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Growth factors IGF-1 and KGF 
and adipose-derived stem cells 
promote migration and viability of 
primary human keratinocytes in 
an in vitro wound model
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Introduction: In the field of plastic surgery, epidermal transplantation is a potential 
treatment for chronic wounds that results in only minor donor site morbidity. 
Improving the regenerative capacities of epidermal grafts or single-cell suspensions 
and therefore accelerating healing processes would be of significant interest.

Methods: In the present study, we analyzed the effects of growth factors and 
adipose-derived stem cells (ADSCs) on keratinocyte properties. For optimum 
translation into the clinical setting, primary human keratinocytes and patient-
matched ADSCs were isolated and used in an in vitro wound model.

Results: The keratinocyte migration and viability increased after treatment with 
the growth factors insulin-like growth factor 1 (IGF-1) and keratinocyte growth 
factor (KGF). A similar effect was observed with the use of a concentrated ADSC-
conditioned medium (ADSC-CM). It was further possible to isolate the keratinocytes 
in a xenogen-free medium, which is essential for clinical translation. Importantly, a 
patient-dependent influence on the effects of the growth factors and ADSC-CM 
was observed.

Discussion: This study provides potential for the improvement of epidermal 
transplantation in the treatment of chronic wounds using xenogen-free isolated 
and cultivated keratinocytes, growth factors, and ADSC. Translating these results 
into clinical application may help accelerate wound healing and shorten the 
time until patients can return to everyday life.
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1 Introduction

In the field of plastic and reconstructive surgery, skin transplantation plays a major role in 
treating many different diseases. The range of indications includes wounds from burns, trauma, or 
previous surgery, as well as diabetic or pressure ulcers and autoimmune or vascular diseases. 
Chronic wounds are especially challenging to treat. They are a burden not only on the patient, with 
high morbidity and mortality rates (1, 2) and a poorer quality of life (3), but also on the economy 
due to factors such as insurance costs. Therapeutic approaches are complex, time-consuming, 
require special medical expertise, and involve high costs (4, 5). Since chronic wounds are linked to 

OPEN ACCESS

EDITED BY

Elisa Belluzzi,  
University of Padua, Italy

REVIEWED BY

Stefano Bacci,  
University of Florence, Italy
Marcin Tomsia,  
Medical University of Silesia, Poland

*CORRESPONDENCE

Raymund E. Horch  
 raymund.horch@uk-erlangen.de

†PRESENT ADDRESSES

Ajay Peddi,  
Institute of Clinical Radiology, University 
Hospital Münster, Münster, Germany
Anja M. Boos,  
Department of Plastic and Hand Surgery, Burn 
Center, University Hospital RWTH Aachen, 
Aachen, Germany

RECEIVED 23 October 2024
ACCEPTED 20 January 2025
PUBLISHED 06 February 2025

CITATION

Stadelmann N, Horch RE, Schmid R, 
Ostendorf D, Peddi A, Promny T, Boos AM and 
 Kengelbach-Weigand A (2025) Growth 
factors IGF-1 and KGF and adipose-derived 
stem cells promote migration and viability of 
primary human keratinocytes in an in vitro 
wound model.
Front. Med. 12:1516116.
doi: 10.3389/fmed.2025.1516116

COPYRIGHT

© 2025 Stadelmann, Horch, Schmid, 
Ostendorf, Peddi, Promny, Boos and 
Kengelbach-Weigand. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 06 February 2025
DOI 10.3389/fmed.2025.1516116

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1516116&domain=pdf&date_stamp=2025-02-06
https://www.frontiersin.org/articles/10.3389/fmed.2025.1516116/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1516116/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1516116/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1516116/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1516116/full
mailto:raymund.horch@uk-erlangen.de
https://doi.org/10.3389/fmed.2025.1516116
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1516116


Stadelmann et al. 10.3389/fmed.2025.1516116

Frontiers in Medicine 02 frontiersin.org

age or preconditions such as diabetes or obesity—conditions increasingly 
prevalent in industrialized countries—approximately 1 to 2% of the 
population will suffer from a chronic wound at least once during their 
lifetime (6, 7). There are various approaches to treating chronic wounds, 
including debridement, hyperbaric therapy, and vacuum-assisted closure 
therapy, which mainly aim to prepare the wound bed for reconstructive 
surgery, such as the adaptation of wound edges, flap surgery, or autologous 
tissue transplantation (8, 9). In chronic and acute larger surface wounds, 
autologous skin transplantation, full-thickness skin grafts, and split-
thickness skin grafts are the most commonly used surgical treatments. 
Either the epidermis in combination with the dermis in its full thickness 
or the epidermis with a portion of the dermis in varying thickness are 
harvested and transplanted. Pure epidermal grafts are less commonly 
used. Billingham and Reynolds (10) published the use of pure epithelial 
grafts in 1952, which was later described by Kiistala (11) in 1964. They 
further reported on the application of epithelial cell suspensions in 1957 
(12). The challenge, however, was fixing cell suspensions to the recipient 
wound bed long enough for adequate attachment and healing. Hunyadi 
et al. (13) described the use of fibrin to fix epithelial cells to wounds. 
Experimental and clinical research by Horch et al. (14–16) validated this 
concept for burn and chronic wounds. In the literature, other keratinocyte 
carrier materials, such as hyaluronic acid membranes (17), have shown 
promising results. Pure epithelial grafts have the advantage of creating 
only minimal donor site morbidity, and it has been suggested that 
autologous keratinocytes could be the key to closing chronic wounds (18, 
19). Recently, an automated device was developed for the simultaneous 
harvesting of multiple epidermal grafts in a standardized way for clinical 
use (20, 21). It has been shown that epidermis grafts secrete growth 
factors, such as vascular endothelial growth factor (VEGF), transforming 
growth factor alpha (TGF-α), platelet-derived growth factors AA and AB/
BB (PDGF AA, PDGF AB/BB), hepatocyte growth factor (HGF), and 
granulocyte colony-stimulating factor (G-CSF) (20, 22–26). These growth 
factors can stimulate the migratory behavior of keratinocytes, leading to 
faster wound closure (27).

The dermal wound healing response is usually divided into partly 
overlapping phases, including hemostasis, inflammation, proliferation, 
and dermal remodeling (28, 29). After stopping blood loss and restoring 
the barrier function by forming a platelet and fibrin clot, the 
inflammatory response follows to prevent pathogenic infection. This is 
followed by the proliferative phase, which includes the re-epithelialization 
process. Activated keratinocytes undergo partial epithelial-mesenchymal 
transition, changing from their stationary cobblestone-like cell 
morphology to a flat, motile form (30, 31). Lamellipodial crawling 
allows keratinocyte migration into the damaged area (32), while 
keratinocytes behind the migrating epithelium show higher proliferative 
activity to sustain the cell supply (33). The migratory process is halted 
by contact inhibition, keratinocytes reattach and readopt their stationary 
cell morphology once wound coverage is completed (34).

