
Frontiers in Medicine 01 frontiersin.org

Identification of immune 
characteristic biomarkers and 
therapeutic targets in cuproptosis 
for rheumatoid arthritis by 
integrated bioinformatics analysis 
and single-cell RNA sequencing 
analysis
Xianbin Li 1,2,3*, Xueli Zhang 4, Tao Liu 1, Guodao Zhang 2, 
Dan Chen 5* and Suxian Lin 6*
1 School of Computer and Big Data Science, Jiujiang University, Jiujiang, China, 2 Department of Digital 
Media Technology, Hangzhou Dianzi University, Hangzhou, China, 3 Jiujiang Key Laboratory of Digital 
Technology, Jiujiang, China, 4 Department of Medical Technology, Zhengzhou Railway Vocational and 
Technical College, Zhengzhou, China, 5 Department of Rheumatology, The First Affiliated Hospital of 
Wenzhou Medical University, Zhejiang, China, 6 Department of Rheumatology, Wenzhou People’s 
Hospital, Wenzhou, China

Introduction: Rheumatoid arthritis (RA) is a chronic autoimmune disorder intricately 
liked with inflammation. Cuproptosis, an emerging type of cell death, has been 
implicated in the initiation and development of RA. However, the exact alterations 
in the expression and biological function of cuproptosis-related genes (CRGs) in 
RA remain poorly understood. Therefore, our study aims to elucidate the potential 
association between CRGs and RA, with the goal of identifying novel biomarkers for 
the treatment and prognosis of RA.

Methods: In this study, we identified ten differentially expressed cuproptosis-related 
genes (DE-CRGs) between patients with RA and controls. Through comprehensive 
functional enrichment and protein-protein interaction (PPI) network analysis, we 
explored the functional roles of the DE-CRGs. Additionally, we investigated the 
correlation between DE-CRGs and immune infiltration, immune factors, diagnostic 
efficacy, and potential therapeutic drugs.

Results: Leveraging single-cell RNA sequencing data, we conducted a detailed 
analysis to elucidate alterations in various cell clusters associated with RA. Our 
study unveiled a significant association between DE-CRGs and diverse biological 
functions, as well as potential drug candidates.

Discussion: These findings provide crucial insights into the involvement of DE-
CRGs in the pathogenesis of RA and shed light on potential therapeutic strategies.
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Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease intricately linked to 
inflammation. Recent statistics reveal a global prevalence of RA as high as 0.24%, with an 
annual incidence ranging from 20 to 45 per 100,000 individuals (1). In existing guidelines, the 
diagnosis of RA is contingent upon clinical manifestations, physical examination findings, as 
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well as serological and imaging results (2). Regrettably, while most 
patients with RA exhibit positive laboratory test results (rheumatoid 
serum factor and ACPA), approximately one-third of RA cases yield 
negative findings (3). Furthermore, no single pathological laboratory 
discovery or imaging method has been demonstrated to definitively 
diagnose RA, posing significant challenges to its diagnosis and 
subsequently influencing treatment and prognosis. Moreover, 
numerous studies emphasize the importance of early diagnosis, 
prompt intervention, timely treatment initiation, and, if necessary, 
immediate referrals for RA patients (4–6). Despite advancements, RA 
remains incurable, and disease-modifying anti-rheumatic drugs 
(DMARDs) represent the primary treatment option (7). Nevertheless, 
prolonged DMARD use is often associated with adverse effects, 
including gastric ulcers, vomiting, heartburn, or gastrointestinal 
bleeding (8, 9). Hence, the imperative for dependable biomarkers 
persists to facilitate early diagnosis, accurate prognosis, and treatment 
efficacy assessment.

Cuproptosis represents a distinct form of programmed cell 
death distinguished by the intracellular accumulation of copper, 
leading to subsequent disruption in mitochondrial lipid 
peroxidation and instability of Fe-S cluster proteins (10). The 
conversion of copper ions (Cu2+) to Cu by ferredoxin 1 (FDX1) 
facilitates the lipid acylation of mitochondrial proteins, thereby 
inducing the overproduction of crucial enzymes linked to the 
tricarboxylic acid (TCA) cycle. This mechanism plays a regulatory 
role in fundamental biological pathways, including the maintenance 
of redox balance, iron metabolism, oxidative phosphorylation, and 
the modulation of aberrant cell proliferation (11). Moreover, 
we  observed that individuals diagnosed with active rheumatoid 
arthritis showed elevated levels of serum copper, exhibiting a 
negative correlation with hemoglobin levels, an ancillary disease 
marker, and a positive correlation with erythrocyte sedimentation 
rate and morning stiffness (12). Notably, a study proposed that 
serum copper levels could potentially serve as an indicator of 
erosive activity in RA (13). Numeric studies have proposed a 
multifaceted relationship between cuproptosis and RA (14–16). For 
example, Zhao et  al. suggested that cuproptosis-related genes 
(PDHA1, PDHB, CDKN2A, and DLAT) were closely involved in the 
onset and development of RA (14). Jiang et  al. (15) proposed a 
cuproptosis-related diagnostic model incorporating immune 
infiltration in RA. Hu et al. (16) developed a novel cuproptosis-
related gene signature for RA. However, the current literature on the 
relationship between cuproptosis and RA remains relatively limited, 
highlighting the potential for cuproptosis to emerge as a new 
therapeutic target.

