation. The SHAP method not only showed the importance of 
the relationship between variables and sepsis, but also specifically 
identified positive and negative relationships between variables and 
sepsis. According to the SHAP chart, PCT, PT, albumin and sex were 
closely related to sepsis. Interestingly, the SOFA score does not include 
these four indicators (1). PCT had the strongest correlation with 
sepsis, indicating a positive correlation. PCT has been widely used to 
aid in the diagnosis of sepsis (19), in line with our previous 
understanding. We also noticed that PT was also strongly associated 
with sepsis. It has been found that PCT and PT are significantly 
correlated with SOFA score (20), which may be  related to 
microcirculation hypoxia and the resulting microcirculation 
thrombosis in patients with sepsis. Coagulation dysfunction is very 
common in patients with sepsis, affecting up to around 80%. In sepsis, 
inflammation can trigger a coagulation reaction, while the activation 
of coagulation can further promote an inflammation response (21). 
Disseminated intravascular coagulation is a condition characterized 
by the uncontrolled activation of the coagulation cascade, leading to 
depletion of coagulation factors and the formation of intravascular 
thrombosis. And this can manifest as prolonged PT (22). In another 
study, PCT and PT were found to be  independent risk factors for 
sepsis (23). In contrast, a higher albumin level has been found to 
be inversely related to sepsis, suggesting that a lower albumin level 
may signal the presence of severe infection (24). The SHAP chart 
indicated that sex may contribute to a differential risk for developing 
sepsis, potentially due to differences in estrogen levels (25). However, 
conflicting evidence exists on the subject (26), and further 
investigation into sex differences and the mechanisms underlying 
them is necessary. In conclusion, the results of the SHAP diagram are 
explicable, and demonstrate the clinical credibility of our model.

Nonetheless, The study has inherent weaknesses. More patient 
data in multicenter study are needed to evaluate the effectiveness of 
the proposed system and to make our findings more robust. Besides, 
there were many cases in which PT and/or PCT values were missing. 
We tried to delete cases with missing PCT values then conduct the 
same analysis. It showed that PCT still had the strongest correlation 
with sepsis, but there were some differences in the result 
(Supplementary Figure S1, Table S7). Since not all clinicians would 
perform PT and/or PCT examination on every patient in the real 
clinical environment, for example, experienced physicians are more 
inclined to perform the PCT examination, when a patient is highly 
suspected of bacterial infection. We prefer that the original models 

FIGURE 4

The ROC curve of RF model in external validation set. The AUC of 
the RF model in the external validation set is 0.771.

FIGURE 5

The importance of the feature and the SHAP value. The feature’s 
position on the Y-axis indicates its importance, and the X-axis 
represents the SHAP value. The color, ranging from blue to red, 
represents the feature’s SHAP value from low to high. The violin 
graph lining up on the midline represents the aggregation of dots 
representing each case in the internal validation set. The distance 
between the upper and lower margin of the violin graph represented 
the number of cases that end up with the same SHAP values 
provided by this feature. It shows that PCT, albumin, PT and sex are 
the top four important features.
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(without deletion) may be better adapted to the real clinical settings 
and achieve the purpose of predicting sepsis. In addition, a 
prospective cohort study with early antibiotic treatment should 
be conducted to evaluate whether ML models can improve patient 
outcomes in the real world.

5 Conclusion

In this study, we employed ML method to develop models for 
early prediction of sepsis in admitted patients and the RF model 
showed the best performance, which was verified in the external 
verification set. Our findings also suggested that male patients with 
bacterial infections and high PCT levels, lower albumin levels, or 
prolonged PT were more likely to develop sepsis.
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