The possible causes for the impairment of wound healing in chronic 
wounds are manifold, including cellular senescence, excessive 
inflammation, sustained hyperglycemia and diabetes-associated 
symptoms, chronic infections, and multifactorial epidermal aberrations 
(28, 35, 36).

Several proteins might support wound healing. Epidermal growth 
factor (EGF) is a member of the EGF family secreted by platelets, 
fibroblasts, and macrophages. It has a paracrine effect on keratinocytes 
(37). Its ligands bind to the EGF receptor (EGFR) (38), initiating a 
signaling pathway that can ultimately lead to increased re-epithelialization 

by promoting keratinocyte migration and proliferation (39–41). Insulin-
like growth factor 1 (IGF-1) is a member of the IGF family. It is mainly 
synthesized by hepatic tissue, though extrahepatic tissues are also able to 
produce it through autocrine mechanisms (42). Bound to specific 
binding proteins, it circulates in the blood (43). The proteins IGF-1 and 
IGF-2 regulate tissue growth, development, and regeneration (44). IGF-1 
stimulates keratinocyte re-epithelialization and proliferation (45), even 
in irradiation-damaged keratinocytes (46), and it is found in high 
concentrations in cutaneous wounds (47–49). It also leads to wound bed 
contraction, thus reducing the distance between the wound edges (50). 
Keratinocyte growth factor (KGF), also known as FGF7, is a protein from 
the fibroblast growth factor (FGF) family. It is produced by mesenchymal 
cells and binds to the high-affinity receptor FGFR1-IIIb on epithelial 
cells, thus exerting a paracrine effect (51). In injured tissue, KGF is highly 
upregulated (52) and likely promotes the migration, proliferation, and 
differentiation of various epithelial cells, including epidermal 
keratinocytes (53–55). Due to its positive impact on wound healing, 
various therapeutic methods have been evaluated, such as topical 
application, incorporation into biomaterials-based vehicles, and as a 
product of transfected cells in gene therapy approaches (56). Thymosins 
are a family of small proteins originally isolated from the thymus. The 
most abundant member is Tβ4. Tβ4 is also found in wound fluid (57) 
and can be released by platelets, which are the first cells to appear in 
wounds, and cross-linked to fibrin by transglutaminase (factor XIIIa) 
(58). Tβ4 has been studied in both in vitro and in vivo models to evaluate 
its effect on angiogenesis and tissue regeneration. In different models, 
wound healing could be supported by Tβ4 (59–61).

In addition to growth factors, subcutaneous adipose tissue, such as 
adipose-derived stem cells (ADSCs), plays a significant role in wound 
healing (62). ADSCs are multipotent mesenchymal stem cells with the 
ability to differentiate into adipogenic, chondrogenic, and osteogenic 
cells (63). They secrete a variety of growth factors that stimulate 
keratinocyte migration, proliferation, and differentiation, including 
KGF, EGF, IGF-1, HGF, members of the VEGF family, basic fibroblast 
growth factor (bFGF), and PDGF BB (64–69). The paracrine effects of 
the secretome are thought to have a greater impact on tissue 
regeneration than the ability to replace damaged cells (70, 71). As 
ADSCs also possess migratory abilities, they are believed to additionally 
promote wound repair by actively infiltrating the wound (64, 72). 
Furthermore, they have the ability to modulate transplantation tolerance 
by suppressing T-cell-mediated responses that cause tissue rejection (73).

The aim of the study was to identify novel approaches enhancing 
the epidermal wound healing properties of human keratinocytes, 
which can later be easily implemented into the clinical setting. For this 
purpose, an in vitro model of the human epidermis was established 
using primary human keratinocytes from different patients to analyze 
the wound-healing properties of various growth factors such as KGF, 
EGF, IGF-1, and Tβ4, as well as—as a novel approach—a patient-
matched ADSC-conditioned medium (ADSC-CM), with a special 
emphasis on interpatient differences.

2 Materials and methods

2.1 Tissue collection from the patients

Human keratinocytes for all experiments, except those conducted 
in a xenogen-free medium, were isolated from tissue samples obtained 
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from eight patients of both genders (two men and six women) aged 
between 34 and 48 years (mean age 39.5 ± 8.3 years). These patients 
had undergone body contouring surgery in the following regions: 
abdominal (n = 6), abdominal and upper thigh (n = 1), and upper arm 
(n = 1). Of the patients, five had lost weight preoperatively solely 
through lifestyle changes, such as diet and exercise, while three had 
undergone bariatric surgery. The body mass index (BMI) reduction 
ranged from 11.7 to 43.8 kg/m2 (22.6 ± 9.8 kg/m2). In all experiments, 
the number of the patients included was indicated as n. Specific 
information about the patients can be found in Table 1. Symbols were 
used for data visualization in dot plot graphs.

Keratinocytes for the experiments conducted in the xenogen-free 
medium were isolated from five patients (four women and one men), 
aged between 43 and 60 years (mean age 54.3 ± 7.9 years), who had 
undergone body contouring surgery in the abdominal region. One of 
the patients had lost weight preoperatively solely through lifestyle 
changes, such as diet and exercise, three had undergone bariatric 
surgery, and one did not lose any weight before having abdominal 
tissue surgically removed. The BMI reduction ranged from 0.0 to 
49.8 kg/m2 (26.2 ± 19.0 kg/m2).

Human tissue collection was approved by the Ethics Committee 
of the Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 
Germany (Ethics number 264_13B), in accordance with the World 
Medical Association’s Declaration of Helsinki. Informed consent was 
obtained from all patients. An overview of the experimental groups 
can be found in Table 2.

