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Background: Fatty liver is characterized by hepatic steatosis and is associated 
with dyslipidemia and insulin resistance. Carotid atherosclerosis, characterized 
by plaque formation, may be related to increased lipid deposition. High-density 
lipoprotein cholesterol (HDL-C) plays a role in reverse cholesterol transport. 
Colorectal cancer (CRC) is significantly associated with lipid metabolism-related 
diseases. However, there is a paucity of research on the relationship between 
lipid metabolism disorders and CRC.

Objective: To determine whether fatty liver (F), carotid atherosclerosis (A), and 
HDL-C (H) models (FAH) have predictive value for the occurrence of CRC and 
can be used for CRC screening.

Methods: A case–control study was conducted on 166 patients with CRC and 
448 patients who underwent physical examinations at Ziyang People’s Hospital 
between September 2018 and August 2023. A 1:3 individual matching strategy 
was used to establish the independent risk factors for CRC using univariate 
and multivariate analyses. A model was constructed based on independent risk 
factors, and its accuracy and sensitivity were verified. The discriminative ability, 
calibration, and clinical utility of the predictive model were evaluated using the 
Receiver Operating Characteristic curve, bootstrap resampling method, the 
Hosmer–Lemeshow goodness-of-fit test, and Decision Curve Analysis (DCA).

Results: Fatty liver (F), carotid atherosclerosis (A), HDL-C (H), and intestinal 
dysbiosis (D) were identified as independent risk factors for CRC. The odds ratios 
were 2.885, 11.452, 24.659, and 22.445, respectively, p < 0.001. Based on these 
results, an FAH prediction model was established. The Horser–Lemeshow test 
for the FAH prediction model yielded p = 0.710. The cut-off value was 0.275, 
with the area under the curve of 0.902 (95% Confidence Interval: 0.875–0.929), 
p < 0.001. The sensitivity was 86.7%, and the specificity was 78.1%. A nomogram 
was created, and the internal calibration chart showed that the calibration 
curve closely aligned with the standard curve, indicating good discrimination 
and predictive ability of the model. DCA demonstrated that the model had a 
favorable clinical net benefit.

Conclusion: The FAH model has predictive value for CRC occurrence owing to 
its noninvasive nature and easy availability of data, making it worthy of further 
clinical research.
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1 Introduction

Colorectal cancer (CRC) is a malignant tumor originating 
from the mucosal epithelium of the colon and rectum. Globally, 
CRC ranks first in terms of number of new cases in the 
United States and China (1). In China, CRC is the leading cause 
of cancer-related mortality (2). Early detection of CRC is 
important to improve patient survival and reduce mortality rates. 
Numerous recent domestic and international studies have 
indicated that metabolic syndrome (MS), nonalcoholic fatty liver 
disease (NAFLD), atherosclerosis, and other metabolic disorders 
are closely associated with an increased CRC incidence (3–6). MS 
includes dyslipidemia, NAFLD, diabetes mellitus, and obesity (7). 
Current early diagnostic methods for CRC, including blood and 
fecal tumor marker detection (8), have limited sensitivity and 
specificity. Colonoscopy is considered the gold standard for CRC 
screening (9); however, its invasive nature and low patient 
compliance limit its application in large-scale screening. NAFLD 
is a type of fatty liver disease, and carotid atherosclerosis is a 
manifestation of carotid artery atherosclerosis. Based on the 
metabolic characteristics of these diseases, we  speculated that 
fatty liver, carotid atherosclerosis, and high-density lipoprotein 
cholesterol (HDL-C) levels may be correlated with the occurrence 
and progression of CRC. As these indicators can be conveniently 
and rapidly obtained through ultrasound and blood tests, their 
potential application in CRC screening deserves further research. 
Gut microbiota dysbiosis is considered a significant factor 
affecting CRC development (10). To further explore the 
correlation between these metabolic indicators and CRC, 
we selected patients from Ziyang People’s Hospital as participants 
for our study with the aim of assessing the potential value of fatty 
liver, carotid atherosclerosis, HDL-C, and gut microbiota dysbiosis 
in CRC screening.