In this study, unveiling the ramifications of copper homeostasis 
imbalance on RA would significantly enhance our comprehension of 
its pathogenesis and facilitate the quest for efficacious agents. 
Cuproptosis-related genes are intricately associated with imbalance in 
copper homeostasis. To elucidate the repercussions of copper 
homeostasis imbalance on mitochondria in RA cells, we screened 10 
DE-CRGs between RA samples and normal samples. Furthermore, to 
explore the impact of 10 DE-CRGs on RA, we  examined the 
correlation between DE-CRGs and immune infiltration, immune 
factors, diagnostic efficacy, and predicted drugs. We  assessed 
expression alterations in DE-CRGs across various RA cell clusters 
using single-cell RNA sequencing data. In summary, our findings 
provide valuable insights into characterizing copper homeostasis 

imbalance in RA and offer guidance for identifying potential 
therapeutic targets.

Materials and methods

Datasets

We collected the GSE93777 dataset (17) from the GEO database, 
which comprised 133 normal and 315 RA samples. Based on previous 
studies (18, 19), we selected 20 CRGs (FDX1, LIPT1, LIAS, DLD, 
PDHA1, PDHB, DLAT, SLC31A1, ATP7A, ATP7B, GLS, MTF1, 
CDKN2A, SLC25A3, GCSH, DBT, DLST, NLRP3, LIPT2, NFE2L2) 
for our analysis. Additionally, we obtained single-cell RNA sequencing 
data from serum transfer-induced inflammatory arthritis and RA 
tissue samples, as documented in the GSE129087 dataset (20).

Differentially expressed 
cuproptosis-related genes

We applied log2 transformation to perform normalization, and 
utilized variance-stabilized counts to address the initial quality issues. 
To mitigate batch effects of samples, we  employed the ‘limma’ 
package’s remove batch effect function (21). Initial steps include 
assessing the quality of the raw RNA-seq reads (e.g., using tools like 
FastQC) to ensure they are of high quality and suitable for downstream 
analysis. Limma is a popular tool that uses linear models and can 
incorporate batch effect correction by applying the 
duplicateCorrelation function, which models the correlation between 
technical replicates and corrects for batch effects. DE-CRGs between 
RA and normal groups were screen using the ‘limma’ package. The 
lmFit function in ‘limma’ package was employed to model the linear 
data, while the eBayes function estimated the model parameters. 
Thresholds for differentially expressed genes were set at adjusted 
p-value <0.01 and |logFC| > 0.5. The results were visualized through 
heatmaps and volcano plots using ‘pheatmap’ package and ‘ggplot2’ 
package. DE-CRGs were screened by the intersection between DEGs 
and CRGs. And DE-CRGs were depicted via a venn diagram generated 
using the ‘VennDiagram’ package.

Functional analysis and PPI network 
analysis of DE-CRGs

To elucidate the potential biological functions of the DE-CRGs, 
we  conducted GO and KEGG enrichment analyses. Utilizing the 
‘clusterProfiler’ R package (22), we  systematically annotated the 
DE-CRGs by employing the enrichGO and enrichKEGG functions for 
the enrichment analysis.

We utilized the STRING database1 to construct a PPI network of 
the DE-CRGs (23). The parameters of PPI network analysis: 
Organism: Homo sapiens (human). Interaction Score Threshold: A 
minimum interaction score of 0.4 (medium confidence) was used to 

1 http://string-db.org/
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filter potential protein interactions. Network type: We selected the 
“full network” option, which includes both experimentally determined 
interactions and predicted interactions. Edge length: We used the 
default edge length, which represents the strength of the interactions, 
with shorter edges indicating stronger associations. Additional 
Settings: We included both direct and indirect interactions to ensure 
a comprehensive understanding of the protein interaction network.