2.2 Isolation, cell culture, and 
characterization of the human 
keratinocytes

Keratinocyte isolation was performed according to the protocol 
of the “Epidermis Dissociation Kit, human” (Miltenyi Biotec GmbH, 
Bergisch Gladbach, Germany). In brief, the skin was washed in 
phosphate-buffered saline (PBS, Sigma-Aldrich Corporation, St. 
Louis, MO, United States), and subcutaneous fat was removed. The 
skin pieces of approximately 4 mm in diameter were enzymatically 
digested using the kit’s enzymes for 18 h. Afterward, the epidermis was 
peeled off, further digested, and dissociated using a gentleMACS C 
Tube and a gentleMACS™ Octo Dissociator (Miltenyi Biotec GmbH, 
Bergisch Gladbach, Germany) with running program B. The cells were 
resuspended in a complete keratinocyte growth medium (KGM) with 

the following supplements: Bovine pituitary extract (BPE), EGF 
(recombinant human), insulin (recombinant human), hydrocortisone, 
epinephrine, transferrin-5 (human), and CaCl₂ (Keratinocyte Growth 
Medium 2, PromoCell GmbH, Heidelberg, Germany), along with 1% 
penicillin-streptomycin. The cells were then seeded at approximately 
5.0 × 106 cells per 75-cm2 cell culture flask coated with 3 μg/cm2 rat 
tail collagen type I (Sigma-Aldrich Corporation) and incubated at 
37°C and 5% CO2. The medium was changed after 48 h, followed by 
changes every 2 to 3 days. Antibiotics were omitted after 1 week of 
cultivation. The keratinocytes were split at a 1:3 ratio using Accutase 
(Sigma-Aldrich Corporation). After reaching 90% confluence, the 
keratinocytes from passages 3–6 were used for experiments.

For cell characterization, a monoclonal mouse anti-human 
cytokeratin antibody (clone MNF116, against cytokeratin 5, 6, 8, 17, and 
19; Dako, Agilent Technologies, Inc., Santa Clara, CA, United States) was 
used. In brief, the cells were fixed using 4% buffered formaldehyde (Carl 
Roth GmbH + Co. KG, Karlsruhe, Germany), blocked with 5% goat 
serum (Sigma-Aldrich Corporation), and incubated with the primary 
antibody (0.64 μg/mL) for 1 h. An appropriate isotype control (Dako) was 
performed. As a secondary antibody, an Alexa 488 goat anti-mouse 
antibody (4 μg/mL) (Life Technologies GmbH, Carlsbad, CA, 
United States) was used. Images were taken using an Olympus IX83 
microscope with cellSens (Olympus Corporation, Tokyo, Japan).

2.3 Isolation and cell culture of the human 
ADSCs

Human ADSCs were isolated from the same tissue samples as the 
keratinocytes. Approximately 30 mL of fat tissue was minced into 
small pieces of less than 2 mm3 and incubated in 0.1% collagenase in 
PBS (collagenase type I: Biochrom GmbH, Berlin, Germany) at 37°C 
for 120 min while continuously shaking it on a tube roller. The 
digestion was stopped by adding 20 mL of minimal essential medium 
alpha (MEM α) (Gibco™, Thermo Fisher Scientific Inc., Waltham, 
MA, United States) and 10% fetal calf serum (FCS Superior, Biochrom 
GmbH) and centrifuged at 400 g for 10 min. The top fluid and fat 
layers were discarded, and the pellet was dissolved in 15 mL of a red 
blood cell lysis buffer [17 mM TRIS-hydroxymethyl-aminomethane 
(Sigma-Aldrich Corporation), 16 mM NH4Cl (Sigma-Aldrich 
Corporation)] for 10 min at room temperature. After centrifugation, 
(300 g, 10 min) the pellet was resuspended in 10 mL of PBS, filtered 
through a 100-μm cell strainer, and centrifuged again (400 g, 10 min). 

TABLE 1 Patient information for tissue collection.

Symbols in 
figures

Tissue origin Sex Age (y) BMI-reduction 
(kg/m2)

T2D Skin disease Weight loss

- Abdomen M 34 16.8 No No Lifestyle

■ Abdomen + upper thighs W 42 26.7 No No Lifestyle

- Abdomen W 38 11.7 No No Lifestyle

▼ Abdomen W 46 23.9 No No Surgery

▲ Abdomen W 48 22.1 No No Surgery

★ Abdomen M 48 43.8 No No Surgery

♦ Abdomen W 40 15.6 No No Lifestyle

● Upper arms W 34 20.3 No No Lifestyle
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The cells were resuspended in 10 mL of MEM α with 10% FCS and 1% 
penicillin–streptomycin, seeded in 75-cm2 cell culture flasks, and 
incubated at 37°C and 5% CO2. The medium was changed after 48 h, 
followed by changes every 2 to 3 days. Antibiotics were omitted after 
three medium changes. When reaching 80–90% confluence, the 
ADSCs were split at a 1:3 ratio using Accutase. The ADSCs from 
passages 3 to 4 were used for the production of a conditioned medium.

2.4 Production of the ADSC-conditioned 
medium

The ADSCs were cultivated in MEM α with 10% FCS at 37°C and 
5% CO2 until reaching 80–90% confluence. After washing the cells 
two times with PBS, they were incubated with 10 mL of MEM α 
without FCS for 24 h. An ADSC-CM was harvested and concentrated 
at 4,000 g for 30 min using a centrifugal filter device [Amicon Ultra-15 
Centrifugal Filter Device (Sigma-Aldrich Corporation)]. The 
concentrate was dissolved in a keratinocyte basal growth medium 

supplemented with CaCl2, hydrocortisone, transferrin-5, and 
epinephrine (from Keratinocyte Growth Medium 2 KIT, PromoCell 
GmbH) to obtain a 3-fold or 2-fold CM, which was stored at −80°C 
until usage. For control groups, MEM α without FCS was used and 
treated in the same way as the conditioned medium.

2.5 Migration or 2D wound healing assay

Cell migration or 2D wound healing assays were carried out using the 
OrisT™ Cell Migration Assembly Kit (Platypus Technologies, Madison, 
WI, United States) according to the manufacturer’s instructions. A 96-well 
plate was coated with 3 μg/cm2 rat-tail collagen, and the detection zones 
were covered using OrisT™ Cell Seeding Stoppers. The keratinocytes 
were seeded in duplicates in KGM in the 96-well plate at a density of 
6.0 × 104 cells per well. After 4 h at 37°C and 5% CO2, the Cell Seeding 
Stoppers were removed and the wells were washed two times with PBS to 
remove unattached cells. Subsequently, the stimulating effect of 
recombinant human KGF, EGF, and IGF-1 (Biolegend, San Diego, CA, 

TABLE 2 Overview of the experimental groups.