2 Materials and methods

2.1 Study participants

This study included patients who visited Ziyang People’s 
Hospital between September 1, 2018, and August 31, 2023, as 
clinical research participants.

The inclusion criteria were as follows: (1) Age over 18 years. 
(2) Availability of results for liver ultrasound, carotid vascular 
ultrasound, blood lipid levels, fecal rod-to-sphere ratio, and 
colonoscopy. (3) Diagnosis of fatty liver based on four known 
criteria (11): liver-kidney echo contrast, liver brightness, deep 
attenuation, and vessel blurring. Fatty liver is classified into three 
groups according to severity. Mild fatty liver is defined as a slight 
increase in liver echogenicity. Moderate fatty liver is defined as 
mild visual impairment of the hepatic vessels and diaphragm, 
along with increased liver echogenicity. Severe fatty liver is 
defined as a significant increase in liver echogenicity, poor 
penetration in the posterior segment of the right lobe, and poor 
or absent visualization of hepatic vessels and diaphragm. (4) 
Diagnosis of carotid atherosclerosis conformed to the Chinese 
Guidelines for Vascular Ultrasound Examination in Stroke (12): 

Ultrasound was used to assess carotid plaques and carotid intima-
media thickness (CIMT). Certified sonographers manually traced 
a 10 mm segment of the carotid artery’s intima-media interface 
using two-dimensional grayscale ultrasound images at the end of 
diastole and measured the CIMT at three sites: the distal common 
carotid artery, carotid bulb, and proximal internal carotid artery. 
CIMT was considered abnormal if the maximum value at the three 
measurement points was ≥1.0 mm. The presence of plaque was 
defined as CIMT >1.5 mm, a focal structure encroaching >0.5 mm 
into the arterial lumen, or > 50% of the adjacent CIMT. (5) CRC 
must meet the pathological diagnostic criteria (13). (6) The 
diagnostic criteria for gut microbiota dysbiosis based on the 
Chinese Expert Consensus on Clinical Application of 
Microecological Agents (2020 Edition) (14): medical history 
indicating a primary disease causing an imbalance in the gut 
microbiota; clinical manifestations of gut microbiota imbalance, 
such as diarrhea, bloating, abdominal pain, and abdominal 
discomfort; laboratory evidence of gut microbiota imbalance: 
fecal smear examination showing a cocci/bacilli ratio (the 
reference value for adults is 1:3).

The exclusion criteria were as follows: (1) Incomplete medical 
history. (2) History of previous malignant tumors and 
inflammatory bowel diseases, such as ulcerative colitis or Crohn’s 
disease. (3) Previous colectomy for any reason. (4) Incomplete 
colonoscopy results. This study was approved by the Ethics 
Committee of Ziyang People’s Hospital (Ethics Committee 
Approval No. 20230901), and informed consent was obtained 
from all patients.

2.2 Research methods

According to the research design, individual matching was 
conducted at a 1:3 ratio, followed by sex matching. A total of 614 
patients were included in the study, with 166 patients with CRC in the 
study group and 448 patients without CRC in the control group.

2.3 Clinical data collection

Data on age, sex, height, weight, smoking, alcohol consumption, 
aspirin use history, family history of CRC (first-degree relatives), 
history of hypertension, and diabetes were collected. Body mass index 
(BMI) was calculated as BMI = body mass (kg) / height2 (m2).