Immune cell infiltration and immune 
correlation analysis of DE-CRGs

The CIBERSORT algorithm is used to ascertain the cellular 
composition of complex tissues based on their gene expression profiles 
(24). Thus, we applied the below algorithm to analyze the RNA-seq 
data obtained from both normal and RA tissues, facilitating the 
estimation of the relative proportions of immune-infiltrated cells. 
Subsequently, we utilized Pearson’s correlation analysis to evaluate the 
relationships between the DE-CRGs and immune cell, where statistical 
significance was set as p-value <0.05. We  applied Bonferroni 
correction to account for multiple testing in the CIBERSORT results. 
Additionally, the correlation between DE-CRGs and various immune 
factors were retrieved from the tumor-immune system interaction 
database (TISIDB) (25). The parameters of the immune cell 
infiltration: Signature Matrix: We used the LM22 gene expression 
signature matrix, which is designed to deconvolve 22 human immune 
cell types, including T cells, B cells, monocytes, and neutrophils. 
Number of permutations: 1000 permutations were performed to 
estimate the significance of the results. p-value threshold: A p-value 
<0.05 was considered significant for the immune cell types showing 
differential infiltration. Absolute cell fractions: The analysis provides 
estimates of cell type proportions in the tissue, with a focus on 
assessing immune cell infiltration patterns.

Clinical value of DE-CRGs in RA and 
therapeutic drug identification

To investigate the clinical relationships between DE-CRGs and 
RA, we used statistical analysis methods to compare between RA 
groups and normal groups. Receiver operating characteristic (ROC) 
curves were generated to assess diagnostic efficacy. ROC curve 
analysis was performed using the ‘pROC’ R package. Furthermore, 
we utilized Drug-Gene Interaction Databases (DGIdb and CMAP), 
which are online repositories detailing interactions between drugs and 
genes (26, 27), to predict potential therapeutic drugs associated with 
the DE-CRGs.

scRNA sequencing data processing

The single-cell RNA sequencing dataset was derived from the 
serum transfer-induced inflammatory arthritis (STIA) model 
(GSE129087), which mimics synovial inflammation and joint 
pathology observed in human RA but does not fully recapitulate 
its autoimmune etiology (20). We used the ‘Seurat’ R package to 
perform data processing and cell grouping (28), and identified cell 
types by using the ‘SingleR’ package (29). Cell differentiation was 

analyzed using the ‘Monocle’ R package (30). We set the following 
thresholds: (i) Unique Molecular Identifier (UMI) Counts: Cells 
with UMI counts below 3 were excluded to eliminate low-quality 
cells. (ii) Gene Features: We  filtered out cells expressing fewer 
than 200 and more than 4,000 genes to ensure sufficient gene 
coverage per cell. (iii) Mitochondrial Gene Expression: Cells 
exhibiting a mitochondrial gene expression ratio exceeding 5% 
were removed, as high mitochondrial content can indicate cell 
stress or apoptosis.

Statistical analyses

The statistical analysis was performed utilizing R software (version 
4.1.2). Group comparisons were executed using the Wilcoxon test. 
We  used R packages: Seurat_4.3.0., SingleR_1.8.1, pROC_1.18.0, 
Monocle_2.34.0, CIBERSORT_0.1.0, limma_3.50.3, clusterProfiler_4.2.2, 
pheatmap_1.0.12, and ggplot2_3.4.2.

Results

Identification of DEGs and DE-CRGs

Figure  1 shows the overview of the study. We  initially 
identified 6,349 differentially expressed genes (DEGs) using the 
‘limma’ package (Figure 2A). Subsequently, 20 cuproptosis-related 
genes were matched with the DEGs, leading to the identification 
of 10 DE-CRGs relevant to RA tissue (Figure 2B). Among these, 
three DE-CRGs (GLS, PDHA1, and FDX1) exhibited 
downregulation, while seven DE-CRGs (NLRP3, DLST, ATP7B, 
ATP7A, NFE2L2, DBT, and SLC31A1) showed upregulation 
(Figures 2C,D).

Function enrichment analysis of DE-CRGs

We utilized GO and KEGG enrichment analysis methods 
elucidate the potential biological functions associated with the 10 
DE-CRGs. The GO analysis revealed that DE-CRGs were significantly 
enriched in several biological process (BP) terms, including copper 
ion transmembrane transport, copper ion import, cellular copper ion 
homeostasis, copper ion transport, and copper ion homeostasis 
(Figure 3A). Regarding cellular component (CC) terms, DE-CRGs 
were notably associated with mitochondrion, mitochondrial matrix, 
oxidoreductase complex, late endosome, and dihydrolipoyl 
dehydrogenase complex (Figure  3B). Furthermore, molecular 
function (MF) terms such as copper ion transmembrane transporter 
activity, transition metal ion transmembrane transporter activity, p 
type transmembrane transporter activity, and copper ion binding 
were significantly enriched among the DE-CRGs (Figure 3C).

