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Cirrhotic portal hypertension, the most prevalent and clinically significant complication 
of liver cirrhosis, manifests as elevated portal venous pressure and is associated 
with severe complications. Although much research on the mechanisms of portal 
hypertension has focused on liver fibrosis, less attention has been given to the role 
of intrahepatic and extrahepatic vascular dysfunction, particularly with respect 
to extrahepatic vasculature. While the role of hepatic fibrosis in cirrhotic portal 
hypertension is undeniable, the underlying mechanisms involving intrahepatic 
and extrahepatic vasculature are highly complex. Sinusoidal capillarization and 
endothelial dysfunction contribute to increased intrahepatic vascular resistance. 
Hemodynamic changes in the extrahepatic circulation, including splanchnic 
vasodilation and hyperdynamic circulation, play a significant role in the development 
of portal hypertension. Additionally, therapeutic strategies targeting these vascular 
mechanisms are diverse, including improvement of sinusoidal microcirculation, 
therapies targeting hepatic stellate cells activation, and pharmacological modulation 
of systemic vascular tone. Therefore, in this review, we will discuss the vascular-
related mechanisms and treatment progress of portal hypertension in cirrhosis 
to provide a new theoretical basis and practical guidance for clinical treatment.
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1 Introduction

Liver cirrhosis is pathologically characterized by hepatocyte necrosis, fibrous tissue 
proliferation, and intrahepatic vascular remodeling (1). Portal hypertension is one of the most 
common and severe complications of cirrhosis, significantly impacting patients’ quality of life 
and prognosis (2). Except for fibrosis, the mechanisms underlying portal hypertension are 
complex, involving both intrahepatic and extrahepatic factors. The development of portal 
hypertension is primarily attributed to increased intrahepatic vascular resistance and increased 
portal venous inflow. Increased intrahepatic vascular resistance arises from structural changes 
induced by hepatic fibrosis and regenerative nodule formation. Additionally, the activation of 
hepatic stellate cells (HSCs) and the excessive proliferation of myofibroblasts play crucial roles 
(3). The activation of these cells not only elevates intrahepatic vascular resistance but also 
promotes further fibrosis through the release of various cytokines and growth factors (4). 
Moreover, endothelial dysfunction and microvascular structural alterations significantly 
impact hepatic hemodynamics (5). The anticoagulant properties of liver sinusoidal endothelial 
cells are diminished, promoting thrombosis, which further exacerbates portal hypertension 
(6). Extrahepatically, vascular remodeling of the portal venous system and the formation of 
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portosystemic collaterals are important compensatory mechanisms 
(7). While these vascular changes can partially alleviate pressure 
within the portal system, they can also lead to serious complications 
such as esophageal and gastric varices and gastrointestinal bleeding.

However, the intrahepatic and extrahepatic vascular regulatory 
mechanisms governing portal hypertension are complex and a 
comprehensive understanding remains elusive. Current therapeutic 
options, while capable of reducing portal pressure and preventing 
bleeding to some extent, have limited efficacy and are associated with side 
effects. Therefore, this review aims to systematically summarize the 
intrahepatic and extrahepatic vascular mechanisms of portal hypertension 
in liver cirrhosis, analyze the progress of existing research and explore 
potential therapeutic strategies and future research directions. Through a 
comprehensive understanding of the pathophysiological mechanisms of 
portal hypertension, we expect to provide a theoretical basis and novel 
insights for clinical management, thereby improving the prognosis and 
quality of life for patients with cirrhosis.

2 Intrahepatic vascular changes in 
cirrhotic portal hypertension

During the process of cirrhosis, the liver’s internal vasculature 
undergoes significant structural changes, mainly manifested as 

sinusoidal remodeling and capillarization. In terms of functional 
changes, endothelial cell damage leads to reduced nitric oxide (NO) 
synthesis, imbalance of systolic and diastolic vascular factors, and 
increased blood flow resistance, ultimately leading to the occurrence 
and development of portal hypertension (Figure 1).

2.1 Intrahepatic structural changes

During the development of liver cirrhosis, the intrahepatic 
vascular system undergoes significant structural changes. Major 
structural changes include hepatic sinus remodeling and 
capillarization. Hepatic sinuses are special capillary-like structures. 
Liver sinus endothelial cells (LSECs) in hepatic sinuses have fenestrae 
that allow direct contact between blood and hepatocyte, facilitating 
the exchange of substances (5). In liver cirrhosis, hepatic sinus 
remodeling and capillary vascularization are key pathophysiological 
changes and affect intrahepatic hemodynamics. Hepatic sinus 
remodeling involves LSECs dysfunction, capillarization, and activation 
of Kupffer cells and HSCs (Figure 2).

LSECs dysfunction and capillarization play a role in hepatic sinus 
remodeling. LSECs maintain important physiological functions in 
healthy liver, including regulation of liver blood flow, substance 
exchange, and immune surveillance (5, 8). In liver cirrhosis, LSECs lose 

FIGURE 1

The intrahepatic and extrahepatic mechanisms of cirrhotic portal hypertension. LSECs, liver sinus endothelial cells; HSCs, hepatic stellate cells; HVR, 
hepatic vascular resistance; PBF, portal blood flow; VSMC, vascular smooth muscle cell.
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their normal fenestrae structure and form a continuous basement 
membrane, a process known as hepatic sinusoidal capillarization (4, 5). 
Capillary vascularization leads to increased blood flow resistance and 
increased portal vein pressure. The formation of basement membrane 
is another key link in the hepatic sinusoidal capillarization. 
Dysfunctional LSECs secrete large amounts of basement membrane 
components, such as type IV collagen and laminin (9). These 
components are deposited beneath the LSECs, forming a continuous 
basement membrane (5). This basement membrane increases blood 
flow resistance and impedes the exchange of substances. Besides, 
dedifferentiation of LSECs means LSECs lost their characteristic 
fenestrated structure (10). This change causes the hepatic sinuses to lose 
their high permeability, obstructing material exchange and increasing 
blood flow resistance (11). The reasons for the loss of fenestration 
include endothelial cell damage, chronic inflammatory response and 
persistent cytokine stimulation.

