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Post-stroke cognitive impairment is one of the most common consequences

of stroke, affecting more than half of stroke patients, especially in the geriatric

population. Post-ischemic stroke cognitive impairment (PISCI) is particularly

detrimental, as it can exacerbate a patient’s disability. Given that the severe

consequences of adverse life outcomes are major contributors to disability and

death among survivors of ischemic stroke, preventing stroke and PISCI remains

a fundamental strategy for maintaining optimal brain health. Recent studies

have extensively investigated the epidemiology, diagnosis, and management

of PISCI. Nevertheless, significant gaps persist in our understanding of

its pathophysiological mechanisms and potential therapeutic targets, which

warrants further research. Factors such as baseline brain health, cerebral small

vessel disease, and stroke characteristics (e.g., infarct location, severity, and

morphology) have been associated with PISCI. However, its pathophysiology

remains inadequately understood. Recent research suggests that infarct volume

may serve as a novel indicator for predicting and managing PISCI. Thus, this

review aims to expand our understanding of factors influencing PISCI and to

elucidate its pathophysiological mechanisms. In particular, infarct volume has

been proposed as a potential target and may play a critical role in predicting and

managing PISCI. We advocate for improved and timely predictions of PISCI to

enhance the quality of life for patients and reduce the economic and emotional

burden on caregivers.

KEYWORDS

infarct volume, cognitive impairment, post-ischemic stroke cognitive impairment,
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Introduction

Ischemic stroke is a major cause of disability and mortality worldwide (1). The
prevalence of post-ischemic stroke cognitive impairment (PISCI) has been extensively
studied, but reported rates vary significantly due to differences in the applicability of
cognitive assessment tools and the heterogeneity of study populations (2). A seminal
meta-analysis estimated the prevalence of PISCI to be 53%, with approximately two-
thirds of cases involving mild cognitive impairment and one-third classified as dementia
(3). Notably, the prevalence in hospitalized patients, estimated at around 50%, may
be underestimated, as 4–25% of patients deemed unevaluable remain at high risk for
developing PISCI (4–6). An increasing number of research projects and clinical trials are
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now focused on enhancing acute-phase treatment for ischemic
stroke (7–9). However, it is important to note that post-stroke
complications continue to be the primary contributors to post-
stroke morbidity and mortality on a global scale. PISCI is a
common consequence of stroke that directly affects the patient’s
function and quality of life and places a heavy burden on caregivers
and healthcare systems. The occurrence and development of
PISCI are influenced by multiple factors, including modifiable
and unmodifiable risk factors, comorbidities, stroke characteristics,
baseline brain health, and other elements (10, 11). As a result,
early diagnosis, precise therapy, and comprehensive management
of PISCI have become central research priorities.

The potential pathogenesis of PISCI is complex, with stroke
characteristics such as severity, location, morphology, and a history
of prior strokes being closely associated with its development.
The significance of infarct location in PISCI is highlighted by
lesions in areas critical for cognitive function processing in cerebral
infarctions (12). Recent studies have shown a strong correlation
between PISCI and infarctions in the left frontotemporal and
thalamic regions, as well as the right parietal area (13).
Morevoer, a notable link exists between PISCI and vertebrobasilar
artery stenosis in the posterior circulation, likely resulting from
insufficient perfusion to the hippocampus and posterior cingulate
cortex (14). However, infarct location alone may not suffice to
predict PISCI accurately, prompting researchers to suggest more
comprehensive approaches, such as combining infarct volume
with lesion location and lesion network mapping, to enhance
prediction capabilities. Overall, the potential important role of
infarct volume in PISCI has not been fully explored. Infarct
volume may influence overall brain health and cognitive function,
representing a key area for future research in the prediction and
management of PISCI.

