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Objective: This study aims to construct an effective prediction model for the 
two-year postoperative survival probability of patients with non-small cell 
lung cancer (NSCLC). It particularly focuses on integrating radiomics features, 
including the erector spinae and whole-lung imaging features, to enhance the 
accuracy and stability of prognostic predictions.

Materials and methods: The study included 37 NSCLC patients diagnosed and 
surgically treated at the First Affiliated Hospital of Anhui Medical University from 
January 2020 to December 2021. The average age of the patients was 59 years, 
with the majority being female and non-smokers. Additionally, CT imaging 
data from 98 patients were obtained from The Cancer Imaging Archive (TCIA) 
public database. All imaging data were derived from preoperative chest CT 
scans and standardized using 3D Slicer software. The study extracted radiomic 
features from the tumor, whole lung, and erector spinae muscles of the patients 
and applied 11 machine learning algorithms to construct prediction models. 
Subsequently, the classification performance of all constructed models was 
compared to select the optimal prediction model.

Results: Univariate Cox regression analysis showed no significant correlation 
between the collected clinical factors and patient survival time. In the external 
validation set, the K-Nearest Neighbors (KNN) model based on bilateral erector 
spinae features performed the best, with accuracy and AUC (Area Under the 
Curve) values consistently above 0.7  in both the training and external testing 
sets. Among the prognostic models based on whole-lung imaging features, the 
AdaBoost model also performed well, but its AUC value was below 0.6 in the 
external validation set, indicating overall classification performance still inferior 
to the KNN model based on erector spinae features.

Conclusion: This study is the first to introduce erector spinae imaging features 
into lung cancer research, successfully developing a stable and well-performing 
prediction model for the postoperative survival of NSCLC patients. The research 
results provide new perspectives and directions for the application of radiomics 
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in cancer research and emphasize the importance of incorporating multi-organ 
imaging features to improve the accuracy and stability of prediction models.
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1 Introduction

Lung adenocarcinoma, the major subtype of non-small cell lung 
cancer (NSCLC), often presents with nonspecific symptoms such as 
persistent cough, hemoptysis, chest pain, and dyspnea. These 
symptoms frequently lead to delayed diagnosis, as they are easily 
attributed to less severe respiratory conditions. Advanced imaging 
techniques and histopathological examinations are crucial for accurate 
diagnosis. The overall prognosis for lung adenocarcinoma patients is 
generally poor, particularly in advanced stages, with survival rates 
significantly influenced by the stage at diagnosis, molecular 
characteristics, and treatment response. Early-stage lung 
adenocarcinoma may have a better prognosis, with a five-year survival 
rate of 60–70% if surgical resection is possible. However, for advanced 
and metastatic stages, the prognosis remains grim, with median 
survival times usually measured in months. Emerging targeted 
therapies and immunotherapies show promise in improving outcomes 
for specific genetic subgroups, emphasizing the importance of 
personalized medicine in lung adenocarcinoma treatment 
strategies (1, 2).

Sarcopenia, characterized by the progressive loss of muscle mass 
and strength, is common among older adults and significantly impacts 
their quality of life. Clinically, sarcopenia manifests as muscle 
weakness, reduced stamina, and difficulty performing daily activities 
(3). The condition is associated with adverse outcomes, including 
increased risk of falls, fractures, physical disability, and mortality (4). 
Prognosis varies depending on severity and the presence of 
comorbidities, but early intervention through resistance exercises and 
adequate protein intake can improve outcomes. Regular physical 
activity and nutritional support are crucial in managing sarcopenia 
and preventing its progression (5). Loss of muscle mass is an important 
sign of aging, thus making sarcopenia a hot topic in geriatric research 
(6). As research deepens, the relationship between sarcopenia and 
tumor prognosis has gradually become another research hotspot, 
especially in gastric and esophageal cancers (7, 8). However, in the 
field of oncology, sarcopenia is not clearly defined. Cancer-related 
sarcopenia studies rely on CT-determined muscle mass as a diagnostic 
criterion. More complexly, various CT-derived cut points have been 
used to characterize normal muscle mass in cancer patients. The 
definitions of sarcopenia in gerontological and oncological literature 
partially differ due to different perspectives and outcomes considered 
(9). This paper explores the relationship between sarcopenia and lung 
cancer prognosis by studying the erector spinae muscles.

In the past decade, with the rapid development of artificial 
intelligence (AI), more researchers have been using AI techniques to 
process medical images. In fact, computer algorithms have been used 
in radiology since the 1960s. In recent years, this field has remained a 
research hotspot, particularly in the study of tumor images (10). AI 
has revolutionized medical imaging, enhancing diagnostic accuracy 
and efficiency. AI algorithms, especially deep learning models, can 
analyze complex imaging data, such as X-rays, CT scans, and MRIs, 

to identify disease indicators with remarkable precision. For example, 
AI systems can detect early signs of conditions like lung cancer, stroke, 
and diabetic retinopathy, often with accuracy comparable to or 
surpassing that of experienced radiologists (11). Additionally, AI helps 
quantify disease progression, segment anatomical structures, and 
automate routine tasks, allowing clinicians to focus on more critical 
decision-making aspects. Integrating AI into medical imaging not 
only improves diagnostic outcomes but also facilitates personalized 
treatment plans, ultimately advancing the field of precision 
medicine (12).