Activation of HSCs play a central role in hepatic sinus 
remodeling and capillary vascularization. In liver cirrhosis, HSCs 

change from a resting state to an active state, similar to 
myofibroblasts, producing large amounts of extracellular matrix 
(ECM) (12, 13). These ECM components further promote the 
formation of basement membrane and hepatic sinusoidal 
capillarization. HSCs also release a variety of pro-fibrotic factors, 
such as transforming growth factor-β (TGF-β) and platelet-derived 
growth factor (PDGF), which further promotes the fibrotic process 
and hepatic sinus remodeling (14).

Kupffer cells are resident macrophages in liver that play important 
immune and clearance functions in the hepatic sinuses (15). In liver 
cirrhosis, Kupffer cells are activated and release multiple inflammatory 
mediators and chemokines, such as tumor necrosis factor (TNF-α), 
interleukin-6 (IL-6), and reactive oxygen species (ROS) (16). These 
inflammatory mediators not only cause local inflammatory response, 
but also promote the activation of HSCs and the dysfunction of 
LSECs (17). It also causes hepatocytes apoptosis and necrosis by 
releasing ROS and cytokines, and exacerbating hepatic sinus 
remodeling and fibrosis.

FIGURE 2

The key intrahepatic cellular changes occur in cirrhotic portal hypertension and the development of portopulmonary hypertension. HVR, hepatic 
vascular resistance; PVR, pulmonary vascular resistance; aKCs, activated Kupffer cells; LSECs, liver sinus endothelial cells; HSCs, hepatic stellate cells; 
aHSCs, activated hepatic stellate cells; cLSECs, capillarized liver sinus endothelial cells; ECM, extracellular matrix; ET-1, endothelin-1; TXA2, 
thromboxane A2; Ang-1, angiotensin-1; 5-HT, 5-Hydroxytryptamine; NO, nitric oxide; PGI2, prostaglandins I2; VSMCs, vascular smooth muscle cells; 
LPS, lipopolysaccharides; IL-1, interleukin-1; IL-6, interleukin-6; MIF, macrophage migration inhibitory factor.
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2.2 Intrahepatic functional changes

2.2.1 Endothelial dysfunction
Endothelial cell damage occurs in the early stages of cirrhosis and 

portal hypertension. Chronic inflammation and oxidative stress are the 
main factors leading to endothelial cell damage in liver cirrhosis (18). 
Chronic hepatitis, alcoholic liver disease, non-alcoholic fatty liver 
disease (NAFLD) and other causes can cause persistent inflammation 
of liver, this chronic inflammation will lead to endothelial cell damage 
and dysfunction. Oxidative stress is caused by excessive production of 
ROS or insufficient antioxidant capacity, and this oxidative stress 
environment further damages endothelial cells (19).

In cirrhotic portal hypertension, there is a reduction in NO 
synthesis and release. Liver endothelial cells synthesize NO via 
endothelial nitric oxide synthase (eNOS) in healthy liver, a potent 
vasodilator that maintains vascular tone and normal blood flow (20). 
However, eNOS expression and activity are significantly reduced in 
cirrhosis, leading to reduced synthesis and release of NO (20, 21). The 
reduced NO production and decreased NO bioavailability directly leads 
to a decrease in the diastolic ability of intrahepatic blood vessels (21, 
22). The blood vessels show continuous contraction, increasing portal 
system resistance. NO is not only a vasodilator, but also has the effect of 
inhibiting platelet adhesion and aggregation (23). The reduction of NO 
causes platelets to adhere to and aggregate on the damaged endothelial 
surface, forming tiny thrombi, further blocking blood vessels and 
aggravating microcirculatory disorders (6). The microthrombi 
formation not only increases the intrahepatic blood flow resistance, but 
may also lead to local ischemia and further tissue damage (24).

In contrast to the decreased NO, vasoconstrictors are significantly 
increased in liver cirrhosis. Endothelial dysfunction is also manifested 
by excessive release of vasoconstrictive factors such as endothelin-1 
(ET-1). ET-1 is a potent vasoconstriction factor secreted by endothelial 
cells (13), inducing contraction of vascular smooth muscle cells 
(VSMCs) and increasing vascular resistance by binding to its receptor 
(13). In liver cirrhosis, due to endothelial cell damage and stimulation 
of inflammatory mediators, the expression and release of ET-1 are 
significantly increased (25), resulting in continuous vasoconstriction 
and further aggravating of portal hypertension (26).

2.2.2 Contraction of HSCs
Activated HSCs have contractile function similar to smooth 

muscle cells, which is mainly achieved through cytoskeletal 
remodeling and actin (α-SMA) expression (27). Contractile HSCs can 
directly increase hepatic sinusoidal resistance and impede blood flow 
in the portal system (28). α-SMA is a typical myofibroblast marker, 
and its expression level is closely related to the contractility of HSCs. 
Through the regulation of intracellular calcium concentration and the 
interaction of actin-myosin system (29, 30), contractile HSCs can 
significantly increase the intrahepatic vascular resistance and further 
lead to portal hypertension (31). Activated HSCs not only have 
contractile function, but also secrete a variety of vasoconstrictor 
factors, such as ET-1 and angiotensin II (AngII) (13). These factors act 
on intrahepatic blood vessels through autocrine and paracrine 
pathways, further promoting vasoconstriction and fibrosis (32, 33).