Definition and influencing factors
of PISCI

Post-ischemic stroke cognitive impairment is defined as
encompassing all cognitive impairments that arise following an
ischemic stroke, including both mild cognitive impairment
and dementia (15). These impairments involve not only
deficits localized to the site of the stroke lesion, such as
aphasia or memory dysfunction, but also pre-existing cognitive
impairments exacerbated by the stroke (16). The temporal
pattern of PISCI is highly variable, with the most common
presentation being cognitive impairment occurring within
3–6 months post-stroke. While cognitive impairment can
be reversible during the early post-stroke period, up to one-
third of these patients progress to dementia within 5 years
(17). The current classification of PISCI distinguishes between
early cognitive deficits, identified immediately after the stroke,
and late cognitive deficits, which emerge in the subsequent
months (18).

Post-ischemic stroke cognitive impairment can be
influenced by various factors, including baseline health
status (particularly cognitive state), diagnostic criteria,
demographics, timing of assessment (19), and vascular risk
factors (20). For instance, according to the REGARDS (Reasons

for Geographic and Racial Differences in Stroke) Study,
advancing age is significantly associated with accelerated
cognitive decline following a stroke. For each 1 year
increase in baseline age, the risk of cognitive impairment
at annual follow-up increased by 17% (21). Additionally,
stroke survivors with higher educational attainment may
better compensate for vascular brain injury, thereby reducing
their risk of PISCI.

Among individual vascular risk factors, diabetes and atrial
fibrillation have been identified as strong predictors of PISCI. The
CogFAST (Cognitive Function After Stroke) study reported that
elderly stroke survivors with three or more vascular risk factors had
a 3.6-fold increased risk of developing dementia post-stroke (22).

Cerebral small vessel disease (CSVD) also plays a critical
role as a predictor of dementia in stroke patients. Imaging
markers of CSVD, such as white matter hyperintensities, lacunar
infarctions, cerebral microbleeds, cerebral atrophy, and enlarged
perivascular spaces, independently or synergistically contribute
to the development of PISCI (23). The cumulative burden of
CSVD exacerbates the progression of PISCI by affecting multiple
brain regions and compromising the integrity of specific white
matter tracts. Notably, the preclinical phase of vascular cognitive
impairment linked to CSVD often involves white matter integrity
loss (24). Certain cognitive domains, including attention, executive
function, processing speed, and language abilities, have been
correlated with the extent of white matter lesions in stroke
patients (25). Overall, optimizing the management of stroke-
related factors and vascular risk profiles may help mitigate
the risk of PISCI.

Post-ischemic stroke cognitive impairment is also associated
with other post-stroke complications (26). For example, post-stroke
delirium is a common clinical phenomenon that many researchers
consider indicative of pre-existing cognitive impairment. It has
been associated with an increased risk of cognitive decline following
a stroke. However, the relationship between post-stroke delirium
and PISCI remains unclear, as delirium may interfere with accurate
cognitive assessments (27). Additionally, post-stroke depression
significantly impacts patients’ independence and hinders their
reintegration into community roles, further compounding the
burden of stroke-related complications (28). Studies have found
similarities in the network patterns between depression and
cognitive performance, with psychomotor function and attention
being key components connecting depression and cognition (29).
Symptoms associated with post-stroke depressive apathy (e.g.,
exhaustion, dysesthesia) were significantly associated with greater
impairment of executive function, memory, and overall cognitive
function, implying that patients with cognitive impairment may
benefit from interventions for post-stroke depression (30, 31).

Potential pathogenesis of PISCI

Stroke characteristics

Several stroke characteristics serve as predictors of post-
stroke cognitive decline or dementia, including stroke severity,
infarct location, number of infarctions, and infarct morphology.
For instance, one study reported that severe strokes preceded
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the onset of dementia by an average of 25 years, whereas mild
strokes preceded dementia onset by approximately 4 years (32, 33).
Additionally, an interaction appears to exist between the number
and morphology of infarcts and the development of PISCI (34).
Multiple infarcts have long been recognized as a cause of vascular
dementia, which typically presents as a gradual or fluctuating
decline in cognitive function. A pooled analysis of existing data
revealed that multiple strokes were associated with a 2.8-fold
increased risk of developing post-stroke dementia (32).