Cell culture assays Migration assay Viability assay Transmigration assay

Growth factor groups KGF 1/10/100 ng/mL

IGF-1 1/10/100 ng/mL

EGF 1/10/100 ng/mL

negative control: SRM

positive control: KGM

(shown in Figure 3A)

KGF 1/10/100 ng/mL

IGF-1 1/10/100 ng/mL

EGF 1/10/100 ng/mL

negative control: SRM

positive control: KGM

(shown in Figure 5A)

KGF 100 ng/mL

IGF-1 100 ng/mL

KGF 100 ng/mL + IGF-1 100 ng/mL

negative control: SRM

positive control: KGM

(shown in Figure 3B)

KGF 100 ng/mL

IGF-1 100 ng/mL

KGF 100 ng/mL + IGF-1 100 ng/mL

negative control: SRM

positive control: KGM

(shown in Figure 5B)

ADSC-CM groups 2-fold concentrated CM

3-fold concentrated CM

2-fold concentrated SRM

3-fold concentrated SRM

(shown in Figure 4)

2-fold concentrated CM

3-fold concentrated CM

2-fold concentrated SRM

3-fold concentrated SRM

(shown in Figure 6)

Growth factor groups in a 

xenogen-free medium

KGF 100 ng/mL + IGF-1 100 ng/mL

negative control: reduced EpiLife™ medium (rELM)

positive control: full ELM

(shown in Figure 7)

Tβ4 groups Tβ4 0.1/1/10/100/1,000/10,000 ng/mL

negative control: SRM

positive control: KGM

(shown in Figure 8A)

Tβ4 0.1/1/10/100/1,000/10,000 ng/mL

negative control: SRM

positive control: KGM

(shown in Figure 9A)

Tβ4 0.1/1/10/100/1,000/10,000 ng/mL

negative control: SRM

positive control: KGM

(shown in Figure 8B)

Tβ4 0.01/0.1/100 ng/mL

negative control: SRM only supplemented with 

CaCl₂

positive control: KGM

(shown in Figure 9B)

Tβ4 0.01/0.1/100 ng/mL

negative control: SRM

positive control: KGM

(shown in Figure 9C)
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United States) at concentrations of 1 ng/mL, 10 ng/mL, and 100 ng/mL 
(n = 6), a combination of 100 ng/mL KGF and 100 ng/mL IGF (n = 6), or 
Tβ4 [provided by Prof. Dr. Hannappel, Institute for Biochemistry, 
Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany] at 
concentrations of 0.1, 1, 10, 100, 1,000, and 10,000 ng/mL (n = 1) in the 
standardized reduced medium (SRM) (keratinocyte basal growth 
medium supplemented with CaCl2, hydrocortisone, transferrin-5, and 
epinephrine from the Keratinocyte Growth Medium 2 KIT) was analyzed. 
As a control, the standardized reduced medium without growth factors 
was used. As a positive control, KGM was used. The ADSC-CM and 
respective controls were used at 2- and 3-fold concentrations (n = 6).

The cell migration into the detection zones was captured at time 
points 0 h, 5 h, and 10 h. The uncovered or cell-free area was measured 
microscopically with one image per well at 40-fold magnification 
(Olympus IX83, cellSens Software) using Fiji Is Just ImageJ (Fiji, 
RRID:SCR_002285) 1.51u, an extended distribution of ImageJ. The 
measurements of the remaining uncovered area in pixels or μm2 after 5 h 
and 10 h were relatively compared to the cell-free area at time point 0, 
with the latter being defined as 1.

2.6 Viability assay

A total of 2,000 keratinocytes per well were seeded in triplicate in 
96-well plates with 100 μL of KGM, coated with 3 μg/cm2 rat-tail collagen. 
After incubation for 4 h at 37°C and 5% CO2, the medium was replaced 
with a medium supplemented with either recombinant human KGF, EGF, 
or IGF-1 (Biolegend, San Diego, CA, United States) at concentrations of 
1 ng/mL, 10 ng/mL, and 100 ng/mL (n = 6) or a combination of 100 ng/
mL KGF and 100 ng/mL IGF (n = 5) in the standardized reduced 
medium. The effect of Tβ4 [provided by Prof. Dr. Hannappel, Institute for 
Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 
Germany] at concentrations of 0.1, 1, 10, 100, 1,000, and 10,000 ng/mL 
was analyzed in the standardized reduced medium (n = 3). For further 
evaluation, Tβ4 (PromoCell GmbH) at concentrations of 0.01, 0.1, and 
100 ng/mL was analyzed in either the standardized reduced medium or 
the keratinocyte basal growth medium supplemented with only CaCl2 for 
comparison (n = 2). As a control, the keratinocytes were incubated in the 
same medium without growth factors. As a positive control, KGM was 
used. The ADSC-CM and respective control groups were used at 2- and 
3-fold concentrations (n = 5). At time points 1, 4, and 7 days, 10 μL of a 
CCVK-I/WST-8 solution (Colorimetric Cell Viability Kit I, PromoCell 
GmbH) was added to each well and incubated at 37°C for 2 h, protected 
from light. Cell viability was measured at 450 nm with a reference 
wavelength of 600 nm (MultiskanTM GO, Thermo Fisher Scientific Inc.). 
The medium was changed after 2 and 4 days. Absorbance at day 1 was set 
to 1, and the relative increase in absorbance after 4 and 7 days 
was calculated.

2.7 Transmigration assay

Transmigration assays were carried out using 24-well plates with 
ThinCert™ transwells featuring a pore size of 8 μm (Greiner Bio-One 
GmbH, Frickenhausen, Germany). After filling the lower chamber with 
700 μL of the standardized reduced medium supplemented with Tβ4 
(PromoCell GmbH) at concentrations of 0.1, 1, 10, 100, 1,000, and 
10,000 ng/mL, 5.0 × 104 cells per well were seeded in duplicates into the 

upper chamber with the reduced medium without Tβ4 and incubated for 
8 h (n = 4). As a control, the medium without growth factors was used. As 
a positive control, KGM was used. The transwells were fixed in ice-cold 
methanol for 10 min and stained with DAPI (4′,6-diamidino-2-
phenylindole, 1 μg/mL, 10 min, Life Technologies GmbH). The transwells 
were carefully cleaned with a cotton-tipped applicator to remove 
non-migrated cells from the top of the membrane. DAPI-positive cells 
were counted manually using Fiji Is Just ImageJ at 4-fold magnification [4 
pictures or regions of interest (ROI) per well, one picture per quadrant] 
(Olympus IX83, cellSens Software).

2.8 Viability assay of the keratinocytes 
directly isolated and cultivated in a 
non-xenogenic cell culture medium 
supplemented with the growth factors

The human primary keratinocytes were isolated, as described above. 
In a collagen-coated 48-well plate (Coating Matrix Kit, recombinant 
human type-1 collagen, Thermo Fisher Scientific Inc.), 5.0 × 104 
keratinocytes per well were seeded in triplicate in an EpiLife™ medium 
(ELM, Thermo Fisher Scientific Inc.) with a reduced concentration of 
supplements (20% of the regular amount of Supplement S7, Thermo 
Fisher Scientific Inc.) and the addition of 100 ng/mL IGF-1 and 100 ng/
mL KGF at 37°C and 5% CO2. As a control, the same medium without 
growth factors was used. As a positive control, the complete ELM with the 
regular amount of Supplement S7 was used (n = 5). The medium was 
changed every 2 to 3 days. After reaching 50% confluency, at time points 
24, 48, and 72 h, 10 μL of a CCVK-I/WST-8 solution was added to each 
well and incubated for 2 h, protected from light. Cell viability was 
measured at 450 nm with a reference wavelength of 600 nm. Absorbance 
at 24 h was set to 1, and the relative increase in absorbance after 48 and 
72 h was calculated.