2.2.3 Vasoactive substance imbalance
There is an imbalance between NO and ET-1 in cirrhotic portal 

hypertension. The reduction of NO and the increase of ET-1  in 

patients with cirrhosis are typical manifestations of vasoactive 
substance imbalance (34). The decrease of NO leads to weakened 
vasodilation, while the increase of ET-1 leads to enhanced 
vasoconstriction (32). This imbalance between vasodilation and 
contraction directly leads to increased intrahepatic vascular resistance 
and increased portal pressure (35).

The expression of prostacyclin (PGI2) and cyclooxygenase-2 
(COX-2) is also decreased in liver cirrhosis. PGI2 is a potent 
vasodilator that inhibits the VSMCs contraction by activating 
adenylate cyclase (AC) to produce cyclic adenosine phosphate 
(cAMP) (36). In cirrhosis, the synthesis and release of PGI2 are 
reduced, resulting in reduced vasodilation (37, 38). COX-2 is a key 
enzyme in the PGI2 synthesis, and its reduced expression directly 
affects PGI2 production, further weakening the vasodilation 
ability (39).

The role of AngII and Angiotensin-converting enzyme (ACE) in 
the pathophysiology of cirrhotic portal hypertension should not 
be overlooked. ACE is a key enzyme for AngII production, and its 
increased activity leads to increased AngII levels (40). AngII is a 
potent vasoconstriction that causes VSMCs to contract and increase 
vascular resistance by binding to AngII receptor (41). In addition, 
AngII also has a pro-fibrotic effect, further aggravating liver fibrosis 
and portal hypertension by stimulating the activation of HSCs and the 
production of ECM (42). Inhibiting AngII expression can decrease 
collagen synthesis (42, 43).

The compensation of vasodilators is obviously insufficient. In 
cirrhosis, although the levels of certain vasodilator factors such as 
adrenomedullin (AM) and brain natriuretic peptide (BNP) are 
elevated to certain extent in an attempt to counteract the 
overexpression of vasoconstrictors (44, 45), their compensatory 
effects are often insufficient to maintain normal vascular tone and 
balance. AM has a strong vasodilatory effect by increased cAMP 
generation (46). BNP inhibits VSMCs contraction by increasing 
the production of cyclic guanosine phosphate (cGMP) (47). 
However, in cirrhosis, the compensatory mechanisms of these 
vasodilator factors are unable to fully offset the overexpression of 
vasoconstrictor, resulting in vascular tone imbalance and increased 
portal pressure.

3 Extrahepatic vascular changes

Portal hypertension in cirrhosis leads to major changes in the 
extrahepatic vascular and systemic circulation. These changes include 
increased portal blood flow, splanchnic vasodilation, portal-systemic 
collateral formation, hyperdynamic circulation, and abnormalities in 
the intestinal and pulmonary microcirculation. Complex molecular 
mechanisms involve angiogenesis, vasodilation, and oxidative stress 
(Figure 1).

3.1 Extrahepatic portal vascular changes

Portal hypertension is one of the core pathological changes in liver 
cirrhosis. It is caused by many factors, among which changes of 
extrahepatic portal vein are particularly critical. These changes mainly 
include a significant increase in portal blood flow and the formation 
of portosystemic collateral circulation.
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Extrahepatic vascular changes in liver cirrhosis include portal 
blood flow and systemic hemodynamics. Due to the dilation of 
visceral blood vessels, especially in the gastrointestinal and splenic 
region, splanchnic blood flow increases, eventually leading to 
increased blood flow to portal vein (48–50). In addition, changes in 
systemic hemodynamics are particularly critical. Patients with liver 
cirrhosis are usually accompanied by a hypovolemic state and reduced 
effective blood volume in the systemic circulation (51). This state 
activates the adrenal glands and the sympathetic nervous system, 
causing systemic vasoconstriction, especially in the renal and splenic 
vessels, thereby reducing blood flow elsewhere and increasing portal 
blood flow (52). At the same time, activation of the renin-angiotensin 
system by the kidney increases the release of vasoconstrictor factors, 
which further promotes an increase in portal blood flow. Alterations 
in splanchnic vasculature and systemic hemodynamics in cirrhosis 
interact to result in a significant increase in portal blood flow (49).

As portal vein pressure continues to rise, portosystemic collaterals 
are formed to relieve the pressure (53). Although this compensatory 
mechanism helps to reduce portal vein pressure in the short term, its 
long-term consequences can lead to a series of complications, 
including esophageal and gastric varices, hypersplenism, etc. (54). The 
vascular regulation mechanisms in this process involves are complex. 
Firstly, one of the core mechanisms of portosystemic collateral 
circulation is angiogenesis. In cirrhotic portal hypertension, multiple 
factors induce overexpression of angiogenic factors such as vascular 
endothelial growth factor (VEGF) and PDGF (55–57). These factors 
initiate the formation of new collateral circulation by promoting the 
proliferation and migration of vascular endothelial cells (56). 
Hypoxia-inducible factor (HIF-1α) is another key regulator. HIF-1α, 
stimulated by hypovolemia, not only induces VEGF expression, but 
also promotes other related angiogenic factors production, further 
accelerating the generation of collateral circulation (58, 59). Secondly, 
remodeling of existing blood vessels is also a mechanism that cannot 
be  ignored during the formation of portosystemic collateral 
circulation. Especially in the esophagus and fundus of the stomach, 
the original microvascular network expands and remodels driven by 
portal pressure, forming functional varicose veins (60). Smooth 
muscle cells and collagen deposition in the blood vessel wall increase, 
which enhances the capacity of the blood vessel and allows greater 
blood flow to pass through (61). At the same time, this vascular 
remodeling process is accompanied by thinning of the vessel wall, 
increasing the risk of varicose vein rupture bleeding (57, 61). In 
addition, inflammatory factors not only promote angiogenesis, but 
also accelerate local blood vascular remodeling (57). At the same time, 
leukocyte infiltration will also accelerate blood vessels dilation and the 
formation of collateral circulation.