The location of the cerebral infarction plays a crucial role
in the manifestation of PISCI symptoms (12). The notion that
strategic infarction (i.e., infarction located in a key area of cognitive
processing) leads to vascular dementia remains controversial, but
most researchers agree that lesion location plays a pivotal role
in the development of PISCI. Strategic locations such as the left
frontotemporal lobe, left angular gyrus, left basal ganglia and
surrounding white matter, left thalamus, right parietal lobe, and
areas supplied by the left middle cerebral artery are associated
with a heightened risk of PISCI (12, 35). Nevertheless, cognitive
impairments in patients with aphasia might be overestimated
due to the overlap of these areas with language functions, which
are integral to cognitive assessments (17). While infarct location
alone may not fully predict cognitive dysfunction, it is often
correlated with specific neurological abnormalities. Its impact on
cognitive function may be synergistic, particularly when combined
with factors such as infarct volume and the burden of cerebral
small vessel disease.

Moreover, PISCI is influenced by the nature and extent of
brain injury associated with specific stroke subtypes, as well as by
long-term, multi-stage diffuse brain injury or the effects of acute
stroke interventions (36). Common cognitive deficits in PISCI
include problems with executive function and attention, although
studies also report widespread deficits across multiple cognitive
domains (37, 38). Similar patterns of cognitive deficits are observed
in patients with intracerebral hemorrhage and acute ischemic
stroke (17, 39), with executive function and verbal memory being
particularly impacted in those with subarachnoid hemorrhage (40).

Brain health status

The predominant pathogenesis of cognitive decline and
dementia following cerebral infarction is largely attributed to
cerebral small vessel disease (CSVD) (19). CSVD is also
an important indicator of brain health, though the precise
pathophysiology of PISCI remains elusive. Factors such as brain
reserve and resilience are critical for brain health. Brain reserve
reflects the disparity between the extent of brain damage and
its clinical manifestations (41), while brain resilience refers
to the brain’s capacity to withstand cumulative damage, with
compensatory mechanisms mitigating its effects (42, 43).

The neurovascular unit (NVU) plays a central role in brain
health, reserve, and resilience at the cellular level. The NVU is
the smallest functional component of brain tissue, consisting of
neurons, glia, and vascular cells (44). It is essential for controlling
cerebral blood flow and preserving the integrity of the brain’s
parenchymal environment (45). Recent discussions on “brain
health” suggest that the NVU’s ability to withstand the impacts of

metabolic diseases, acute inflammation, and cerebrovascular injury
is key (46). Conversely, damage to the NVU can compromise brain
health, leading to stroke, dementia, and other neurological diseases
(47), and its integrity is crucial for promoting optimal brain health.

The mechanism by which NVU dysfunction contributes
to PISCI is multifaceted. First, vascular risk factors lead to
microvascular dysfunction, disrupting the blood-brain barrier,
impairing clearance, and allowing neurotoxic molecules to invade
the brain (46, 48). Second, neuronal injury and neurodegeneration
are accelerated by the buildup of neurotoxic plasma proteins and
a decrease in cerebral blood flow. Third, dysregulation of the
NVU may enhance the production of amyloid beta (Aβ) and
slow its clearance, contributing to Aβ accumulation (49, 50). This
synergistic effect is believed to contribute to the onset of dementia
and cognitive impairment.