Although some studies have explored the relationship between 
sarcopenia and lung cancer, most of these studies have focused on 
assessing the impact of general muscle mass (such as abdominal 
muscle measurements using CT scans), with sample sizes often limited 
to patients with advanced lung cancer (13, 14). There is limited 
research on specific muscles in the thoracic region, particularly the 
erector spinae muscles. The importance of the erector spinae in lung 
cancer patients cannot be ignored (15). These muscles not only play a 
crucial role in maintaining posture, supporting the spine, and assisting 
with respiration but are also among the major muscle groups in the 
thoracic region. Therefore, changes in the muscle mass of the erector 
spinae may significantly influence the prognosis of lung cancer.

In this study, we constructed NSCLC prognostic models using 
tumor imaging features, lung imaging features, and erector spinae 
imaging features, and compared their performance. By analyzing CT 
images, we  used 11 machine learning algorithms and integrated 
imaging data from multiple organs to construct a highly accurate 
prognostic prediction model for lung cancer patients. The motivation 
behind this study is to use imaging technology to precisely assess the 
muscle mass of the erector spinae and explore its clinical significance 
in lung cancer patients (16–18). We aim to specifically investigate the 
relationship between the erector spinae and lung cancer prognosis, 
evaluating the impact of sarcopenia on key clinical outcomes such as 
survival time, treatment response, and postoperative recovery. 
Through this study, we  hope to provide a new, muscle-based 
prognostic marker for clinical use. Specifically, in the context of 
imaging visualization and quantitative analysis, the erector spinae may 
serve as a more sensitive and specific prognostic tool.

2 Materials and methods

2.1 Clinical cohort and data collection

This study received formal approval from the Ethics Committee 
of the First Affiliated Hospital of Anhui Medical University. The 
retrospective study focused on the period from January 2020 to 
December 2021, documenting detailed clinical records of 55 
pathologically confirmed NSCLC patients at our hospital. The 
inclusion and exclusion criteria are detailed in 
Supplementary material 1. During the study period, this patient group 
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did not suffer from other cancers, nor did they have severe fatal 
complications such as organ failure or cardiovascular events. All 
patients met the surgical criteria and successfully underwent radical 
lung cancer surgery at our hospital after CT scans. The surgical 
procedures included thoracoscopic wedge resection, segmentectomy, 
and lobectomy. Following surgery, our hospital implemented 
continuous follow-up according to standard protocols. By June 2024, 
12 patients had withdrawn from the study due to personal reasons, 
and 6 were lost to follow-up, resulting in missing prognostic data. 
Currently, we have successfully collected two-year survival data for the 
remaining 37 patients, with survival time recorded monthly for future 
data analysis and research applications (shown in Figure 1).

Additionally, the research team retrieved two datasets from the 
TCIA public database that met the study requirements, completing the 

download and integration (19–21). The links to the two datasets are 
provided later. Patients were excluded from the study based on several 
criteria to ensure the quality and relevance of the data. Cases with 
incomplete or low-quality CT images, which were deemed insufficient 
for radiomics analysis, were excluded. Additionally, patients lacking 
essential clinical metadata—such as age, sex, diagnostic information, 
and survival data (1-year and 2-year)—were not considered. Patients 
with diagnoses other than lung adenocarcinoma, including squamous 
cell lung cancer and small cell lung cancer, were also excluded. 
Furthermore, cases affected by artifacts, noise, or incomplete regions 
of interest (ROIs) that would hinder accurate segmentation and 
feature extraction were excluded from the analysis. This public dataset 
includes preoperative chest CT scan information and more than 
2 years of prognostic data, providing 98 additional valid cases for this 

FIGURE 1

Clinical cohort establishment flowchart.
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study. Thus, the total dataset for this study covers 135 NSCLC patient 
cases from three centers.

2.2 Clinical cohort statistical analysis

The data collected from 37 patients at our center included 11 
clinical indicators, such as height, weight, and TNM staging, which 
were comprehensively analyzed by the research team (details in 
Table  1). To ensure patient confidentiality, all clinical data were 
anonymized. During statistical analysis, the team used SPSS 27.0 
software for rigorous data processing and GraphPad Prism software 
for precise graphical representation.

For statistical methods, the chi-square test was employed to assess 
differences in categorical variables, while normality tests were first 
conducted for continuous variables, followed by the appropriate t-test 

or Mann–Whitney U test to ensure precise results. Numerical 
variables were presented as medians (with interquartile ranges) and 
means ± standard deviations.

In the field of survival analysis, the team initially utilized 
univariate Cox regression analysis to preliminarily screen for variables 
potentially related to survival time. To further uncover the complex 
relationships among factors, highly relevant clinical data were 
included in a multivariate Cox regression model for in-depth 
identification and modeling, ultimately determining the factors 
significantly impacting survival time. Survival analysis results are 
detailed in Table 2.

Notably, due to patient confidentiality principles, the two public 
databases did not provide detailed clinical information for each 
patient, posing a limitation for this study.

2.3 Radiomics workflow

This study employed a radiomics workflow to construct 
prognostic models, including data acquisition, ROI delineation, 
feature extraction, and AI model construction. The specific 
workflow is illustrated in Figure 2. Our image segmentation process 
was designed to target biologically relevant regions, including 
tumors, lungs, and erector spinae muscles, all of which hold 
prognostic value in lung cancer studies. Using the TotalSegmentator 
v2 auto-segmentation tool, we  ensured efficient segmentation, 
complemented by radiologist supervision to maintain clinical 
accuracy. For feature extraction, we applied a Fixed Bin Number 
discretization strategy to address the heterogeneity of lung cancer 
data and employed Spearman correlation and redundancy removal 
techniques to minimize overfitting. Lasso regression was used for 
feature selection, ensuring the inclusion of statistically and clinically 
significant variables. To evaluate model robustness, we tested 11 
machine learning algorithms across both public (e.g., TCIA) and 
private datasets, using ROC and DCA curves to identify high-
performance models with clinical interpretability. Our study 
prioritizes the application of AI-driven medical imaging to solve 
clinical challenges, with a focus on prognostic outcomes rather than 
delving into the scientific theories behind each radiomics step. 
However, scientifically sound methodologies were incorporated at 
each stage to address the specific challenges of lung 
cancer prognosis.