The KEGG pathway analysis unveiled the involvement of 
DE-CRGs in a multitude of pathways, including platinum drug 
resistance, citrate cycle (TCA cycle), mineral absorption, central 
carbon metabolism in cancer, and carbon metabolism (Figure 3D). In 
summary, these findings revealed that DE-CRGs played crucial roles 
in a wide range of biological activities closely associated with 
mitochondrial function.
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PPI network analysis

To delineate the interrelationships among the identified 10 
DE-CRGs, we conducted PPI network analysis. Our findings revealed 
that ATP7A, ATP7B, and SLC31A1 exhibited close interconnectedness 
(Figure  4A), while PDHA1, DBT, and DLST also demonstrated 

significant interconnectivity. Moreover, NFE2L2 and NLRP3 were 
observed to interact within the network. Furthermore, we conducted 
Pearson correlation coefficient method to assess the correlation 
between the expression levels of 10 DEFGs. The results indicated 
predominantly positive correlations among most genes, with only a 
few displaying negative correlation relationships (Figure 4B).

FIGURE 1

Flowchart of the study.

FIGURE 2

Screening of DEGs and DE-CRGs. (A) Volcano plot of DEGs. (B) Venn diagram representing the overlap between DEGs and CRGs. (C) Clustered 
heatmap of 10 DE-CRGs. (D) Differential expression analysis of 10 DE-CRGs between RA and normal tissues. ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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FIGURE 3

Function enrichment analysis of 10 DE-CRGs. (A) BP (biological process), (B) CC (cellular component), (C) MF (molecular function), (D) KEGG.

FIGURE 4

PPI analysis and Pearson correlation analysis. (A) PPI, (B) correlation analysis.
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Immune cell infiltration and correlation 
analysis of DE-CRGs

Given the common occurrence of immune system activation and 
response in RA, we employed the CIBERSORT algorithm to assess the 
proportion of 22 immune cell infiltrates within RA tissues. Our 
analysis unveiled notable alterations in immune cell composition 
between the RA and normal samples. Specifically, B cells memory, 
plasma cells, T cells CD4 naive, CD4+ T cells memory activated, NK 
cells resting, monocytes, mast cells resting, and neutrophils exhibited 
marked increases in the RA samples compared to the normal samples. 
Conversely, T cells CD4 memory resting, T cells follicular helper, 
Tregs, NK cells activated, and eosinophils were notably reduced in the 
RA samples (Figure 5A).

Numerous noteworthy correlations were discerned among the 22 
immune cell types present in the RA tissue. For instance, a negative 
correlation was identified between neutrophils and T cells CD8, T cells 
CD4 memory activated, T cells follicular helper, Tregs, T cells gamma 
delta, and NK cells activated. Conversely, a positive correlation was 
observed between plasma cells and B cells memory, as well as between 
neutrophils and mast cells resting. Additionally, a positive correlation 
was detected between T cells gamma delta and T cells CD8, and 
between Macrophages M2 and NK cells resting (Figure 5B).

The identification of the association between DE-CRGs and 
immune cells aims to further elucidate the potential mechanism by 
which they impact the progression of RA. The results presented that 
some DE-CRGs were closely linked to immune cells. For example, 
SLC31A1, NLRP3, NFE2L2, DLST, DBT, ATP7B, and ATP7A showed 
a distinct positive correlation with B cells memory, mast cells resting, 
monocytes and neutrophils, but a negative correlation with 
macrophages M0, macrophages M2, NK cells resting, T cells CD4 
memory resting, T cells follicular helper, T cells gamma delta and 
Tregs. PDHA1, GLS and FDX1 were positively correlated with 
eosinophils, NK cells resting, T cells CD4 memory resting, T cells 
follicular helper  and negatively correlated with B cells memory, 
dendritic cells activated, mast cells resting, neutrophils, NK cells 
resting, plasma cells, T cells memory activated and T cells CD4 naive 
(Figure 5C).

To further validate the relationship between the DE-CRGs and the 
immune system, we  investigated their association with various 
immune factors, including chemokines, immunostimulators, 
immunoinhibitors, major histocompatibility complexes (MHCs), and 
cell receptors. Among the chemokine-related genes, SLC31A1 
exhibited negative correlations with CCL21, CCL24, and CCL27, 
while showing positive correlations with CCL14, CCL16, and CXCL12 
(Figure 6A). Regarding immunostimulatory-related genes, SLC31A1 
demonstrated significant negative correlations with CXCR4, ICOSLG, 
TNFRSF13B, and TNFSF9, whereas it exhibited positive correlations 
with C10orf54, CD276, CD40, CD48, IL6R, MICB, PVR, TNFSF14, 
TNFSF15, and TNFSF4. PDHA1 was also notably negatively 
correlated with CD276, CD48, CD40, CD80, IL6R, MICB, PVR, 
RAET1E, TNFRSF17, TNFRSF18, TNFRSF4, TNFRSF8, TNFRSF9, 
TNFSF13B, TNFSF14, TNFSF15, and TNFSF4, while displaying 
positive correlations with CXCR4, ICOSLG, TNFRSF13B, and 
TNFSF9 (Figure 6B). Among the immunoinhibitory-related genes, 
NLRP3 exhibited significant negative correlations with CD96 and 
CTLA4, while GLS displayed significant positive correlations with 
PDCD1 and TGFB1. Similarly, FDX1 showed significant positive 