Pathological synergistic effects and
genetic contribution

Given the shared risk factors among stroke, dementia, and
PISCI, neuropathology associated with cerebrovascular disease
may accelerate the onset of PISCI (51). For instance, individuals
with mixed neuropathological findings associated with vascular
dementia (VD) and Alzheimer’s disease (AD) have a threefold
higher likelihood of more rapid disease progression compared
to those with only one type of neuropathological finding (52–
54). Stroke or CSVD patients with evidence of Aβ deposition
experience more rapid cognitive decline than those without
Aβ pathology (55). Groundbreaking studies have revealed that
approximately one-third of PISCI cases are associated with AD,
with this relationship further clarified by amyloid positron emission
tomography studies (56–58). These findings suggest that preclinical
AD significantly increases the risk of PISCI. Additionally, cerebral
amyloid angiopathy (CAA), an independent factor associated with
cognitive impairment in AD, has been linked to an increased risk of
PISCI through MRI markers (59). This suggests that CAA may also
contribute to PISCI, warranting further investigation into the role
of comorbid proteinopathies in PISCI pathogenesis.

Genome-wide association studies (GWAS) of stroke and
dementia families provide important insights into their genetic
basis of these conditions (60). Given the interactions and synergies
between VD and AD, genetic factors involved in amyloid
production or elimination pathways may confer susceptibility to
dementia following vascular brain injury (61). A meta-analysis of
genetic polymorphisms identified five polymorphisms associated
with VD, including the Apolipoprotein E (APOE) ε4 allele (62).
The APOE ε4 allele is the strongest genetic risk factor for late-
onset AD (60) and is also associated with CSVD markers and
CAA (63). However, the relationship between APOE and PISCI
is unclear. Stroke survivors homozygous for APOE ε4 have a 2.9-
fold increased risk of developing dementia over 5 years compared
to those homozygous for ε3 (64). Other genetic variants, such as
those in the genes encoding angiotensin-converting enzyme and
endothelial nitric oxide synthase, have been linked to dementia
events in VD and elderly stroke survivors (65, 66). Genetic
screening of stroke survivors may aid early diagnosis of PISCI, and
further research is needed to explore the genetics of PISCI.
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Infarct volume as a new indicator for
PISCI

Infarct volume and prognosis of
ischemic stroke/cerebral infarction

Cerebral infarction results from ischemia and hypoxic necrosis
of brain cells due to insufficient brain tissue perfusion (67). The
outcomes and prognoses of cerebral infarcts vary significantly
depending on their degree and location, underscoring the
importance of precise characterization. Pathologically, brain tissue
damage in cerebrovascular disease is three-dimensional, making
volume-based descriptions of injury and necrosis areas more
accurate, intuitive, and realistic. Furthermore, many large cohort
studies on reperfusion therapy for ischemic stroke also select
participants based on infarct core volume (68, 69), such as the
Endovascular Therapy Following Imaging Evaluation for Ischemic
Stroke 3 (DEFUSE3), which uses a threshold of 70 mL to define the
infarct core volume for case selection (69). It has been found that in
acute ischemic stroke, the larger the volume of irreversible damage,
the more severe and permanent the clinical defect (70).

Although infarct volume is often used as a predictor of clinical
outcomes in acute ischemic stroke and as a surrogate outcome
in several studies, this relationship may not always be linear
(71). Ospel et al. (72) explored the relationship between infarct
volume and clinical outcome, hypothesizing that the relationship
varies depending on infarct size. Their findings demonstrated that
larger infarct volumes in acute ischemic stroke patients correlate
with more severe functional loss, making infarct volume a strong
predictor of clinical prognosis. For small infarcts, infarct volume
does not reliably predict clinical outcomes. However, for moderate
to large infarcts, a linear relationship exists between larger infarct
volumes and a lower likelihood of favorable outcomes. For very
large infarctions, adverse outcomes are almost certain.

These findings suggest that lesion mapping, aimed at
understanding structure-function relationships, may be more
beneficial for smaller infarcts. However, infarct volume, as
a significant marker for predicting the prognosis of cerebral
infarction stroke, serves as a useful surrogate index within a certain
range (72, 73).