3.2 Changes in systemic circulation

Splanchnic vasodilation is one of the core features of systemic 
circulatory changes in patients with cirrhotic portal hypertension (62). 
Splanchnic vasodilation causes a series of adverse consequences, 
including hypovolemia, ascites and so on (7). In cirrhosis, visceral 
vascular endothelial cells are dysfunctional, and the levels of 
vasodilators such as NO, PGI2, and carbon monoxide (CO) are 
significantly increased (63–65). These factors are mainly produced by 
endothelial cells. Increased production of vasodilator synthase 

promotes vascular smooth muscle relaxation and leads to vasodilation 
(63, 66). In addition, vasoconstrictor factors are relatively reduced. 
Although vasoconstrictor factors such as ET-1 also increase, their 
effects are offset by a large number of vasodilator factors. Moreover, 
the responsiveness of vascular smooth muscle to contractile stimuli 
decreases (67). Long-term exposure to high concentrations of 
vasodilator factors reduces the sensitivity of VSMCs to normal 
contractile stimulation (68). Inflammatory responses also participate 
in visceral vasodilation and increase vascular permeability, leading to 
ascites and tissue edema.

Hyperdynamic circulation is another important feature of 
cirrhotic patients, which is closely related to splanchnic vasodilation 
and the formation of portosystemic collateral circulation (49). The 
main manifestations of hyperdynamic circulation include increased 
cardiac output, decreased peripheral vascular resistance and decreased 
renal blood flow (69, 70). The occurrence of hyperdynamic circulation 
involves multiple mechanisms. The first is increased systemic NO 
production. NO not only causes splanchnic vasodilation, but also 
reduces arteriolar and capillary resistance through systemic 
vasodilation, thereby increasing cardiac output (71). This 
compensatory mechanism is to maintain the oxygen supply 
requirements of peripheral tissues. Secondly, the sympathetic nervous 
system and renin-angiotensin system activation are also involved in 
this process (72). In response to the decrease in systemic vascular 
resistance, the sympathetic nervous system and renin-angiotensin 
system are activated to increase blood volume by constricting blood 
vessels and retaining sodium and water (73). However, this 
compensatory mechanism has limited effect under the action of NO 
and other vasodilator factors, and instead aggravates vasodilation and 
reduce renal blood flow (74). In addition, the role of systemic 
inflammation in this process cannot be ignored (70). Inflammatory 
factors promote fluid exudation by increasing vascular permeability, 
leading to aggravation of ascites. Finally, the compensatory response 
of the heart will cause some adverse consequences. Long-term 
compensatory load increase may lead to cirrhotic cardiomyopathy, in 
which the heart is unable to maintain normal function under 
increased load (75, 76).

3.3 Microcirculation changes

The microcirculation, as the most subtle component of the 
vascular system, includes small arteries, capillaries and small veins, 
responsible for the transport of oxygen and nutrients and the discharge 
of waste. Cirrhotic portal hypertension has a profound impact on the 
extrahepatic microcirculation such as intestinal tract and lung through 
complex mechanisms.

The abnormalities of intestinal microcirculation in patients with 
cirrhosis are mainly manifested in intestinal ischemia, obvious 
vascular congestion in the intestinal wall, increased vascular 
permeability, and resulting in intestinal wall edema (77–79). It affects 
the absorption of nutrients and aggravates the malnutrition of patients 
(78). In addition, portal hypertension aggravates local intestinal 
inflammatory response, destroy intestinal barrier function, increase 
the risk of bacterial translocation, and thus induce systemic 
inflammatory response syndrome (SIRS) (80). It also promotes the 
entry of intestinal endotoxins into the portal vein system, aggravating 
liver inflammation and fibrosis (81). The mechanism of abnormal 
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intestinal microcirculation involves multiple aspects. Firstly, portal 
hypertension causes intestinal venous congestion, vasodilation, and 
slow blood flow, leading to insufficient microcirculatory perfusion 
(79). Secondly, there is an imbalance of vasoactive substances. 
Increased vasoconstrictor factors, such as ET-1, lead to intestinal 
microvascular spasm and further aggravate ischemia (82). The 
decreased bioavailability of NO leads to vascular endothelial 
dysfunction and further deteriorates intestinal microcirculation (83). 
In addition, the oxidative stress response is enhanced in cirrhosis, 
leading to endothelial damage, weakening the dilation ability of blood 
vessels, and ultimately affecting microcirculatory function (84).