2.3.1 Acquisition and standardization of imaging 
data

The research team obtained public imaging data from the TCIA, 
consisting of chest CT scan images with original settings retained. The 
public database data had been meticulously annotated with tumor 
target regions and accompanied by patient prognostic information. 
The CT dataset from our research center was derived from 
preoperative chest CT scans of patients. Image acquisition was 
performed using a 256-channel Philips Brilliance i  CT scanner 
(Philips, Eindhoven, Netherlands). During the scans, a 512 × 512 
matrix was used to ensure in-plane resolution remained at a high level 
of 0.62 × 0.62 mm to 0.86 × 0.86 mm, ensuring high image clarity. 
Radiomics workflow quality assessment for the acquired data are 
detailed in Supplementary checklist 1 (22) and 
Supplementary checklist 2 (23).

TABLE 1 Characteristics of the clinical population.

Variable N = 37

Age(years) 59.65 ± 1.5

Gender Male 12 (0.32)

Female 25 (0.68)

Body height(cm) 164.27 ± 1

Body weight(kg) 62.42 ± 1.5

BMI 23.09 ± 0.46

Smoking status
Non-smoking 32 (0.86)

Smoking 5 (0.14)

Number of lymph nodes removed 12.24 ± 1.02

Number of lymph nodes invaded 0.78 ± 0.33

T-stage Tis 1 (0.03)

T1 21 (0.57)

T2 14 (0.38)

T3 1 (0.03)

N-stage N0 28 (0.76)

N1 6 (0.16)

N2 2 (0.05)

N3 1 (0.03)

M-stage M0 37 (1)

Vascular cancer thrombus Positive 9 (0.24)

Negative 28 (0.76)

Neurological invasion Positive 1 (0.03)

Negative 36 (0.97)

Pleural invasion Positive 10 (0.27)

Negative 27 (0.73)

Vacuolar sign Positive 6 (0.16)

Negative 31 (0.84)

Calcification Positive 1 (0.03)

Negative 36 (0.97)

Two-year survival rate
Dead 4 (0.11)

Alive 33 (0.89)
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To ensure consistency between our research center’s imaging data 
and the public database, the research team used 3D Slicer software to 
set the CT image window width (WW) to 149 and window level (WL) 
to 40, adjusting the threshold range to −35 to 115. Additionally, to 
ensure multi-center imaging data consistency, the research team 
performed resampling on all imaging data, standardizing voxel size to 
3 mm × 3 mm × 3 mm.

2.3.2 ROI delineation
Figure 3 presents the complete ROI delineation workflow. The 

study required all lung cancer patients to delineate three target areas: 
the tumor, the entire lung, and bilateral erector spinae muscles. 
During the delineation process, we used the TotalSegmentation v2 
auto-delineation tool to efficiently delineate the lungs and bilateral 
erector spinae muscles. The complete code and scripts are publicly 

TABLE 2 The results of cox univariate analysis.

Variables β S.E Z p HR (95%CI)

Age(years) 0.03 0.06 0.52 0.603 1.03 (0.92 ~ 1.16)

Body height(cm) 0.05 0.08 0.65 0.514 1.05 (0.90 ~ 1.23)

Body weight(kg) −0.06 0.07 −0.78 0.435 0.94 (0.82 ~ 1.09)

BMI −0.37 0.28 −1.31 0.190 0.69 (0.40 ~ 1.20)

Lymph −0.13 0.11 −1.12 0.262 0.88 (0.71 ~ 1.10)

Lymph nodes invaded 0.38 0.22 1.69 0.091 1.46 (0.94 ~ 2.25)

Gender

  Male 1.00 (Reference)

  Female −0.36 1.15 −0.32 0.752 0.69 (0.07 ~ 6.68)

Smoking status

  Non-smoking 1.00 (Reference)

  Smoking 0.76 1.15 0.66 0.512 2.13 (0.22 ~ 20.51)

T

  Tis 1.00 (Reference)

  T1 18.36 25659.08 0.00 0.999 94055544.02 (0.00 ~ Inf)

  T2 17.67 25659.08 0.00 0.999 47027772.01 (0.00 ~ Inf)

  T3 0.00 36287.42 0.00 1.000 1.00 (0.00 ~ Inf)

N

  N0 1.00 (Reference)

  N1 2.23 1.22 1.82 0.068 9.33 (0.85 ~ 102.93)

  N2 −15.47 12116.31 −0.00 0.999 0.00 (0.00 ~ Inf)

  N3 2.64 1.41 1.87 0.062 14.00 (0.88 ~ 223.83)

Vascular cancer thrombus

  Positive 1.00 (Reference)

  Negative 1.13 1.00 1.13 0.256 3.11 (0.44 ~ 22.09)

Neurological invasion

  Positive 1.00 (Reference)

  Negative −17.04 15068.02 −0.00 0.999 0.00 (0.00 ~ Inf)

Pleural invasion

  Positive 1.00 (Reference)

  Negative −0.11 1.15 −0.09 0.927 0.90 (0.09 ~ 8.65)