correlations with PDCD1 and TGFB1 (Figure 6C). In terms of cell 
receptor-related genes, DBT displayed marked negative correlations 
with CXCR3 and CXCR5, along with notable positive correlations 
with CCR1, CCR10, CCR2, CCR3, CCR5, CCR7, and CX3CR1 
(Figure 6D). Furthermore, for MHC-related genes, ATP7A exhibited 
distinct negative correlations with HLA-DOA, TAP2, and TAPBP, 
while displaying distinct positive correlations with HLA-A, HLA-B, 
HLA-C, HLA-E, HLA-F, and HLA-G (Figure  6E). These analyses 
underscored the close relationship between the DE-CRGs and 
immune cell infiltration, underscoring their pivotal roles in 
modulating the immune response.

Diagnostic effects of DE-CRGs

The diagnostic efficacy of the 10 DE-CRGs was assessed through 
ROC curve analysis, yielding the following AUC values: DLST: 0.834; 
ATP7B: 0.867; ATP7A: 0.836; GLS: 0.741; NFE2L2: 0.814; PDHA1: 
0.845; DBT: 0.787; SLC31A1: 0.814; FDX1: 0.752; and NLRP3: 0.753 
(Figure  7). These findings suggest that these 10 DE-CRGs hold 
significant promise as potential predictors of RA.

Prediction of potential therapeutic drugs

To further elucidate the clinical relevance of the 10 DE-CRGs 
in RA, we conducted clinical drug predictive analysis using the 
DGIdb (26) and CMAP (27) databases. Our investigation revealed 
that most drugs targeting ATP7A, ATP7B, and SLC31A1 are 
anticancer agents, including thalidomide, progesterone, docetaxel, 
platinum-based drugs (oxaliplatin, carboplatin, cisplatin), 
daunorubicin, and cisplatin (Table 1). Another class of compounds, 
such as methotrexate, glutamine (Gln), and dexamethasone, was 
found to modulate GLS-mediated Gln catabolism by increasing 
substrate levels. Anakinra and MCC950 were identified as 
targeting NLRP3. Anakinra, a recombinant human interleukin-1 
receptor antagonist, is used in RA (31). Guo et al. (32) highlighted 
the involvement of NLRP3 inflammasome in RA pathogenesis and 
suggested that targeting NLRP3 inflammasome with MCC950 
could be a novel therapeutic strategy for RA. Additionally, drugs 
predicted to target the NFE2L2 gene, such as Lagascatriol, 
Andalusol, Irofulven, NK-252, RTA-408, and Sulforaphane, are 
commonly employed to alleviate RA inflammation in clinical 
practice. Moon et  al. (33) demonstrated that sulforaphane 
treatment reduced arthritis severity and histologic inflammation 
in mice with collagen-induced arthritis (CIA). Choi et  al. (34) 
found that sulforaphane inhibits synovial fibroblast proliferation, 
MMPs and COX-2 expression, and PGE2 production, suggesting 
its potential as a new therapeutic agent for RA. In summary, these 
results underscore the promise of developing novel drugs for 
RA treatment.

Single cell RNA sequencing data analysis of 
DE-CRGs

To unveil the transcriptome regulation within RA tissues at the 
single-cell level, we utilized single cell RNA sequencing data obtained 
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from serum transfer-induced inflammatory arthritis to analyze 
expression of DE-CRGs in single cell. The RA cells exhibited 
considerable heterogeneity, and using the ‘singleR’ R package, 
we  classified them into 12 clusters, including fibroblasts, T cells, 
neutrophils, mast cells, stromal cells, megakaryocytes, plasma cells, 
monocytes and DCs, endothelial cells, B cells, macrophages and NK 

cells, based on cell markers (Figure 8A) (35). Then, we investigated the 
expression profiles of CRGs across these cell clusters and observed 
that CRGs were prominently expressed in fibroblasts (Figure 8B). 
Overall, our findings suggest that DE-CRGs are generally upregulated 
across various cell clusters and display notable variations in fibroblasts 
(Figure 8C).