Changes in pulmonary microcirculation are a common but easily 
overlooked complication in patients with cirrhotic portal 
hypertension. In terms of pulmonary microcirculation, the main 
manifestations are hepatopulmonary syndrome and hepatogenic 
pleural effusion. Hepatopulmonary syndrome is characterized by 
abnormal dilation of pulmonary blood vessels and redistribution of 
intrapulmonary blood flow (85), leading to oxygenation dysfunction 
(86); while hepatogenic pleural effusion is caused by obstruction of 
lymphatic drainage. In contrast to hepatogenic pleural effusion, 
hepatic hydrothorax develops when ascitic fluid moves from the 
peritoneal cavity into the pleural space through diaphragmatic defects 
(87), which is unrelated to pulmonary microcirculatory disorders. The 
mechanism of pulmonary microcirculation changes involves multiple 
aspects. The first is that pulmonary vasodilation occurs primarily at 
the level of alveolar capillaries. In liver cirrhosis, excessive synthesis of 
NO will cause abnormal expansion of pulmonary capillaries, 
increasing pulmonary blood flow, but decreasing oxygen diffusion 
efficiency, resulting in hypoxemia (88). In addition, the exchange time 
of oxygen between the alveoli and blood is insufficient, resulting in gas 
exchange disorder (89, 90). Increased arteriovenous shunting also 
leads to alveolar ventilation-blood flow imbalance (91). The chronic 
inflammatory response and oxidative stress will increase the 
permeability of pulmonary capillaries, leading to pulmonary edema 
and further aggravate the damage of lung function (90, 92, 93). Recent 
studies have revealed that increased pulmonary expression of placental 
growth factor (PlGF) and VEGF-A plays a central role in pathological 
angiogenesis (94). The von Willebrand factor-angiopoietin axis 
activation and altered circadian rhythm proteins, particularly BMAL1, 
significantly affect hypoxic responses and vascular remodeling (88, 
95). Additionally, bacterial translocation and endotoxemia contribute 
to pulmonary inflammation through recruitment of intravascular 
monocytes that produce proangiogenic factors (96). These molecular 
mechanisms create extensive pulmonary microvascular alterations, 
including capillary dilatation, arteriovenous malformations, and 
altered vascular reactivity. In contrast, portopulmonary hypertension 
(POPH) represents a distinct entity characterized by pulmonary 
arterial hypertension in the setting of portal hypertension (97). The 
pathophysiology involves pulmonary vasoconstriction, vascular 
remodeling, and in situ thrombosis. Key molecular pathways include 
endothelial dysfunction with decreased NO and prostacyclin 
production, upregulation of ET-1 and serotonin pathways, and 
proliferation of pulmonary arterial smooth muscle cells (98). BMP9 is 
a sensitive and specific biomarker of POPH, which could predict 
transplant-free survival and the presence of pulmonary arterial 
hypertension in liver disease (99). The mechanical stress from 
increased pulmonary blood flow in the hyperdynamic circulatory state 
may trigger endothelial injury, initiating these pathological cascades.

4 Pharmacological interventions 
based on intrahepatic vascular 
changes

Intrahepatic vascular changes play a role in liver cirrhosis. And 
therapeutic strategies targeting intrahepatic vessels mainly focus on 
anti-fibrotic treatment, improvement of hepatic sinusoidal 
microcirculation, and treatment targeting HSCs (Table 1).

4.1 Antifibrotic therapy

Antifibrotic therapy is one of the cornerstones of cirrhotic portal 
hypertension treatment. Liver fibrosis leads to structural remodeling 
and functional abnormalities of intrahepatic blood vessels, thereby 
causing increased portal pressure. Therefore, inhibiting and reversing 
the process of liver cirrhosis has become a key strategy to reduce 
portal pressure.

Firstly, inhibiting excessive deposition of ECM. The main 
pathological feature of liver cirrhosis is the massive ECM deposition 
(100). Antifibrotic treatments aim to reduce or reverse the 
accumulation of ECM (3). Many drugs and molecular targets can 
intervene in this process, including blocking liver fibrosis formation 
by inhibiting the TGF-β signaling pathway (14). TGF-β is an 
important profibrotic factor in liver fibrosis, and inhibiting its activity 
can significantly reduce the degree of fibrosis. Activators of matrix 
metalloproteinases (MMPs) can promote ECM degradation (101); 
while inhibitors of tissue inhibitors of metalloproteinases (TIMPs) can 
reduce ECM deposition (102). Therefore, MMP/TIMP balance is a 
potential therapeutic target for regulating the extracellular matrix 
(102, 103). Activation of HSCs can lead to imbalances in MMP2/
TIMP2 and MMP9/TIMP1, aggravating fibrosis (104, 105).

Secondly, applying antioxidant and anti-inflammatory treatment. 
Oxidative stress and inflammatory responses also play a key role in the 
process of liver cirrhosis. Therefore, antioxidants and anti-
inflammatory drugs are used to alleviate oxidative stress damage to 
liver cells. Common antioxidants include vitamin E, lipoic acid, etc., 
which improve liver fibrosis by reducing the ROS production (106, 
107). Wang Q, et al. found that glycyrrhizic acid inhibited oxidative 
stress injury through targeting AKR7A2  in HSCs, reduced the 
activated HSCs proliferation and reversed hepatic fibrosis (108). In 
addition, anti-inflammatory drugs such as glucocorticoids and certain 
immunomodulators can reduce the chronic inflammatory response 
and progression of liver cirrhosis. Qin BF, et  al. found that 
specnuezhenide inhibited inflammatory response via SIRT6-P2X7R/
NLRP3 pathway and improve fibrosis (109).

Targeting HSCs activation is important in pharmacological 
treatments for patients with cirrhotic portal hypertension. Activated 
HSCs are the main effector cells of liver cirrhosis. By inhibiting the 
activation of HSCs or promoting their apoptosis, ECM production can 
be effectively reduced (110). Some drugs, such as retinoic acid receptor 
gamma agonists (such as retinoic acid) and peroxisome proliferator-
activated receptor gamma (PPARγ) agonists, have shown the potential 
to inhibit HSCs activation (111). Benedicto AM, et al. have shown that 
interference with mitochondrial function could target HSCs to inhibit 
fibrosis (110). Tung HC, et al. demonstrated that inhibition of heme-
thiolate monooxygenase CYP1B1 could decrease HSCs activation and 
fibrosis (12).
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TABLE 1 Evidence for pharmacological therapy targeting intrahepatic and extrahepatic vascular dysregulations in portal hypertension.