Vacuolar sign

  Positive 1.00 (Reference)

  Negative −19.28 17501.47 −0.00 0.999 0.00 (0.00 ~ Inf)

Calcification

  Positive 1.00 (Reference)

  Negative −17.04 15068.02 −0.00 0.999 0.00 (0.00 ~ Inf)

HR, Hazard Ratio; CI, Confidence Interval.
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available on GitHub. Since the tool was not developed by us, we did 
not provide a detailed description in the paper to avoid any confusion 
regarding the attribution of the code. If you are interested, you can 
refer to the following link: TotalSegmentator V2 GitHub repository. 
The radiologists involved in the image segmentation process have an 
average of 7 years of experience in imaging and have received 
specialized training in tumor segmentation. Three senior radiologists 
are certified by our center. During the image segmentation process, 
the three radiologists reached a consensus through discussion. 
Although we did not formally report the consistency metrics, the 

disagreements were minimal, and all issues were resolved by 
consensus. Additionally, the file format was converted from DICOM 
to nii.gz before delineation to meet subsequent processing and 
analysis requirements.

2.3.3 Feature extraction and engineering
We selected 5 as the bin number parameter for the Fixed Bin 

Number (FBN) discretization technique (24). This choice was based 
on both literature recommendations and preliminary experiments, 
which demonstrated that five bins provided the most uniform feature 

FIGURE 2

Radiomics workflow diagram.

FIGURE 3

Multiple organ sketching flowchart.

https://doi.org/10.3389/fmed.2025.1517765
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2025.1517765

Frontiers in Medicine 07 frontiersin.org

distribution and optimal statistical stability. The FBN method was 
chosen to ensure consistent feature extraction across heterogeneous 
datasets. During preprocessing, we  used the sitkNearestNeighbor 
interpolation method, which preserved critical edge details required 
for texture and shape-based radiomic analysis. To further standardize 
the images, resampling filters were applied to align voxel spacing 
across datasets, minimizing the impact of imaging protocol variability 
(25, 26).

After completing the feature extraction step, we proceeded with 
the regularization of features. This step is crucial as it scales or 
standardizes the feature values, making different features comparable 
and facilitating subsequent data processing and analysis. To 
comprehensively evaluate the correlation between features, we used 
statistical T-tests and calculated the Spearman correlation coefficient. 
The Spearman correlation coefficient is a non-parametric measure 
that assesses the monotonic relationship between two variables, 
suitable for data not meeting the normal distribution assumption. 
When the correlation coefficient between feature pairs exceeded 0.9, 
indicating high correlation, we  implemented redundancy removal 
measures. Specifically, we retained only one feature from each highly 
correlated pair to simplify the model structure, avoid overfitting, and 
enhance the model’s generalization ability.

Building on this, we further initialized the Lasso (Least Absolute 
Shrinkage and Selection Operator) regression model. Lasso regression 
introduces an L1 regularization term, allowing for the automatic 
selection of features that significantly contribute to the predictive 
target (i.e., non-zero regression coefficients). This step is vital for 
constructing a streamlined and efficient prediction model. Detailed 
information on the engineering processes is provided in Table  3, 
which outlines the operational key points and parameter settings for 
each step. Meanwhile, the extracted feature statistics, including feature 
value distribution and correlation analysis, are visually presented in 
Figure 4.

2.3.4 Modeling using machine learning 
algorithms

In constructing the prediction models, we carefully selected 
key features to serve as inputs for various machine learning 
algorithms. To efficiently train and validate the models, the research 
team first performed a scientific split of the dataset, which included 
data from 98 patients in the public database, into training and 
testing sets at an 8:2 ratio. This step ensured that the models could 
adequately learn the intrinsic patterns in the data during training 

and validate their performance in the subsequent internal 
testing set.

After identifying the optimal prediction model in the training and 
internal testing sets, we further applied this model to the dataset of 37 
patients collected at our center to observe and evaluate the model’s 
generalization performance. This step is crucial for verifying the 
model’s generalizability and practical applicability.

Regarding model selection, the research team conducted 
extensive and meticulous screening work. We comprehensively 
considered multiple factors, including algorithm performance, 
stability, and interpretability, ultimately selecting 11 machine 
learning algorithms for modeling experiments. These algorithms, 
each with unique characteristics, include mainstream and cutting-
edge machine learning techniques such as SVM (Support Vector 
Machine), KNN (K-Nearest Neighbor), RandomForest, ExtraTrees, 
XGBoost (eXtreme Gradient Boosting), LightGBM (Light Gradient 
Boosting Machine), NaiveBayes, AdaBoost (Adaptive Boosting), 
GradientBoosting, LR (Logistic Regression), and MLP (Multi-
Layer Perceptron) (27–30).

After obtaining the model prediction results, we employed various 
methods to evaluate and compare the models’ performance. Firstly, by 
plotting ROC curves and calculating accuracy, we could intuitively 
understand the model’s ability to distinguish between different sample 
categories. Additionally, to analyze the impact of classification 
thresholds on prediction results more deeply, we also plotted DCA 
(Decision Curve Analysis) curves.