FIGURE 5

Immune infiltration of 10 DE-CRGs. (A) The fraction of immune cells comparison in RA and normal group. (B) Immune cells correlation map. 
(C) The correlation between DE-CRGs and immune cells. * p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Discussion

Cuproptosis has emerged as a novel mechanism of mitochondrial 
cell death triggered by disruptions in copper homeostasis. Increasing 
evidence from bioinformatics studies suggested that cuproptosis was 
involved in immune infiltration in numeric cancers, including clear 
cell renal cell carcinoma (36), head and neck squamous carcinomas 
(37), and lung adenocarcinoma (38). Cell death dysregulation plays 
a significant role in the initiation and development of RA, 
characterized by heightened chondrocyte apoptosis, diminished 
chondrocyte proliferation, and impaired extracellular matrix 
synthesis. However, the variation in copper content within RA tissue 
and specific RA cell clusters remains unclear. Given that cuproptosis 
stems from an imbalance in copper homeostasis driven by 

intracellular copper accumulation, we investigated this issue using 
nine DE-CRGs.

Our findings revealed a downregulation of GLS, PDHA1, and 
FDX1 expression, and an upregulation of NLRP3, DLST, ATP7B, 
ATP7A, NFE2L2, DBT, and SLC31A1 in whole RA tissues. SLC31A1 
is involved in the transport of copper ions across cell membranes and 
plays a crucial role in maintaining cellular copper homeostasis. 
ATP7A is responsible for transporting copper ions across cell 
membranes and is involved in maintaining copper homeostasis within 
cells. Notably, both SLC31A1 and ATP7A are upregulated in response 
to elevated intracellular copper levels (39). DLST, an enzyme involved 
in the tricarboxylic acid (TCA) cycle, plays a crucial role in cellular 
metabolism by catalyzing the transfer of succinyl groups from 
succinyl-CoA to the enzyme lipoamide in the TCA cycle, facilitating 

FIGURE 6

Immune-related analysis of DE-CRGs. (A) Correlation analysis between DE-CRGs and chemokine-related genes. (B) Correlation analysis between DE-
CRGs and immunostimulator-related genes. (C) Correlation analysis between DE-CRGs and immunoinhibitor-related genes. (D) Correlation analysis 
between DE-CRGs and cell receptor-related genes. (E) Correlation analysis between DE-CRGs and MHC (major histocompatibility complex) related 
genes.
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the conversion of α-ketoglutarate to succinyl-CoA (40). However, the 
implications of these preliminary findings concerning copper 
reduction in whole RA tissue remained unclear. Therefore, 
we conducted further analysis on RA single-cell RNA sequencing 

(scRNA-seq) data to scrutinize the expression levels of the nine 
differentially expressed cuproptosis-related genes (DE-CRGs) across 
various cell clusters. Interestingly, we observed upregulated expression 
of all DE-CRGs, including DLST, SLC31A1, and GLS, in fibroblast and 
endothelial cell clusters. Conversely, minimal changes in the 
expression levels of the DE-CRGs were noted in other RA tissue cells, 
such as stem cells. GLS, an enzyme responsible for catalyzing the 
deamination of glutamine into glutamate, is a pivotal component of 
glutamine metabolism, serving as a fundamental energy source for 
proliferating cells (41, 42). Glutamine metabolism also plays a crucial 
role in various biological processes, including biosynthesis, antioxidant 
defense, and regulation of cell signaling (43). Moreover, glutamine 
induces a substantial carbon influx into the TCA cycle during cell 
proliferation. Therefore, the six identified differentially expressed 
cuproptosis-related genes (DE-CRGs) are intricately associated with 
protein lipoylation and energy metabolism processes within 
the mitochondria.

Subsequently, we  scrutinized the biological functions, disease 
associations, and clinical correlations of the DE-CRGs, taking into 
account the tissue perspective. Our analyses, including GO and KEGG 
pathway analyses, unveiled the involvement of DE-CRGs in several 
critical pathways. Specifically, these pathways encompassed platinum 
drug resistance, the citrate cycle (TCA cycle), mineral absorption, 
central carbon metabolism in cancer, and carbon metabolism. The 
TCA cycle is crucial for cellular energy production and has been 
implicated in various inflammatory conditions. Alterations in 
mitochondrial function and energy metabolism are observed in RA, 
suggesting a potential link between TCA cycle dysregulation and RA 
pathogenesis (44). Mineral absorption, particularly of calcium and 
magnesium, plays a significant role in bone health. In RA patients, 
altered mineral metabolism can contribute to bone density loss and 
joint damage (45). Carbon metabolism, including the metabolism of 
glucose, fatty acids, and amino acids, is central to cellular function. In 
RA, dysregulated carbon metabolism contributes to inflammation and 
joint damage. Studies have identified metabolic changes in RA, such as 
increased glycolysis and altered fatty acid metabolism, which support 
the inflammatory processes characteristic of the disease (46, 47). 

FIGURE 7

The ROC of ten DE-CRGs.

TABLE 1 Prediction of potential therapeutic drugs.