Categories Agent Model Research 
subjects

Direct target Mechanism

Pun et al. (143) Clinical drugs Fructooligos-

accharides

BDL rats Intrahepatic vessels ROS/eNOS Ameliorate of dysbiosis 

and oxidative stress

Asada et al. (144) Tofogliflozin CCl4 rats LSECs, HSCs SGLT 2 inhibitors Improving endothelial 

dysfunction

Fan et al. (57) Cediranib BDL rats Intrahepatic and 

extrahepatic vessels

VEGFR-2 Improving vascular 

remodeling and 

contractility

Vairappan et al. (145) Candesartan cilexetil CCl4 mice HUVECs Nostrin-eNOS-NO Improving endothelial 

dysfunction

Tai et al. (146) Celecoxib TAA rats LSECs eNOS NO homeostasis

Noah et al. (147) Empagliflozin CCl4 rats LSECs, HSCs Gal-1/NRP-1 Suppression of 

angiogenesis

Zheng et al. (148) Telmisartan CCl4, BDL rats Liver and mesenteric 

tissue

KLF-4, eNOS Reducing angiogenesis 

and vascular remodeling

Zhu et al. (67) Small molecular agents 8-OH-DPAT TAA, BDL, 

PPVL rats

VSMCs 5-HT receptor 1A Inducing the contraction 

of portal vein

Zhao et al. (61) Imperatorin CCl4 rats HSCs TGF-β Reducing hepatic 

fibrosis and vascular 

remodeling

Li et al. (149) Urolithin A CCl4, BDL mice HSCs Glutaminas-e1 Inhibiting fibrogenesis 

and HSCs contraction

Gunarathne et al. 

(150)

MrgD BDL, PPVL, 

CCl4 rats

Splanchnic vessels Mas receptor Mesenteric Vasodilation

Wang et al. (151) DPP4i CCl4 rats Mesenteric arterioles Nox4 Normalizing arterial 

hypocontractility

Pun et al. (152) Glycyrrhizin BDL rats Mesenteric vessels VEGF Attenuating 

portosystemic collateral 

shunting

Boyer-Diaz et al. 

(153)

Lanifibranor TAA, BDL rats HSCs, LSECs Pan-PPAR agonist Ameliorating hepatic 

microvascular function

Brusilovskaya et al. 

(154)

TADA BDL rats Intrahepatic vessels PDE-5 inhibitor Reducing sinusoidal 

vascular resistance

Tsai et al. (155) Obeticholic acid BDL rats Intrahepatic vessels Farnesoid X receptor 

agonist

Inhibiting 

vasoconstriction

Hu et al. (156) AICAR BDL, PPVL, 

CCl4 rats

LSECs AMPK/NO Improving NO 

bioavailability

Castillo (157) PHIN-156 BDL rats Vasopressin receptor V1a partial agonists Reducing portal blood 

flow

Jones (158) BI 685509 TAA rats Portosystemic 

shunting

sGC, cGMP NO-independent sGC 

activator

Zhao et al. (39) PTUPB CCl4 rats Intrahepatic and 

extrahepatic vessels

sEH/COX-2/TGF-β Inhibiting intra-or 

extrahepatic 

angiogenesis and 

vascular remodeling

BDL, bile duct ligation; eNOS, endothelial nitric oxide synthase; ROS, reactive oxygen species; CCl4, Carbon tetrachloride; LSECs, liver sinus endothelial cells; HSCs, hepatic stellate cells; 
SGLT2, Sodium glucose transferase 2; VEGFR-2, vascular endothelial growth factor receptor 2; HUVECs, human umbilical vein endothelial cells; NO, Nitric oxide; TAA, thioacetamide; Gal-1, 
galactin-1; NRP-1, Neuropilin-1; KLF-4, Krüppel-like factor-4; PPVL, partial portal vein ligation; VSMCs, vascular smooth muscle cells; 5-HT, 5-hydroxytryptamine; TGF-β, Transforming 
growth factor-β; MrgD, Mas-related G protein-coupled receptor type D; DPP4i, Dipeptidyl peptidase-4 inhibitor; Nox4, NADPH oxidase 4; VEGF, vascular endothelial growth factor; Pan-
PPAR, pan-peroxisome proliferator-activated receptor; TADA, Soluble guanylyl cyclase stimulation and phosphodiesterase-5; PDE-5, phosphodiesterase-5; AICAR, 5-aminoimidazole-4-
carboxyamide ribonucleoside; AMPK, Adenosine 5′-monophosphate-activated protein kinase; V1a, vasopressin 1a; sGC, soluble guanylyl cyclase; cGMP, cyclic guanosine monophosphate; 
PTUPB, 4-(5-phenyl-3-57-pyrazol-1-yl) -benzenesulfonamide; sEH, soluble epoxide hydrolase; COX-2, cyclooxygenase-2.
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Promoting hepatocyte regeneration can improve liver function 
and indirectly reduce fibrosis. Growth factors such as hepatocyte 
growth factor (HGF) and epidermal growth factor (EGF) have been 
shown to promote liver regeneration and reduce fibrosis. Wang P, et al. 
have identified hepatic Snai1 and Snai2 as key transcriptional 
regulators of liver regeneration and fibrosis (112). Novel stem cell 
therapies, such as mesenchymal stem cells (MSCs), possess 
immunomodulatory and anti-inflammatory capabilities that make 
them an attractive approach for promoting liver regeneration (113). 
The primary mechanism involves promoting apoptosis of HSCs and 
subsequently stimulating hepatocyte proliferation, thereby replacing 
damaged hepatocytes and reducing liver fibrosis (114).

4.2 Improvement of hepatic sinusoidal 
microcirculation

Hepatic sinusoidal microcirculation disorder is one of the 
important mechanisms for portal hypertension. It can directly reduce 
intrahepatic vascular resistance, thereby reducing portal pressure.