2.9 Statistical analysis

Statistical analysis was performed using GraphPad Prism 8.3.0 
(GraphPad Software, La Jolla, CA, United States). Normal distribution 
was tested with the Shapiro–Wilk test. Differences between the groups 
were analyzed. In the case of normally distributed data, one-way ANOVA 
followed by an unpaired t-test was used. For non-normally distributed 
data, the Kruskal–Wallis test and the Mann–Whitney U test were applied. 
Asymptotic significance was used. A p-value of ≤0.05 was considered 
significant. Due to the low number of the patients in the migration assay 
with Tβ4, no statistical analysis was performed.

Figures show the mean ± standard deviation and were created using 
GraphPad Prism 8.3.0. Depicted microscopic images were arranged and 
edited using CorelDRAW X6 (Corel Corporation, Ottawa, ON, Canada).

3 Results

3.1 Isolation of the keratinocytes and 
ADSCs

Human primary keratinocytes were successfully isolated from 
all donors. The cells could be cultivated for at least six passages. The 
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keratinocytes showed the typical cobblestone-like morphology 
(Figures 1A–C) and were cytokeratin-positive (CK 5, 6, 8, 17, and 
possibly 19) (Figure 1C). The keratinocytes from passages 2–4 were 
used for all experiments. The patient-matched ADSCs were 
successfully isolated and cultivated for at least four passages. They 
showed the typical fibroblast-like elongated cell morphology 
(Figure  1D). The ADSCs from passages 1–2 were used for 
all experiments.

Not all assays could be  performed with the same number of 
patients because of insufficient cell numbers. While the effect on the 
migration and viability of single growth factors could always 
be performed with the same six patients, the combined growth factor 
experiments and the ADSC-CM experiments required the inclusion 
of additional patients.

3.2 EGF, IGF-1, and KGF, as well as the 
ADSC-CM, stimulate the keratinocyte 
migration in a patient-dependent manner

The migration of the keratinocytes under the stimulation of EGF, 
IGF-1, and KGF at concentrations of 1, 10, and 100 ng/mL or under 
the stimulation of the patient-matched 2- and 3-fold ADSC-CM was 
quantified after 5 and 10 h (Figures  2–4). In all groups, the 
keratinocytes migrated over time.

In the growth factor groups KGF and IGF-1, there was a 
tendency for higher migration with increasing growth factor 
concentrations, although not statistically significant (Figure 3A). In 
the EGF group, the migration was highest at a concentration of 
10 ng/mL. Compared to the negative control group, tendencies were 
observed for higher keratinocyte migration in all growth factor 
groups. Combining these growth factors led to an increase, although 
not statistically significant, in the migratory behavior of the 
keratinocytes in the majority of the patients compared to the 
stimulation with a single growth factor or the negative control 
group (Figure 3B). Interestingly, greater differences were observed 
between the individual patients. Some patients (marked in 
Figure 3B as a down-pointing triangle, star, and diamond) showed 
a significantly higher migration rate in the combined growth factor 
group compared to the negative group and even the positive control 
group KGM. In contrast, two patients (marked in Figure 3B as an 
up-pointing triangle and circle) showed a relatively low response to 
the combined stimulation.

The keratinocytes cultivated with the patient-matched 
ADSC-CM showed a tendency for a higher migration rate in both 
the 2-fold and 3-fold concentrated CM groups compared to the 
negative control group (Figure 4). The keratinocyte migration in the 
2- and 3-fold concentrated CM groups was similar at time points 
5 h and 10 h to that in the positive control group. Despite the visible 
effect, there was no statistical difference. Likewise, as in the 

FIGURE 1

Cell morphology of the human keratinocytes and ADSCs. (A) Human keratinocytes at passage 2 showing the typical cobblestone-like morphology. 
(B) Human keratinocytes of passage 2 showing typical colony formation. (C) Cytokeratin (green) staining of the passage 2 keratinocytes, 
counterstained with DAPI (blue). (D) ADSCs of passage 2 in typical elongated fibroblast-like morphology. However, few studies have measured the 
exact amounts of growth factors in a human ADSC conditioned medium. In those studies, the reported quantity of growth factors varied considerably 
not only from study to study, but also between individual subjects inside the respective studies. Therefore, high interindividual differences in the 
composition of ADSC conditioned medium is assumed.
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combined growth factor groups, high-responder (marked in 
Figure 4 as an up-pointing triangle, down-pointing triangle, and 
circle) and low-responder (marked in Figure 4 as a square, diamond, 
and star) patients were observed, with the high responding group 
showing above-average stimulation and the low responding group 
showing below-average stimulation. Comparing the average values 
of the 2- and 3-fold concentrated CM groups, no differences in the 
migratory behavior were detected.

3.3 EGF, IGF-1, and KGF, as well as the 
ADSC-CM, stimulate the keratinocyte 
viability

The viability of the keratinocytes under the stimulation of EGF, 
IGF-1, and KGF at concentrations of 1, 10, and 100 ng/mL or under 
the stimulation of the 2- or 3-fold ADSC-CM was quantified after 1, 
4, and 7 days (Figures 5, 6). In all groups, the keratinocytes showed 
increasing viability over time. In the growth factor groups, KGF and 
IGF-1, there was a tendency for higher viability with increasing 
growth factor concentrations compared to the negative control group 
(Figure  5A). In contrast, the viability was lower with higher 
concentrations in the EGF group. At time point 4 days, there was 
significantly higher viability in the IGF-1 100 ng/mL group compared 
to the negative control group.

Combining the growth factors KGF and IGF-1 led to an increase in 
the viability compared to the stimulation with the single growth factors 
(Figure 5B), which became significant on day 4 compared to KGF.

In nearly all patients, while not reaching statistical significance, 
the keratinocytes cultivated with the patient-matched ADSC-CM 

showed higher viability in both the 2-fold and 3-fold concentrated CM 
groups compared to the negative control groups (Figure 6). There were 
also high-responder (marked as a square and circle) and low-responder 
patients with notably above- or below-average stimulation.

The viability of the keratinocytes directly isolated and cultivated 
in the xenogen-free medium supplemented with KGF and IGF-1 at a 
concentration of 100 ng/mL was quantified after 24, 48, and 72 h 
(Figure 7). The keratinocytes showed visibly higher viability with the 
added growth factors compared to the negative control and even the 
positive control groups, although these differences were not 
statistically significant.