3 Results

3.1 Analysis of clinical factors in patients

The research team systematically summarized 17 clinical data 
points from the patients, details of which are clearly presented in 
Table  1. These data are carefully divided into two categories: 
categorical data and continuous variables. Specifically, the categorical 
data include 11 items: gender, smoking habits (whether the patient 
smokes), TNM staging, presence of vascular invasion, neural invasion, 
pleural involvement, presence of cavitation, calcification, and the 
survival status of patients within 2 years. These categorical data are 
detailed in terms of their numbers and proportions for an intuitive 
understanding of the distribution of each category. On the other hand, 
continuous variables include the patients’ age, height, weight, body 
mass index (BMI), the number of lymph nodes removed during 
surgery, and the number of metastatic lymph nodes, totaling six items. 
For continuous variables, we used the mean and standard deviation, 
a common statistical method, to describe the data, aiming to 
accurately reflect data central tendency and dispersion.

To explore which clinical factors could serve as independent 
factors affecting patients’ postoperative survival, the research team 
used a Cox proportional hazards regression model for survival 
analysis, with the patients’ two-year postoperative survival time as the 
dependent variable. Unfortunately, the analysis results showed that the 
collected clinical factors did not show a significant correlation with 
the patients’ survival prognosis, with specific analysis results 
referenced in Table 2. Additionally, it is particularly noteworthy that 
all patients included in this study were in the M0 stage, meaning they 
had no distant metastasis, which is a basic prerequisite for lung cancer 

TABLE 3 Radiomics feature extraction settings.

Setting Determination

Bin Method FBN

Bin Amount 5

Method SitkNearestNeighbor

Resample Filter 1

Resample Spacing X 3 mm

Resample Spacing Y 3 mm

Resample Spacing Z 3 mm

FBN, fixed bin number.
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surgery treatment. Therefore, M staging clinical data were not 
included in the survival analysis to avoid result interference.

3.2 Interpretation of radiomics results

3.2.1 Tumor radiomics
In exploring the construction of prognostic prediction models for 

NSCLC patients using tumor imaging data, we encountered a series 
of challenges that resulted in the overall model performance not 
meeting expectations. The accuracy of the models and detailed data 
are shown in Table  4. Specifically, we  attempted to apply 10 
mainstream machine learning algorithms, including NaiveBayes, 
SVM, KNN, RandomForest, ExtraTrees, XGBoost, LightGBM, 
GradientBoosting, AdaBoost, and MLP. However, when these models 
were tested on the 37 external validation sets meticulously collected 
by our center, their performance was significantly poor, with accuracy 
not reaching the statistically acceptable threshold of 0.5. This result 
clearly indicates that these models may lack sufficient robustness and 
generalization ability in practical clinical classification tasks.

Notably, although the LR model barely achieved an accuracy 
above 0.5 on the external validation set, its performance was unstable 
(see Figure 5). Specifically, the confidence intervals of AUC for the 
LR model in the training set, internal validation set, and external 
validation set showed considerable dispersion, indicating that the 

model’s predictive performance may vary significantly across 
different datasets. Therefore, despite the LR model potentially 
demonstrating some predictive ability in certain cases, we still find it 
challenging to assert that it possesses robust and reliable 
diagnostic performance.

3.2.2 Lung imaging radiomics
In exploring the use of automated delineation technology to 

introduce whole-lung imaging features into machine learning models 
to predict expected survival, we evaluated 11 different algorithms. 
Results indicated improvements in predictive performance compared 
to the baseline. However, in-depth analysis revealed significant 
performance differences between models, with detailed data shown in 
Table 5.

Specifically, the model derived from the RandomForest algorithm 
failed to achieve the 0.5 accuracy threshold in the external validation 
set, indicating insufficient predictive ability. Similarly, the models 
based on LR, NaiveBayes, MLP, and SVM, despite showing some 
potential, did not exceed a prediction accuracy of 0.6 in the external 
validation set, a level generally considered insufficient to demonstrate 
good classification performance. On the other hand, the XGBoost and 
GradientBoosting algorithms exhibited outstanding performance in 
the training set; however, their AUC values significantly declined in 
the external validation set, suggesting possible overfitting to the 
training set. Therefore, these models were not considered optimal 

FIGURE 4

Statistics of image features after multi-organ screening. (A) Remaining image features after screening of tumour images. (B) Remaining image features 
after screening of lung images. (C) Remaining image features after screening of the erector spinae images.
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choices. Additionally, the LightGBM model showed signs of overfitting 
in the internal validation set.

Among the remaining models, the AdaBoost model’s classification 
performance stood out (see Figure 6). In the external validation set, 
its AUC value was closest to 0.6, and its prediction accuracy was 
similar to the best results during training, indicating that the model 
not only had good internal consistency but also demonstrated some 
extrapolation ability. Therefore, the AdaBoost model was considered 
the optimal choice in this study.

3.2.3 Erector spinae radiomics
In the process of constructing predictive models and incorporating 

erector spinae features, we observed a significant increase in AUC 

values for the series of models in the external validation set. This result 
suggests that the models might possess excellent generalization 
performance, with specific data detailed in Table 6. Further in-depth 
analysis of model performance revealed that the NaiveBayes, LR, 
XGBoost, and AdaBoost algorithms did not reach the 0.5 accuracy 
threshold in the external validation set. This led us to conclude that 
these models lacked efficacy in practical classification applications. 
Moreover, from the perspective of classification efficiency, the 
GradientBoosting, LightGBM, SVM, and MLP models also failed to 
reach the 0.6 accuracy threshold in the external validation set, 
indicating unsatisfactory performance in classification tasks.

Among the remaining models, the RandomForest model showed 
significant overfitting in the training set, challenging its reliability in 
practical applications. Additionally, the notable difference in AUC 
values between the training and testing sets for the ExtraTrees model 
raised concerns about the risk of overfitting. However, the KNN 
model maintained stable accuracy and AUC values in both the 
training and testing sets, validating its robustness and generalizability, 
as shown by the ROC curve in Figure 7.