Statins, the most widely used lipid-lowering drugs, have been 
found in recent years to have the potential to improve liver 
cirrhosis and hepatic sinusoidal microcirculation (115, 116). 
Statins increase the expression and activity of eNOS, promoting 
the production of NO, and reducing hepatic sinusoidal resistance 
(116). In addition, statins can inhibit the production of 
inflammatory factors, such as TNF-α and IL-6, thereby reducing 
microcirculation disorders caused by inflammation (117). Statins 
can also protect LSECs and maintain their normal function by 
reducing the ROS production (117, 118). Statins can also reduce 
hepatic sinusoidal contraction and improve microcirculation by 
inhibiting Rho kinase activity (119). Some studies have shown that 
simvastatin and atorvastatin can significantly reduce portal 
pressure and improve the prognosis of patients with cirrhosis (120, 
121). However, it should be noted that statins should be used with 
caution in patients with advanced cirrhosis to avoid potential 
hepatotoxicity (122). Statins represent the most clinically advanced 
antifibrotic therapy, with multiple Phase III trials demonstrating 
their potential in portal hypertension. Simvastatin and atorvastatin 
have shown particular promise, with data supporting their safety 
in compensated cirrhosis. However, their use in advanced cirrhosis 
requires careful monitoring.

In liver cirrhosis, NO production is reduced due to endothelial 
cell dysfunction, leading to increased vasoconstriction. Therefore, 
exogenous NO donors, such as nitrates, can improve the expansion 
ability of liver sinuses and reduce intrahepatic vascular resistance 
(32). In addition, NO donors can inhibit the contraction of HSCs 
and reduce their compression on hepatic sinusoids, thereby 
improving microcirculation (20). Villanueva C, et al. have found that 
isosorbide mononitrate (ISMN) can significantly reduce portal 
pressure and prevent variceal rebleeding, especially during acute 
application (123). However, long-term use may lead to the reduced 
tolerance and effectiveness of treatment. To overcome tolerance 
issues, researchers are exploring intermittent dosing regimens and 
novel NO donors. For example, NCX-1000 is a liver-targeted NO 
donor that can specifically release NO, promising to improve 
therapeutic efficacy and reduce systemic side effects (124). In 

addition, combination treatment strategies combining statins and 
nitrates also show good promise. This combination can work 
synergistically through different mechanisms to improve hepatic 
sinusoidal microcirculation more effectively. Nicorandil and 
atorvastatin may alleviate hepatic sinusoidal microcirculatory 
disorders by improving liver function, anti-inflammation and anti-
oxidation (125).

Endothelin (ET) receptor antagonist is another choice of hepatic 
sinusoidal microcirculation improvement. There is an observed 
up-regulation of the ET-1 gene accompanied by a compensatory 
down-regulation of the ET A receptor (ETAR) gene in the human 
portal vein (25). Blocking the ET-1/ETAR pathway using selective 
ETAR antagonists (ERAs) represents a promising therapeutic strategy 
for liver cirrhosis treatment (26). Ten Hove M, et  al. have 
demonstrated that engineered SPIONs functionalized with ETAR 
antagonist had improved liver fibrosis through the inhibition of 
HSCs activation (13). A selective ET-A antagonists, such as BQ 123 
and Ambrisentan, decrease the portal pressure in cirrhotic 
patients (126).

4.3 Treatment targeting the contractile 
function of HSCs

HSCs play a central role in the development of portal 
hypertension. Activated HSCs are not only the main ECM 
producers that lead to liver fibrosis, but also have contractile 
properties and are directly involved in the regulation of hepatic 
sinusoidal resistance. Therefore, therapeutic strategies targeting 
HSCs have become a hot topic in recent years. HSCs have contractile 
properties and are directly involved in the regulation of liver 
sinusoidal resistance (127). ET-1 is a potent vasoconstrictor that 
can cause HSCs to contract. The use of ET-1 receptor antagonists 
can reduce HSCs contraction and reduce liver sinusoidal resistance 
(25). In addition, AngII can promote HSCs contraction and 
proliferation (128). AngII receptor antagonists, such as losartan, 
can reduce HSCs contraction and improve liver sinusoidal 
microcirculation (42). Moreover, Nanotechnology can be used to 
achieve targeted drug delivery, improve therapeutic effects and 
reduce side effects. Vitamin A-modified liposomes can specifically 
deliver drugs to HSCs because HSCs are the main vitamin A storage 
cells in liver. This strategy can be used to deliver anti-fibrotic drugs, 
siRNA or gene therapy vectors. Kaili Wang et  al. constructed 
hyaluronic acid (HA) modified liposomes co-delivering all-trans 
retinoic acid (RA) and L-arginine (L-arg) to reverse hepatic fibrosis 
(129). Lingfeng Zhang et al. designed chondroitin sulfate-modified 
and vismodegib-loaded nanoparticles (CS-NPs/VDG) to efficiently 
normalize the fenestrae phenotype of LSECs and restore HSCs to 
quiescent state by inhibiting Hedgehog signaling pathway (130). 
Additionally, stem cell therapy is a treatment method targeting 
HSCs that has attracted much attention in recent years. MSCs have 
multidirectional differentiation potential and immunomodulatory 
functions, and can inhibit HSCs activation by secreting various 
anti-inflammatory and anti-fibrotic factors (131, 132). Preliminary 
clinical studies have shown that stem cell therapy is effective in 
reducing liver fibrosis and improving liver function (131). These 
have inspired new ways of thinking about treating liver fibrosis.
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5 Pharmacological interventions 
based on changes in extrahepatic 
vessels

Extrahepatic vascular dilation, increased blood flow, and changes 
in peripheral vascular resistance exacerbate the portal pressure. 
Therefore, treatment strategies based on changes in extrahepatic blood 
vessels aim to reduce portal blood flow, regulate vascular tension, and 
improve systemic hemodynamic balance (Table  1). The clinical 
development of therapies targeting extrahepatic vascular changes 
shows a clear stratification in terms of evidence and approval status. 
Non-selective beta blockers (NSBBs) and vasoconstrictors represent 
the current standard of care, supported by Class I, Level A evidence. 
Propranolol, carvedilol, and nadolol are FDA-approved and widely 
used in clinical practice. For acute complications, terlipressin and 
octreotide have established roles in management protocols. Beyond 
these approved therapies, several novel approaches are in various 
stages of clinical development. Understanding this therapeutic 
hierarchy is essential for optimal clinical decision-making and future 
research directions.