Drug Gene Source PubChem 
ID

Ref

Thalidomide ATP7A DGIdb 92,142 (66)

Progesterone ATP7A DGIdb 5,994 (67)

Docetaxel ATP7A DGIdb 148,124 (68)

Platinum ATP7B/ATP7A DGIdb 23,939 (69)

Oxaliplatin ATP7B/ATP7A DGIdb 11,947,679 (69)

Carboplatin ATP7B/ATP7A DGIdb 73,554,252 (69, 70)

Daunorubicin ATP7B DGIdb 30,323 (71)

Cisplatin ATP7B DGIdb 86,820,626 (66)

Glutamine GLS DGIdb 6,992,086 (72–74)

Dexamethasone GLS DGIdb 5,743 (75)

Methotrexate GLS DGIdb 126,941 (76)

CB-839 GLS CMAP 71,577,426 (77)

Carboplatin SLC31A1 DGIdb 73,554,252 (78)

Cisplatin SLC31A1 DGIdb 86,820,626 (79)

Anakinra NLRP3 DGIdb 46,507,944 (80)

MCC950 NLRP3 CMAP 9,910,393 (81)

Lagascatriol NFE2L2 DGIdb 10,448,831 (82)

Andalusol NFE2L2 DGIdb 188,448 (82)

Irofulven NFE2L2 DGIdb 148,189 (83)

NK-252 NFE2L2 CMAP 71,618,700 (84)

RTA-408 NFE2L2 CMAP 71,811,910 (85)

Sulforaphane NFE2L2 CMAP 9,577,379 (86)

CPI-613 PDHA1 CMAP 70,881,528 (87)
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Furthermore, our PPI analysis revealed that proteins sharing similar 
biological functions interacted closely with each other, potentially 
coordinating their roles in mediating essential cellular processes.

Our investigation into immune cell infiltration revealed significant 
alterations in various cell populations between the RA and normal 
groups. Specifically, B cells memory, plasma cells, T cells CD4 naive, 
CD4+ T cells memory activated, NK cells resting, monocytes, mast 
cells resting, and neutrophils exhibited elevated levels in the RA group 
compared to the normal group. Kishikawa et al. (48) demonstrated 
that the increased plasma nucleotide levels in RA patients. Lyu et al. 
(49) reported that CD305 reduction may mediate the excessive 
activation of memory CD4+ T cells and participate in the development 
of RA. Neutrophils play a crucial role in RA initiation and progression 
(50). After migrating into the articular cavity, they become activated, 
triggering inflammation (51). This leads to prolonged survival, 
excessive inflammatory activity, and increased oxidative stress, all of 
which contribute to RA pathogenesis (52). Conversely, T cells CD4 
memory resting, T cells follicular helper, Tregs, NK cells activated, and 
eosinophils displayed decreased levels in the RA group. Sofi et al. (53) 

presented that eosinophilia occurred in several rheumatic diseases, 
including RA, and was associated with high disease activity and poor 
prognosis. Notably, we  observed a negative correlation between 
activated and resting immune cells, while immune cells with similar 
functional states exhibited positive correlations. Plasma cells, arising 
from mature B lymphocytes, play a pivotal role in humoral immunity 
(54). Additionally, activated memory CD4+ T cells contribute to 
cellular immunity and collaborate with B cells (55). Neutrophils, as 
integral components of the innate immune system, act as frontline 
defenders and orchestrate subsequent adaptive immune responses 
(56). In summary, our findings suggest that RA triggers activation 
across humoral, cellular, and innate immune systems, which mutually 
reinforce each other. Furthermore, our analysis revealed a close 
association between differentially expressed cell regulatory genes 
(DE-CRGs) and resting immune cells, indicating their potential as 
novel targets for modulating excessive immune responses in RA.

We observed correlations between the 10 DE-CRGs and numeric 
immune factors. Particularly within the chemokine-related genes, our 
analysis revealed that SLC31A1 exhibited a negative correlation with 

FIGURE 8

Single cell RNA analysis of DE-CRGs. (A) A UMAP pf 12 cell clusters. (B) Expression of DE-CRGs in different cell clusters. (C) Expression pattern of CRGs 
at the single-cell level in different cell clusters.
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CCL21, CCL24, and CCL27, while it displayed positive correlations 
with CCL14, CCL16, CXCL12, and CXCL14. Chemokines constitute 
a large protein family characterized by low molecular weight 
structures, and they play pivotal roles in regulating immune cell 
residence, migration, and inflammatory responses. The CC chemokine 
family primarily facilitates the recruitment of lymphocytes, whereas 
the CXC chemokine family is closely associated with neutrophils and 
monocytes (57). Additionally, CXCL12 and CXCL14 have been shown 
to augment macrophage function (58, 59). Therefore, our findings 
suggest that SLC31A1 is more inclined toward recruiting neutrophils 
and macrophages rather than lymphocytes.