Relationship between infarct volume and
PISCI

The relationship between infarct volume and PISCI should
be examined in the context of infarct location, as the location
of cerebral infarction is a key determinant of PISCI. The
association between infarct location and cognitive outcomes has
been extensively studied, highlighting its potential role in the
development of PISCI (12). Increasing research utilizes lesion-
symptom mapping approaches to elucidate the neuroanatomical
bases of specific cognitive processes (74). A study has suggested
that the predictive value of cerebral infarction location for PISCI
is significant. However, lesion location is inherently linked to the
cause of stroke as well as to lesion size and volume. PISCI is
particularly associated with infarctions in the left frontotemporal

lobe, left thalamus, and right parietal lobe (12). Different cognitive
impairments correlate with various infarct locations (75). The
etiology of the stroke, along with the extent and size of the
lesion, are closely associated with PISCI and are directly related
to the lesion’s location. For instance, small subcortical infarcts in
supratentorial areas differ in distribution from cortical and larger
subcortical infarcts (32). Specifically, the left thalamus is a predictor
of PISCI in stroke subtypes involving macrovascular or small vessel
lesions, whereas other subcortical regions become predictive only
after larger cerebral infarctions (12).

A large infarct volume is also a significant risk factor for
cognitive impairment. A study from Indonesia found that patients
with PISCI had higher infarct volumes compared to those without
PISCI, with vascular risk factors, the location of the infarct, and
the severity of the stroke showing no differences between the
groups (76). In line with the findings of Liang et al.’s study
(77), the multivariate logistic regression revealed that patients
with greater infarct volumes (≥0.054 ml) were more likely to
experience PISCI (76). These insights enhance our understanding
of the relationship between infarct volume and PISCI, aiding in its
early prediction and the formulation of better prevention strategies.

In a study of subclinical cerebral infarction following carotid
artery intervention, embolic infarct volume was found to correlate
with cognitive function measured by Rey Auditory Verbal Learning
Test (RAVLT) (78). There was an overall trend of improvement
in RAVLT scores after carotid revascularization, and a significant
increase in infarct volume was observed in patients with decreased
RAVLT, further research also suggested that the volume of embolic
infarcts was associated with long-term cognitive changes. Myers
et al. (79) evaluated the effect of acute minocycline treatment
after stroke on reducing infarct volume and the expression of
chronic microglia and astrocytes in distal white matter regions,
as well as its beneficial effects on various domains of cognitive
function after stroke. Mangin et al. (80) demonstrated that
immunomodulatory drugs could reduce infarct volume and pro-
inflammatory mediators, enhance early neurogenesis, accelerate
sensorimotor recovery, and prevent long-term memory loss in
diabetic mice. Another study on the relationship between acute
infarct volume and health-related quality of life (HRQOL) after
ischemic stroke, which evaluated domain-specific quality of life
scores for acute cerebral infarction at 3 months after stroke,
included a total of 490 patients, and found that infarct volume
was associated with poor prognosis, but more cognitive-related
evaluations are needed because they only focus on general cognitive
concerns (81).

Additionally, the clinical history, burden of cerebral small
vessel diseases, and the interplay between infarct locations are
confounding factors that may collectively influence a patient’s
cognitive function (73). It is important to note that predicting
PISCI does not necessarily imply causality. Attention should also
be given to the dynamic changes in infarct volume during the
acute and subacute phases of stroke, including the progression
and regression of cerebral edema. Over time, the characteristics
of a cerebral infarction on CT/MRI scans evolve as the lesions
progressively become less dense and more distinctly contoured,
which may impact the accurate assessment of infarct volume.
Figure 1 summarizes the influencing factors of PISCI.

Infarct volume may serve as a novel prognostic indicator for
PISCI following cerebral infarction. It is essential to recognize that
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FIGURE 1

Influencing factors of post-ischemic stroke cognitive impairment.

larger infarct areas often encompass critical neurological regions
and cognitive functions, suggesting a higher likelihood of cognitive
deficits. Given the intricate relationship between brain structure
and function, even minor lesions in strategic locations, such as an
anterior choroidal infarction, a small but clinically significant site,
may lead to severe disabilities (82).