5.1 NSBBs

NSBBs are classic drugs for cirrhotic portal hypertension (133). 
The main mechanisms include reducing cardiac output by blocking 
β1 receptors, and causing splanchnic vasoconstriction and reducing 
portal blood flow by blocking β2 receptors. NSBBs can effectively 
reduce the burden on portal system, and are especially suitable for 
preventing esophageal and gastric variceal bleeding (134). Propranolol 
and Carvedilol are commonly used NSBBs. These drugs are widely 
used for the primary prevention of portal hypertension, which is to 
prevent bleeding from varicose veins that are not yet bleeding (135). 
For patients who have already suffered bleeding, NSBBs are also used 
for secondary prevention to reduce the risk of rebleeding (136). 
Although NSBBs are effective in reducing portal pressure and 
preventing variceal rupture, not all patients can tolerate these drugs, 
especially those with hypotension or severe cardiac dysfunction (137). 
In addition, NSBBs may interact with other medications, so they 
should be used with caution.

5.2 Vasoconstrictors

Vasoconstrictors reduce portal pressure by constricting the 
visceral arterial system and reducing blood flow to the portal vein. 
Their main target is the visceral vascular smooth muscle, directly or 
indirectly regulating its contractile function. They are usually used to 
treat acute complications of portal hypertension, such as gastric 
variceal. Terlipressin, one of the most commonly used vasoconstrictors 
clinically, reduces portal vein blood flow by selectively acting on V1 
receptors in visceral blood vessels (138). Long-term continuous 
infusion of terlipressin can significantly increase cardiac reserve and 
attenuate a hyperdynamic state (139). Octreotide have similar effect 
for the management of variceal bleeding (140). The main side effects 
of vasoconstrictors include increased blood pressure, myocardial 
ischemia, and impaired renal function. Therefore, patients with 
cardiovascular disease or renal insufficiency should be  used with 
extreme caution and closely monitored. In addition, long-term use of 

these drugs may lead to decreased renal perfusion and increase the 
risk of AKI (141).

5.3 Angiogenesis inhibition therapy

An important feature of cirrhotic portal hypertension is abnormal 
angiogenesis in the visceral vascular system, especially in the spleen 
and intestinal areas. These abnormal neovascularization structures are 
unstable and permeable, leading to increased portal vein pressure. 
Therefore, targeted treatment strategies to inhibit abnormal 
angiogenesis have gradually become the focus of research. Cediranib 
may ameliorate extrahepatic hyperdynamic circulation by targeting 
angiogenesis. This is achieved through the inhibition of vascular 
endothelial growth factor receptor 2 (VEGFR-2) signaling, thereby 
reducing both portal collateral vessel formation and eNOS-mediated 
vasodilation and vascular remodeling (57). Hydroxysafflor yellow A 
is a multi-target tyrosine kinase inhibitor that inhibits the VEGF and 
PDGF signaling pathways, thereby inhibiting abnormal angiogenesis 
(142). Although anti-angiogenic therapy has great potential in theory, 
its clinical application is still being explored. These drugs may cause 
systemic side effects such as hypertension, bleeding, and delayed 
wound healing, so they should still be used with caution.

6 Future prospective

Future research will focus on further elucidating the intricate 
intrahepatic and extrahepatic vascular regulatory mechanisms 
underlying portal hypertension in cirrhosis.

 • Nanotechnology for Targeted Therapies
Emerging nanotechnology offers new possibilities for the 

treatment of portal hypertension. Utilizing nanocarriers enables 
precise drug delivery to specific cells or tissues, such as HSCs or 
LSECs. This not only enhances drug concentration at the site of action 
but also minimizes off-target effects on healthy tissues. This strategy 
holds significant promise for improving both the efficacy and safety of 
therapeutic interventions. However, nanotechnology approaches are 
currently in preclinical development and require additional 
safety data.

 • The Promise of Stem Cell Therapy
Stem cell therapy, a burgeoning therapeutic modality, has 

demonstrated potential in early clinical trials for reducing liver 
fibrosis. MSCs, through their immunomodulatory and anti-
inflammatory properties, can suppress HSC activation and reduce 
ECM production, thereby slowing the progression of fibrosis. Future 
research will further investigate the long-term efficacy of stem cell 
therapy in individuals with cirrhosis and explore strategies to enhance 
stem cell functionality through gene editing techniques. Stem cell 
therapies, while showing promise in animal studies, are still in early 
development phases. MSCs has progressed to Phase I trials, focusing 
primarily on safety assessments in cirrhotic patients.

 • Optimization of Existing Drugs and Development of 
Novel Agents

Future research will focus on optimizing the efficacy and safety of 
existing drugs. For example, while statins have shown promise in 
improving sinusoidal microcirculation and reducing portal pressure, 
their long-term safety requires further validation. The development of 
novel agents targeting pathological mechanisms like angiogenesis and 
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vasodilation will also be a priority. Although anti-angiogenic drugs, 
such as VEGF inhibitors, are effective, they can cause systemic side 
effects like hypertension. Therefore, research will focus on improving 
drug targeting and minimizing adverse reactions. The safety and 
preliminary efficacy of novel NO donors are in the early clinical 
development stage. New small molecules targeting specific pathways 
require toxicology studies. VEGF inhibitors, obeticholic acid, and 
rifaximin combined with statins have entered the clinical research stage.

7 Conclusion

Cirrhotic portal hypertension involves complex intrahepatic and 
extrahepatic vascular mechanisms. Comprehensive treatments such 
as improving microcirculation and regulating vascular tension can 
effectively reduce portal pressure, alleviate complications, and improve 
patient prognosis. More research is needed in the future to validate 
drugs targeting intrahepatic and extrahepatic vascular disorders in 
order to improve treatment of portal hypertension.
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