Among the immunoinhibitory-related genes, we  observed 
significant correlations. Specifically, SLC31A1 exhibited notably 
negative correlations with CXCR4, ICOSLG, TNFRSF13B, and 
TNFSF9, while it displayed positive correlations with C10orf54, 
CD276, CD40, CD48, IL6R, MICB, PVR, TNFSF14, TNFSF15, and 
TNFSF4. Similarly, PDHA1 demonstrated remarkable negative 
correlations with CD276, CD48, CD40, CD80, IL6R, MICB, PVR, 
RAET1E, TNFRSF17, TNFRSF18, TNFRSF4, TNFRSF8, TNFRSF9, 
TNFSF13B, TNFSF14, TNFSF15, and TNFSF4, while being positively 
correlated with CXCR4, ICOSLG, TNFRSF13B, and TNFSF9. The 
protein encoded by the CD276 gene belongs to the immunoglobulin 
superfamily and is believed to play a role in regulating T-cell-mediated 
immune responses (60). CD40, also known as tumor necrosis factor 
receptor superfamily member 5 (TNFRSF5), is a cell surface receptor 
protein found on antigen-presenting cells such as B cells, dendritic 
cells, and macrophages. It plays a crucial role in the immune system 
by providing co-stimulatory signals necessary for the activation of B 
cells and other immune cells (61). CD48 exhibits anti-inflammatory 
properties in Staphylococcus aureus Enterotoxin B-induced 
eosinophilic inflammation (62), while CXCR4 has been associated 
with the anti-inflammatory properties of mesenchymal stromal cells 
(63). Additionally, ICOS/ICOSL upregulation has been linked to 
inflammatory responses and endothelial dysfunction in type 2 
diabetes mellitus (64). Our findings suggest that SLC31A1 and 
PDHA1 may be associated with anti-inflammatory effects based on 
these correlations.

In assessing the predictive potential of DE-CRGs in RA, our 
findings revealed ATP7B to exhibit the most robust diagnostic effect, 
followed by PDHA1 and DLST. The ATP7B gene encodes a protein 
called ATPase copper-transporting beta (ATP7B), which is primarily 
involved in transporting copper ions across cell membranes. This 
protein is crucial for maintaining copper homeostasis within the body 
by facilitating the incorporation of copper into ceruloplasmin and its 
subsequent secretion into the bloodstream (65). Despite its known 
role in copper transport, the precise impact of ATP7B on RA 
pathogenesis remains unclear. However, considering our results 
alongside those of previous investigations, PDHA1 and DLST emerge 
as candidates capable of disrupting intracellular copper homeostasis 
and mitochondrial function in the context of RA. Consequently, these 
findings may offer insights into novel etiological mechanisms and 
therapeutic targets for RA.

In the realm of predictive drugs for RA treatment, focusing on 
DE-CRGs, our analysis pinpointed several key targets, notably 
ATP7A, ATP7B, SLC31A1, GLS, and NFE2L2. The drugs identified 
for targeting ATP7A, ATP7B, and SLC31A1 primarily comprised 
anticancer agents, including thalidomide, progesterone, docetaxel, and 
various platinum-based chemotherapies such as oxaliplatin, 

carboplatin, daunorubicin, and cisplatin. Additionally, a subset of 
compounds, such as methotrexate, glutamine (Gln), and 
dexamethasone, were highlighted for their potential to mitigate the 
catabolism of Gln catalyzed by GLS by bolstering substrate levels. Of 
particular interest were drugs predicted to modulate the NFE2L2 
gene, including Lagascatriol, Andalusol, Irofulven, NK-252, RTA-408, 
and Sulforaphane, which are commonly employed to alleviate 
inflammation associated with RA in clinical practice. These findings 
offer insights into novel candidates for systemic antimicrobial therapy. 
Furthermore, our analysis revealed upregulated expression of ATP7B 
and NFE2L2  in both RA tissues and cell clusters, suggesting that 
attenuating ATP7B decomposition may represent a promising avenue 
for future research into RA treatment.

This research has sparked numerous inquiries that warrant further 
exploration. A heightened emphasis on copper intake from daily 
essentials and diets could yield intriguing insights, enhancing our 
comprehension of the acquired induction and prevention of 
RA. Substantial efforts will be required to elucidate alterations in the 
transcription of DE-CRGs and subsequent post-translational 
modifications of coded proteins associated with mitochondrial 
dysfunction. Moreover, future studies could evaluate the potential 
therapeutic benefits of drugs targeting GLS, ATP7B, and ATP7A in 
the context of RA. Although the study has several limitations, 
particularly the lack of experimental validation, we plan to address 
these through follow-up research. This will include in vitro assays to 
explore the functional roles of ATP7A, ATP7B, and GLS in RA 
pathogenesis, as well as in  vivo models to evaluate their 
therapeutic potential.
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