3.4 Thymosin beta-4 had no effect on the 
keratinocyte migration, viability, and 
transmigration

For migration, viability, and transmigration assays, Tβ4 was used 
at concentrations of 0.1, 1, 10, 100, 1,000, and 10,000 ng/mL 
(Figures 8, 9). In all groups, the keratinocytes migrated over time. 
There was no notable effect on the keratinocyte migration by Tβ4, 
while stimulation in the positive control (KGM) was possible 
(Figure 8A). Likewise, the transmigration of the keratinocytes could 
not be  stimulated with Tβ4 (Figure 8B). There was no significant 
difference in the number of the transmigrated cells compared to the 
negative control (the absolute average being 25.75 transmigrated cells 
±8.71 per ROI) or positive control (the absolute average being 32.22 
transmigrated cells ±17.59 per ROI) groups.

For viability assays, Tβ4 was supplemented either to the 
standardized reduced medium (Figures  9A,C) or to the reduced 

FIGURE 2

Images of the keratinocyte migration over time. The left image shows the time point at 0 h, and the right image shows the time point at 10 h. The 
borders of the migration front are marked in white.

https://doi.org/10.3389/fmed.2025.1516116
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Stadelmann et al. 10.3389/fmed.2025.1516116

Frontiers in Medicine 08 frontiersin.org

medium with only the addition of CaCl2 (Figure 9B). No significant 
effect on the keratinocyte viability was observed. In all groups, the cell 
viability decreased after day 4, while it increased over time in the 

positive control group (Figure 9A). In the reduced medium with only 
CaCl2, the cells in all groups behaved similarly compared to the 
negative control group (Figure 9B). Similar results were observed 

FIGURE 3

Effects of the growth factors on the keratinocyte migration measured at 5 and 10 h by the relative covered area, with the covered area at 0 h = 0. KGM 
represents the positive control (n = 6). (A) Effects of the growth factors EGF, IGF-1, and KGF at concentrations of 1, 10, and 100 ng/mL on the 
keratinocyte migration. The means are plotted, with error bars indicating standard deviation (n = 6). (B) Effects of the growth factors KGF and IGF-1 or a 
combination of KGF and IGF-1 at a concentration of 100 ng/mL on the keratinocyte migration. The values of the individual patients are plotted using 
different symbols. Horizontal bars represent the mean values of all patients (n = 6).

FIGURE 4

Effects of the 2-fold or 3-fold concentrated ADSC-CM on the keratinocyte migration measured at 5 and 10 h by the relative covered area, with the 
covered area at 0 h = 0. KGM represents the positive control. The values of the individual patients are plotted using different symbols. Horizontal bars 
represent the mean values of all patients (n = 6).
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FIGURE 5

Effects of the growth factors on the keratinocyte viability measured at 1, 4, and 7 days, with the absorbance at day 1 set to 1. KGM represents the 
positive control. (A) Effects of the growth factors EGF, IGF-1, and KGF at concentrations of 1, 10, and 100 ng/mL on the keratinocyte viability. The mean 
values are plotted, with error bars indicating standard deviation (n = 6). (B) Effects of the growth factors KGF and IGF-1 or a combination KGF and IGF-1 
at concentrations of 100 ng/mL on the keratinocyte viability. The mean values are plotted, with error bars indicating standard deviation (n = 5). 
*p ≤ 0.05.

FIGURE 6

Effects of the 2-fold or 3-fold concentrated ADSC-CM on the keratinocyte viability measured at 1, 4, and 7 days with the absorbance at day 1 set to 1. 
The values of the individual patients are plotted using different symbols. Horizontal bars represent the mean values of all patients (n = 5).
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when analyzing the cell viability in the standardized reduced medium 
with the addition of different Tβ4 concentrations (Figure  9C). In 
contrast, in the positive control group, the cells showed the expected 
increase in the viability.

4 Discussion

Skin transplantation is of great significance for the treatment of 
a wide range of diseases. Not only skin injuries but also conditions 

FIGURE 7

Effect of the growth factors KGF and IGF-1 at a concentration of 100 ng/mL in the xenogen-free medium on the keratinocyte viability immediately 
after isolation, measured at 24, 48, and 72 h, with absorbance at 24 h = 1. The mean values are plotted, with error bars indicating standard deviation. 
Negative control: reduced medium; positive control: complete medium (n = 5).

FIGURE 8

Effects of Tβ4 on the keratinocyte migration and transmigration. The mean values are plotted, with error bars indicating standard deviation. KGM 
represents the positive control. (A) Effects of Tβ4 at concentrations of 0.1, 1, 10, 100, 1,000, and 10,000 ng/mL on the keratinocyte migration. The 
covered area was measured at 5 and 10 h, with the covered area at 0 h = 0. (n = 1). (B) Effects of Tβ4 at concentrations of 0.01, 0.1, 1, 10, 100, 1,000, 
and 10,000 ng/mL on the keratinocyte transmigration after 8 h. The control group was set to 1. (n = 4).
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such as vitiligo are successfully treated with epidermal grafts or 
keratinocyte and melanocyte cell suspensions (74, 75). A large 
number of patients with acute or chronic wounds would benefit from 
the development of methods that promote better healing. In previous 
studies, the supportive effect of cultured keratinocytes on the healing 
process of complex wounds has been demonstrated (15). In a 
diabetic porcine model, Velander et al. (76) demonstrated that an 
autologous keratinocyte suspension accelerates the healing of full-
thickness skin defects. In 2017, Buehrer et al. (77) published a study 
that assessed the effectiveness of epithelial micrografts in a 
standardized human wound model with split skin depth. Although 
there was no difference in healing velocity compared to control sites, 
more stable wound healing and subjectively softer, more pliable 
scarring were observed.

Wound healing, in general, is a complex combination of 
physiological processes involving the interaction of various types of 
cells, extracellular matrix components, proteinases, and growth factors 
(78). Growth factors are endogenous signaling molecules that are 
upregulated in response to tissue damage and are secreted by a variety 
of cells, such as fibroblasts and epithelial cells. Binding to their 
respective receptors through autocrine, paracrine, or endocrine 
mechanisms leads to increases in cell migration, proliferation, and 
differentiation (79). There is significant interest in establishing growth 

factor treatments for wound healing. One promising approach is the 
topical administration of growth factors after surgical debridement 
(80). Several studies have focused on growth factor delivery systems 
in the form of particulate systems, scaffolds, hydrogels, and others, 
which offer promising results and a lot of room for future improvement 
in the clinical use of growth factors (79).