3.2.4 Comparison of optimal models
After a comprehensive analysis of 33 prognostic prediction 

models constructed using tumor, lung, and bilateral erector spinae 
imaging features, we reached several key conclusions. Specifically, 
models built using tumor imaging features demonstrated the lowest 
accuracy in the external validation set, as detailed in Figure 8. In 
contrast, prediction models constructed using lung imaging and 
bilateral erector spinae imaging features showed comparable accuracy 
in the external validation set.

To more comprehensively evaluate these models’ performance, 
we compiled the AUC values for each predictive model in the external 
validation set across the three modalities (tumor, lung, and erector 
spinae), with specific data provided in Table 7. Through comparative 
analysis, we found that predictive models built using erector spinae 
imaging features significantly improved AUC values in the external 
validation set. This discovery further prompted us to conduct a 

TABLE 4 The prediction results of each model based on tumor imaging 
features.

Model_name Task Accuracy AUC

LR

training 0.577 0.644

Internal val 0.75 0.76

External val 0.514 0.523

NaiveBayes

training 0.603 0.661

Internal val 0.85 0.76

External val 0.459 0.591

SVM

training 0.308 0.19

Internal val 0.75 0.48

External val 0.297 0.447

KNN

training 0.769 0.832

Internal val 0.4 0.627

External val 0.351 0.5

RandomForest

training 0.936 0.964

Internal val 0.7 0.64

External val 0.216 0.383

ExtraTrees

training 0.897 0.959

Internal val 0.75 0.667

External val 0.297 0.379

XGBoost

training 0.872 0.942

Internal val 0.45 0.62

External val 0.432 0.538

LightGBM

training 0.782 0.764

Internal val 0.8 0.807

External val 0.486 0.466

GradientBoosting

training 0.949 0.978

Internal val 0.7 0.56

External val 0.459 0.466

AdaBoost

training 0.744 0.871

Internal val 0.7 0.693

External val 0.486 0.489

MLP

training 0.603 0.689

Internal val 0.8 0.72

External val 0.486 0.5

FIGURE 5

LR model ROC curve.
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difference analysis, comparing the erector spinae modality with the 
other two modalities, and the results also confirmed the superiority of 
erector spinae imaging features in the predictive models.

Based on the above analysis, we conclude that the prognostic 
prediction model based on bilateral erector spinae features 
demonstrated the best performance in terms of predictive capabilities. 
The model’s accuracy and AUC values consistently remained above 
0.7 in both the training and external testing sets. Furthermore, in the 
external validation set for diagnosing patient survival, the accuracy 
and AUC of this model were also higher than those of models based 
on lung imaging features. This result partially reveals the potential 
association between muscle mass and the survival period of lung 
cancer patients.

Additionally, we conducted DCA of the best models for whole-
lung radiomics and erector spinae radiomics, as shown in Figure 9. 
The results indicate that both models provided positive benefits to 
classification performance at a threshold level of 0.5. Therefore, within 
a selected threshold range, both models offer practical classification 
value. However, from the prediction results, the KNN model still 
demonstrated the best classification performance. In summary, this 
study not only verified the superiority of prognostic prediction models 
based on bilateral erector spinae features in predicting the survival 
period of lung cancer patients but also provided a new research 
direction for future exploration of cancer patient survival using 
muscle imaging.

4 Discussion

This study meticulously collected 17 clinical baseline data points 
from patients. Univariate Cox regression analysis showed no 
correlation between the collected clinical information and patients’ 
postoperative survival time. As a result, the research team did not 
create a survival prognosis model based on our center’s clinical data. 
Additionally, the patients from the TCIA database lacked personal 
clinical information, precluding further in-depth study. In our 
research, we used machine learning methods to construct a prognostic 
prediction model for lung cancer based on multi-organ imaging data. 
Among them, 37 pathologically confirmed NSCLC patients from our 
center were included, with an average age of 59 years, predominantly 
female and non-smokers. These patients underwent surgical treatment 
and lymph node dissection. Most were in the early stages of lung 
cancer (stage I). During the first- and second-years post-surgery, 
we conducted telephone follow-ups, with four patients having passed 
away (31). The research team also used tumor imaging data from the 
TCIA to construct a prognostic prediction model for NSCLC patients. 
During this process, we  attempted to apply machine learning 
algorithms, including NaiveBayes, SVM, KNN, RandomForest, 
ExtraTrees, XGBoost, LightGBM, GradientBoosting, AdaBoost, LR, 
and MLP. However, when tested on our center’s imaging data, none of 
the models performed well and did not reach the statistically 
acceptable accuracy threshold of 0.5. We speculate this might be due 
to the early stage of the included NSCLC patients and the short 
follow-up period. Subsequently, we  used automatic contouring 
techniques to introduce whole-lung imaging features into machine 
learning models to predict prognosis. Among these 11 models, the 
AdaBoost model showed outstanding classification performance. In 
the external validation set, its AUC value was closest to 0.6, and its 
prediction accuracy was similar to the best results during training, 
indicating that the model not only had good internal consistency but 
also showed some extrapolation ability. Other models performed 
poorly and did not reach the expected accuracy threshold. Therefore, 
in this study, the AdaBoost model was considered the best choice.

The prognosis of lung cancer patients is influenced by several key 
factors. Tumor staging and lymph node metastasis are critical 
determinants, the more advanced the stage and the higher the number 
of lymph node metastases, the poorer the prognosis. Patient age and 
overall health are also important, as older patients and those with 
comorbidities generally have worse outcomes (32, 33). With further 
research, sarcopenia has also been recognized as an important factor 
affecting lung cancer prognosis. In our study, the imaging features of 

TABLE 5 The prediction results of each model based on lung imaging 
features.