However, the ability to reliably predict clinical outcomes based
on infarct volume can be limited at an individual level (70).
Treatment approaches for patients with minor infarcts could
be substantially affected by the involvement of specific critical
anatomical areas. Additionally, the prognosis for small-volume
infarctions may depend not only on the infarct itself but also
on subsequent complications (83), underscoring the importance
of continuous stroke care and the prevention of stroke-related
complications. Prompt, high-quality reperfusion remains crucial to
minimizing infarct volume.

Discussion

Although the pathophysiological processes underlying PISCI
are complex and influenced by numerous factors, it has garnered
significant attention as a major condition affecting brain health in
the elderly. This review examines the definition, influencing factors,
potential pathophysiological mechanisms, and recent research
advances related to PISCI. Additionally, it explores infarct volume
as a potential novel indicator that may enhance the prediction and
management of PISCI.

Attention should also be given to the dynamic nature
of PISCI, where cognitive performance can fluctuate due
to compensatory repairs, secondary neurodegeneration, and
recurring cerebrovascular events (19). The long-term trajectory of
cognitive function following a stroke remains uncertain. A study
that examines long-term cognitive alterations following a stroke
was published on the Stroke and Cognition Consortium (84).
A turning point was found approximately a year after the stroke,
with those suffering from initial ischemic stroke exhibiting a brief
but significant improvement at first, followed by a decline starting

a year later. Similar rates of cognitive change were noted in both
the overall and specific cognitive domains, with the exception of
executive function.

Research on the longitudinal relationship between stroke
severity and cognitive decline is sparse (85, 86). Future studies
should more comprehensively assess the longitudinal changes
in infarct severity and cognitive function, beginning before
the stroke and extending through long-term follow-up. This
evaluation should explore how both the location and subtype
of cerebral infarction influence resultant cognitive impairments.
Understanding the influence of infarction size, location, and
volume on severe stroke outcomes and cognitive recovery is crucial.
The variation in the risk of cognitive impairment by stroke subtype
is not well understood (87), and more studies are needed to evaluate
cognitive outcomes across different stroke subtypes in both short-
and long-term scenarios.

The influencing factors of PISCI are diverse and multifaceted,
with its specific pathogenesis remaining unresolved. Furthermore,
significant challenges persist in elucidating the correlation between
infarct volume and PISCI. Patients’ cognitive symptoms and
prognosis are related to the complex interplay between infarct
volume and location, the subtype and severity of infarction,
the effect of additional problems following infarction, and
the dynamic changes in cognitive function. Multi-subgroup,
multicenter investigations examining cognitive outcomes in
relation to infarct location and volume, particularly through long-
term follow-up studies of longitudinal relationships, represent
promising approaches. Such studies are especially relevant in the
post-pandemic era, where the synergistic impact of COVID-19
infection further elevates the risks of cognitive impairment and
potential new-onset dementia (54).

Conclusion

Post-ischemic stroke cognitive impairment significantly
hinders the recovery process in patients with cerebral infarction.
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It is crucial to focus on stroke-related mental health rehabilitation,
alongside rehabilitation for limb muscle strength, language
functions, swallowing, and others (2, 88). More research is needed
to improve the identification and timely intervention of PISCI.
Although PISCI is influenced by the location of the cerebral
infarction, infarct volume may serve as a novel predictor. However,
given the current state of research, a nuanced analysis of its
relationship with PISCI remains necessary. Future studies should
focus on exploring infarct volume as a new therapeutic target
for PISCI, such as strategies to reduce infarct volume (89), and
utilizing it for risk stratification to develop a PISCI prediction
model. This approach could potentially reduce the onset and
progression of PISCI, improve patient outcomes, and decrease the
public health risk.
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