This study specifically aimed to identify novel approaches for the 
treatment of epidermal wounds, focusing on the promising future 
clinical use of keratinocyte suspensions or epidermal grafts. For this 
purpose, the wound healing properties under different conditions in 
an in vitro model of the human epidermis, using primary cells from 
various patients, were analyzed. Conditions were defined by the 
growth factors EGF, IGF-1, and KGF, as well as the peptide thymosin 
beta-4 at different concentrations and the use of the ADSC-CM. With 
special attention to the possibility of future clinical application of the 
findings, the cultivation of keratinocytes in a xenogen-free medium 
was successfully carried out.

To evaluate possible interindividual differences in wound healing 
properties between the patients, primary human keratinocytes and 
conditioned media from the patient-matched ADSCs were used for 
the present study. The human keratinocytes and matching ADSCs 
were successfully isolated from the tissue samples obtained from the 
patients who had undergone body contouring surgery in the 

FIGURE 9

Effects of Tβ4 on the keratinocyte viability. The mean values are plotted, with error bars indicating standard deviation. KGM represents the positive 
control. (A) Effects of Tβ4 at concentrations of 0.1, 1, 10, 100, 1,000, and 10,000 ng/mL on the keratinocyte viability at 1, 4, and 7 days, with absorbance 
at day 1 set to 1. (n = 3). (B,C) Comparison of the effects of Tβ4 at concentrations of 0.01, 0.1, and 100 ng/mL in the reduced medium only 
supplemented with CaCl2 (B) and the standardized reduced medium (C) on the keratinocyte proliferation at 1, 4, and 7 days, with absorbance at day 
1 = 1. (n = 2).
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abdominal, upper thigh, or upper arm regions. The approach of 
cultivating human keratinocytes and ADSCs from the same tissue 
(primarily abdominal fat and skin tissue) derived from the same 
human adult to conduct patient-matched experiments is unique to 
this study, as it has not been demonstrated before. Both cell types 
showed typical morphology, and the keratinocytes were 
cytokeratin-positive.

There are several growth factors that have promising effects on the 
functional characteristics of keratinocytes involved in wound healing, 
such as cell migration and proliferation. It has been shown that EGF 
leads to increased re-epithelialization in a wound model by promoting 
keratinocyte migration and proliferation (39–41). Clinically, the 
topical use of EGF increased the healing rate of chronic wounds in a 
phase III clinical trial by Park et al. (81). In the present study, EGF had 
only a small and statistically insignificant effect on the keratinocyte 
migration and no visible effect on the cell viability, even at quite high 
concentrations. Haase et  al. (82) showed that the combination of 
IGF-1 and EGF stimulates migration more effectively than their 
individual use since these growth factors have different effects on 
migration and act complementarily. EGF seems to be more important 
for the de-differentiation of keratinocytes to the epithelial linage and 
for re-establishing the epithelial barrier than for keratinocyte 
migration (83). Cell migration is prominently stimulated by other 
growth factors from the EGF family, such as TGF-α, especially in 
combination with insulin (84). Evaluating the effect of TGF-α or a 
combination of growth factors from the EGF family on keratinocyte 
migration could be of interest for further studies. All EGF ligands are 
synthesized as membrane-anchored forms and must be proteolytically 
processed to become bioactive soluble factors (85). In the natural 
environment, both soluble and matrix-bound EGF can be  found. 
Notably, immobilized EGF seems to play a crucial role in single-cell 
migration (86). One possibility for a better migratory effect could 
be  the usage of photo-immobilized or stabilized EGF (87, 88). In 
contrast, keratinocyte proliferation might be  more effectively 
stimulated by soluble EGF than by immobilized EGF (89).

IGF-1 is a growth factor believed to play a role in wound healing 
as its absence, especially in diabetic patients, may lead to delayed 
wound healing (90). It was reported that deficits in tissue repair in 
diabetic rats could be reversed by continuous application of IGF-1 
(91). Another study with diabetic and non-diabetic mice also showed 
the effectiveness of IGF-1  in wound healing (92). In the present 
experiments, IGF-1 displayed a stronger effect on the keratinocytes at 
higher concentrations, although most of the effects did not reach 
statistical significance. Statistical significance was only observed in the 
viability experiments at the 4-day time point with the IGF-1 
concentration of 100 ng/mL. Interestingly, some results varied 
noticeably between the different patients. It is known that IGF-1 and 
IGF-1R expressions are drastically downregulated in diabetic 
epidermis, leading to reduced wound-healing capacity (90). All 
patients in this study were morbidly obese, as high-grade obesity is the 
main indication for bariatric surgery according to the current German 
S3 guideline. Several studies have highlighted the high prevalence of 
high-grade obesity in individuals with type 2 diabetes mellitus (T2D) 
(93, 94). Therefore, it could be hypothesized that some patients in our 
study may have been experiencing T2D prior to or during their weight 
loss, although none of them had been diagnosed with T2D at the time 
of the body contouring surgery. For the final diagnosis of T2D, insulin 
release by pancreatic β-cells must be insufficient to fully compensate 

for decreased insulin sensitivity, leading to glucose intolerance (95, 
96). This could explain the patient-dependent differences in IGF-1R 
expression and the low- and high-responder patients in our study. 
These findings underscore the importance of therapies specifically 
tailored to individual patients.

KGF can promote the migration, proliferation, and differentiation 
of various epithelial cells, including epidermal keratinocytes (53–55). 
Further, it seems to have a protective effect on damaged epithelial cells 
(55). In induced wound models of porcine skin, an increased 
re-epithelialization rate in partial-thickness wounds after the topical 
application of KGF was observed (97). Several approaches have 
already been developed for delivering KGF to wounds to support 
healing processes (56). In line with these findings, in this study, KGF 
showed stimulatory effects on the keratinocyte migration and viability, 
with an increasing effect at higher concentrations, although none of 
the effects reached statistical significance. Combining the two growth 
factors IGF-1 and KGF led to a notable increase in the cell migration 
and viability, although the mean values did not reach statistical 
significance, most likely due to the highly variable 
interindividual effects.

The above-mentioned growth factors are also secreted by ADSCs 
located in the subcutaneous fat tissue, in close proximity to 
keratinocytes. Several studies have shown the secretion of a wide 
range of cytokines by ADSCs (98, 99). However, few studies have 
measured the exact amounts of growth factors in a human ADSC-
conditioned medium. and if so, the numbers reported on the one hand 
vary considerably from study to study and on the other hand also vary 
within the individual studies resp. in between patients that formed 
part of the study. Authors have reported approximately 12.5 pg/mL of 
KGF (100), 60–100 pg/mL of KGF (101), and 0.1–16 pg/mL of KGF 
(102) in the human ADSC-CM. Some studies measured approximately 
50 pg/mL of EGF (103), while others described levels ranging from 0 
to 40 pg/mL (102). Data on IGF concentrations showed values ranging 
from 0 to 1,500 pg/mL (with high interindividual differences, the 
average being approximately 100 pg/mL) (65) or approximately 
450 pg/mL (102). Various studies have demonstrated promising 
results regarding the application of ADSCs for wound healing. ADSCs 
can be applied directly or their secretome can be used, for example, 
via conditioned media. Many studies have evaluated the potential 
effects of mesenchymal stem cells on wound healing.