Model_name Task Accuracy AUC

LR

training 0.654 0.672

Internal val 0.85 0.893

External val 0.568 0.523

NaiveBayes

training 0.679 0.676

Internal val 0.85 0.92

External val 0.568 0.538

SVM

training 0.705 0.682

Internal val 0.65 0.627

External val 0.568 0.576

KNN

training 0.705 0.73

Internal val 0.55 0.727

External val 0.784 0.576

RandomForest

training 0.885 0.965

Internal val 0.8 0.827

External val 0.486 0.553

ExtraTrees

training 0.808 0.906

Internal val 0.85 0.853

External val 0.622 0.511

XGBoost

training 0.897 0.929

Internal val 0.7 0.747

External val 0.622 0.587

LightGBM

training 0.667 0.762

Internal val 0.9 0.907

External val 0.622 0.542

GradientBoosting

training 0.936 0.951

Internal val 0.75 0.853

External val 0.865 0.538

AdaBoost

training 0.769 0.85

Internal val 0.8 0.853

External val 0.703 0.591

MLP

training 0.692 0.682

Internal val 0.85 0.933

External val 0.568 0.523
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the erector spinae muscles could predict the prognosis of NSCLC 
patients to some extent, which is consistent with previous studies.

Sarcopenia, characterized by the loss of muscle mass and function, 
is a significant prognostic factor in lung cancer patients (34). Studies 
have shown that sarcopenia is highly prevalent among lung cancer 
patients, with a prevalence ranging from 42.8 to 45.0%. The presence 
of sarcopenia is associated with poorer functional status, increased 
postoperative complications, and decreased overall survival. Thus, 
early evaluation of muscle mass and function is crucial (35, 36). 
We incorporated erector spinae features in constructing predictive 
models and observed a significant increase in AUC values in the 
external validation set. The KNN model maintained stable accuracy 
and AUC values in both the training and testing sets, validating its 
robustness and extrapolation. Due to low accuracy and overfitting, 
other models were discarded. In conclusion, the prognostic prediction 
model based on bilateral erector spinae features demonstrated the best 
performance. The model’s accuracy and AUC values remained above 
0.7 in both the training and testing sets. Furthermore, compared to 
models based on lung imaging features, this model showed better 
classification performance in diagnosing patient survival, providing 
new perspectives and possibilities for AI applications in the 
medical field.

Radiomics, which extracts quantitative features from medical 
images, has made significant strides in lung cancer diagnosis and 
treatment. By analyzing imaging data from CT scans, PET scans, and 
MRIs, radiomics can identify subtle patterns associated with tumor 
characteristics, such as genetic mutations and histological subtypes. 
This method shows promise in improving the accuracy of lung cancer 
detection, predicting treatment responses, and personalizing therapy 
plans (37–39). In recent years, the development of AI has further 
propelled advances in medical imaging. Deep learning models, 
especially convolutional neural networks (CNNs), are now routinely 
used to analyze medical images, detecting subtle anomalies that might 
be overlooked by the human eye (40). These AI-driven systems excel 
at identifying early signs of diseases such as cancer, cardiovascular 
disorders, and neurological conditions, facilitating early interventions 
and improving patient outcomes. Additionally, AI algorithms can 

automate image segmentation, reducing the workload for radiologists 
and minimizing human error. Integrating AI into medical imaging 
workflows provides quantitative data and predictive analytics, 
promoting the development of personalized treatment plans (41). In 
this study, we constructed prognostic models for NSCLC patients 
using tumor imaging features, lung imaging features, and erector 
spinae imaging features, and conducted a thorough comparison using 
11 machine learning algorithms. By analyzing CT images, we utilized 
machine learning techniques to construct a high-precision prognostic 
prediction model for NSCLC patients based on erector spinae 
imaging features.

One important finding of our study is that the degree of muscle 
depletion in the erector spinae is correlated with worse clinical 
outcomes. These results are in line with the findings of previous 
studies, who observed that sarcopenia was an independent predictor 
of poor prognosis in NSCLC patients (35, 42). However, unlike many 
previous studies, we included a broader range of lung cancer patients, 
not limiting our sample to those with advanced disease. This inclusion 
of early-stage patients adds depth to our analysis, suggesting that 
sarcopenia may play a role in prognosis even at earlier stages of lung 
cancer, which has not been as well documented in prior research. This 
study addresses several key gaps in the field of radiomics and medical 
imaging. It integrates multi-modal imaging data, combining 
information from lung cancer tumors, the entire lung, and bilateral 
erector spinae muscles, thus improving diagnostic accuracy and 
prognostic prediction. The research goes beyond typical radiomics 
studies by conducting a comprehensive analysis of shape, texture, and 
intensity features, offering a more nuanced understanding of imaging 
data. Validation across multiple datasets from diverse clinical settings 
ensures broader applicability and robustness of the models. 
Furthermore, the study emphasizes the clinical relevance of radiomics, 
translating findings into practical tools for real-time decision support 
and personalized patient care. By integrating CT and employing 
advanced machine learning techniques, the study enhances diagnostic 
accuracy for lung cancer, aiding early detection and improving 
outcomes. Additionally, prognostic models based on radiomics enable 
more precise risk stratification and treatment planning. 