Human bone marrow-derived mesenchymal stromal cells 
(BMSCs) were seeded on collagen membranes for transplantation 
onto cutaneous wounds in mice, leading to faster wound healing and 
an increase in endothelial progenitor cells and growth factors in the 
wound (104). Similarly, Luo et al. (105) treated cutaneous wounds in 
an animal model with co-transplantation of microskin and ADSCs, 
which resulted in better epithelialization, thinner scars, and increased 
angiogenesis in the subcutaneous layer compared to control groups. 
In the clinical setting, mesenchymal stem cells from adipose tissue 
should be preferably used since they can be more easily harvested 
from liposuction aspirate or during reconstructive or bariatric surgery 
compared to BMSCs. Furthermore, approximately 40 to 50 times 
more ADSCs per gram of fatty tissue can be isolated compared to 
BMSCs (106, 107). An ADSC-CM could be a promising source for 
wound healing purposes in the clinical setting since it can be stored 
in liquid nitrogen (at −196°C) until further use (108) or even 
lyophilized for simple application at a higher concentration (109). 
Cultivating ADSCs in xenogen-free platelet lysate, as an alternative to 
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fetal bovine serum-containing media, showed promising results 
regarding the paracrine effects of the ADSC secretome on 
keratinocytes in wound healing models (110). In the present study, the 
ADSC-CM exhibited a remarkable stimulating effect on the 
keratinocyte migration and viability, similar to the incubation in 
KGM, although these measurements did not reach statistical 
significance. However, interindividual differences were again 
observed, leading to variations in the effectiveness of the ADSC-CM.

Based on the strongly varying concentrations of growth factors in 
ADSC-CM reported in other studies, we can conclude that there are 
significant interindividual differences in the growth factor concentrations 
of individual ADSC-CM, which could explain the patient-dependent 
variability in the outcomes of the experiments in this study. It could be an 
interesting approach to experimentally compare the individual secretome 
with in vitro results from wound healing experiments. Schmitz et al. 
(111) observed highly differing, patient-dependent functional properties 
in human ADSCs; however, secretome compounds did not correlate 
with these differences. Instead, the authors found that factors such as sex, 
lifestyle changes related to exercise or diet, and especially the amount of 
weight lost appeared to be  important. In earlier studies, results 
concerning the above-mentioned variables varied. Although 
accumulating evidence has linked factors such as increasing age, body 
mass index, and diabetes mellitus to a decrease in the functional potential 
of ADSCs, these effects were not observed in all studies (112). This 
suggests that more studies with higher numbers of patients are needed.

Due to the small patient number in this study, we could not draw 
any conclusion about whether the differing effects of the growth 
factors and ADSC-CM were based on age, gender, BMI reduction, or 
any other factors. Further studies are necessary to define individual 
characteristics that lead to the varying stimulation effects of growth 
factors and ADSC-CM. Nevertheless, based on our results, we can 
conclude that IGF-1 or a combination of IGF-1 and KGF has the 
potential to support wound repair and could be useful as a therapeutic 
tool in wound healing therapies.

The thymus- or platelet-derived protein Tβ4 can be found in wound 
fluids. It was hypothesized that it supports wound healing. This study 
aimed to evaluate its effects on a cellular level. Malinda et  al. (61) 
observed a dose-dependent, biphasic increase in the transmigration of 
mouse keratinocytes in vitro. Stimulating effects on wound healing, 
angiogenesis, and hair follicle development in rodents were also shown 
by Philp et  al. (113). In clinical trials, Tβ4 significantly accelerated 
wound healing in patients with stasis and pressure ulcers (114). 
Interestingly, in our study, Tβ4 did not show any effects on the viability, 
migration, and transmigration of the keratinocytes, although 
experimental settings were repeatedly adapted. Except for studies using 
human corneal keratinocytes (115, 116) or human conjunctival 
keratinocytes (115), most previous studies either focused on rat or mice 
keratinocytes (61) or were performed in an animal in vivo setting (60, 
117), making comparisons with our study difficult. To the best of our 
knowledge, no studies have been published evaluating the effect of Tβ4 
on primary human epidermal keratinocytes. There may be significant 
differences between the response of human keratinocytes and those of 
other mammals. It is also possible that the lack of significant effects in 
this study was due to the low number of patients, particularly considering 
the interindividual differences observed between the patients.

As the growth medium KGM used for the cultivation of 
keratinocytes contains xenogenic BPE, it would not be suitable for 
clinical use in humans. In this study, the keratinocytes were directly 

isolated and cultivated in a xenogen-free medium supplemented with 
the growth factors KGF and IGF-1. If high numbers of keratinocytes 
are needed for wound treatment, it would be possible to isolate and 
culture keratinocytes under GLP principles in such a medium before 
transplantation. For instance, split skin or epidermal grafts could 
be  harvested and keratinocytes could be  isolated, cultured, and 
directly transplanted to the recipient wounds with combined growth 
factor supplementation and/or an ADSC-CM. Studies have shown 
promising effects of autologous keratinocyte injections on full-
thickness wounds in in vivo models (76). As an alternative, epidermal 
grafts, as described by Osborne et  al. (20), could be  directly 
transplanted to the wound. Combining them with growth factors and/
or an ADSC-CM could most probably accelerate wound healing.

Since we observed significant patient-dependent differences in the 
small group of participants, which could lead to varying responses to 
this therapy, it is of utmost importance to conduct further studies on 
this topic. In vitro studies with a larger patient cohort and in vivo 
studies using animal models are recommended to assess whether 
these findings can be validated and translated into clinical trials and 
eventually into general clinical use.

5 Conclusion

In this study, stimulating effects, although not statistically 
significant, on the keratinocyte migration and viability under the 
influence of the growth factors, especially the combination of IGF-1 and 
KGF, and ADSC-CM were observed. The isolation and cultivation of the 
keratinocytes in a xenogen-free medium with the growth factors IGF-1 
and KGF showed promising results. The insights from the present study 
provide a valuable approach in the field of wound healing and epidermal 
transplantation. Epidermal grafts or cell suspensions of keratinocytes 
isolated and cultured under xenogen-free conditions could be combined 
with these growth factors or an ADSC-CM to accelerate chronic wound 
healing, helping patients return to everyday life in a shorter time.
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