FIGURE 6

Adaboost, KNN and SVM model ROC curves. (A) ROC curves of Adaboost model in training set, internal validation set and external validation set. 
(B) ROC curves of KNN model in training set, internal validation set and external validation set. (C) ROC curves of SVM models in training set, internal 
validation set and external validation set.
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Methodological innovations in feature selection and model validation 
establish a benchmark for future research. Ultimately, this study paves 
the way for the broader adoption of radiomics-based models in 
clinical settings, promising a transformative impact on patient 
management through personalized medicine.

Despite the strength of these findings, several limitations must 
be considered. First, in this study, only traditional machine learning 
methods were used, not deep learning methods. Secondly, our study 
relied on automated segmentation tools for muscle mass 
quantification, which may introduce variability depending on the 
accuracy of the segmentation algorithms. Although we performed 
quality control checks and resolved discrepancies through consensus 
among the radiologists, more research into the precision and reliability 

of these automated methods is necessary to validate their use in 
clinical settings. Thirdly, the number of patients included from our 
center is relatively small. Finally, we did not perform multimodal 
fusion to build potentially more accurate models. During model 
development, we utilized grid search for hyperparameter tuning on 
select classifiers to identify optimal parameter combinations, which 
notably improved performance for models like AdaBoost and KNN 
on the internal validation set. However, most models showed poor 
generalization on the external validation set, with performance 
nearing random levels, indicating limited robustness. We  also 
observed that models such as XGBoost and Gradient Boosting, while 
performing well on the training set, suffered significant AUC declines 
on the external validation set, suggesting overfitting. To address these 
challenges, we  plan to employ more advanced hyperparameter 
optimization techniques, such as Bayesian optimization, and refine the 
feature extraction and selection processes in future studies to enhance 
model performance and clinical applicability. In conclusion, while 
recognizing the current limitations, we  remain committed to 
improving model tuning and predictive outcomes in 
subsequent research.

5 Conclusion

This study investigated the relationship between sarcopenia 
and lung cancer prognosis, focusing on the role of the erector 
spinae muscles. We  found that a reduction in erector spinae 
muscle mass was significantly associated with poor prognosis in 
NSCLC. Unlike traditional studies that focus on abdominal 
muscles, we suggest that the erector spinae may be a more relevant 
and important muscle group in prognostic evaluation of lung 
cancer. Our findings indicate that erector spinae muscle mass can 
serve as a valuable marker for prognosis in lung cancer patients, 
assisting clinicians in making treatment decisions. However, there 
are limitations in this study, such as a small sample size and 
potential reliability issues arising from the accuracy of the 

TABLE 6 The prediction results of each model based on erector spinae 
muscle imaging features.

Model_name Task Accuracy AUC

LR

training 0.705 0.737

Internal val 0.7 0.56

External val 0.486 0.689

NaiveBayes

training 0.654 0.775

Internal val 0.8 0.573

External val 0.378 0.523

SVM

training 0.731 0.72

Internal val 0.75 0.48

External val 0.568 0.705

KNN

training 0.731 0.889

Internal val 0.6 0.713

External val 0.838 0.72

RandomForest

training 0.949 0.983

Internal val 0.65 0.573

External val 0.676 0.761

ExtraTrees

training 0.872 0.929

Internal val 0.75 0.62

External val 0.622 0.648

XGBoost

training 0.885 0.943

Internal val 0.7 0.567

External val 0.378 0.659

LightGBM

training 0.744 0.805

Internal val 0.6 0.513

External val 0.541 0.727

GradientBoosting

training 0.936 0.972

Internal val 0.7 0.58

External val 0.568 0.723

AdaBoost

training 0.821 0.948

Internal val 0.6 0.633

External val 0.351 0.515

MLP

training 0.705 0.801

Internal val 0.75 0.6

External val 0.514 0.659

FIGURE 7

ROC curve of KNN model.
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automatic segmentation tool. Future research should explore 
comprehensive assessments of different muscle groups. 
Furthermore, the molecular mechanisms of muscle loss in lung 

cancer progression should be investigated. Additionally, muscle 
mass assessment tools should be considered for integration into 
clinical practice to guide treatment decisions and improve 

FIGURE 8

DCA curves for Adaboost and KNN models. (A) DCA curve of Adaboost model in training set. (B) DCA curve of Adaboost model in external validation 
set. (C) DCA curve of KNN model in the training set. (D) DCA curves for KNN models in external validation sets.

TABLE 7 Model external validation set AUC comparison based on tumor, lung and erector spinae imaging features.

LR NaiveBayes SVM KNN RandomForest ExtraTrees XGBoost LightGBM GradientBoosting AdaBoost MLP mean z p

Erector 

spinae 

muscle 

imaging 

features

0.689 0.523 0.705 0.72 0.761 0.648 0.659 0.727 0.723 0.515 0.659 0.66 ± 0.08

Tumor 

imaging 

features

0.523 0.591 0.447 0.5 0.383 0.379 0.538 0.466 0.466 0.489 0.5 0.48 ± 0.06 −3.62a <0.001

Lung 

imaging 

features

0.523 0.538 0.576 0.576 0.553 0.511 0.587 0.542 0.538 0.591 0.523 0.55 ± 0.03 −2.73a 0.005

aMann–Whitney method test was used.
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FIGURE 9

Prediction accuracy of all predictive models on external validation set.

patients’ quality of life. In conclusion, our study is the first to 
combine erector spinae imaging features with lung cancer 
research. Additionally, we developed a stable and well-performing 
model to predict the prognosis of NSCLC patients. This study 
provides new directions for the application of radiomics in 
cancer research.
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