2.4 Platelet count, serum biochemistry, 
lipid, and carcinoembryonic antigen testing

After fasting for 12 h, peripheral venous blood was collected 
to test for platelet count (Plt), alanine transaminase (ALT), 
aspartate aminotransferase (AST), gamma-glutamyltransferase 
(GGT), total bilirubin (TBil), indirect bilirubin (IBiL), direct 
bilirubin (DBiL), total bile acid (TBA), total cholesterol (TC), 
HDL-C, low-density lipoprotein cholesterol (LDL-C), 
triglycerides (TG), creatinine (Cre), and carcinoembryonic 
antigen (CEA).
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2.5 Fecal rod-to-sphere ratio

Fecal rod-to-sphere ratio analysis was performed using an 
Olympus CX22LED microscope, manufactured in Japan.

2.6 Liver and carotid vascular ultrasound 
examination

After fasting for 8–12 h, in the supine position, a Siemens 
ACUSON S2000 color ultrasound diagnostic system was used, and 
liver and carotid vascular ultrasound examinations were uniformly 
conducted by sonographers.

2.7 Colonoscopy

All patients completed a full colonoscopy.

2.8 Pathology report materials

Pathologists wrote complete pathology reports based on the 
characteristics of the CRC tissue sections under a microscope, which 
were reviewed by senior physicians.

2.9 Statistical analysis

Statistical analyses were performed using SPSS 19.0 and R 4.4.1 
software. Normally distributed quantitative data were expressed as 
mean ± standard deviation (x ± s) and analyzed using t-tests, while 
non-normally distributed quantitative data were expressed as 
median and interquartile range M (Q1, Q3), and comparisons 
between groups were made using the Mann–Whitney U test. 
Categorical data were expressed as numbers (%). Chi-square tests 
were used for unordered categorical data, and Mann–Whitney U 
tests were used for ordered categorical data. Pearson and Spearman 
correlation tests were used for correlation analysis of normally and 
non-normally distributed data, respectively. Binary Logistic 
regression analysis was used to identify independent risk factors 
affecting CRC occurrence and progression, and a predictive model 
formula was constructed. R language was used to construct the 
nomogram models. The area under the receiver operating 
characteristic (ROC) curve (AUC) was calculated to assess the 
predictive ability of the model. Internal validation of the model was 
performed using the bootstrap resampling method, with the 
construction of bootstrap-AUC and calibration curves. A p-value 
of less than 0.05 was considered statistically significant.

3 Results

3.1 Clinical characteristics of CRC and 
control groups

In this study, no statistically significant differences were observed 
between the CRC group and the control group in terms of gender, 

family history of CRC, heart failure, chronic kidney disease, cerebral 
infarction, fatty liver grade, AST, DBiL, GGT, Cre, TG, and LDL-C 
(p > 0.05). However, age, BMI, smoking, alcohol consumption, aspirin 
use, intestinal polyps, diabetes, hypertension, carotid atherosclerosis, 
chronic obstructive pulmonary disease (COPD), gut microbiota 
dysbiosis, fatty liver, Plt, ALT, AST/ALT ratio, TBil, IBiL, TBA, CEA, 
TC, and HDL-C showed statistically significant differences between 
the CRC group and control group (p < 0.05) (Table 1).

3.2 Analysis of CRC risk factors

Correlation analysis of variables with p < 0.05 revealed that ALT, 
TBil, IBiL, TC, BMI, and intestinal polyps were negatively correlated 
with CRC, with correlation coefficients of −0.161, −0.097, −0.130, 
−1.71, −0.129, and − 0.164, respectively. Age, diabetes mellitus, 
hypertension, carotid atherosclerosis, fatty liver, COPD, smoking, 
alcohol consumption, aspirin use, gut microbiota dysbiosis, Plt, AST/
ALT ratio, TBA, HDL-C, and CEA were positively correlated with 
CRC. Multivariate regression analysis, which incorporated the 
positively correlated variables, identified age, diabetes mellitus, carotid 
atherosclerosis, fatty liver, COPD, gut microbiota dysbiosis, Plt, 
HDL-C, and CEA as risk factors for CRC (Table 2). The diagnoses of 
fatty liver, carotid atherosclerosis, HDL-C, and intestinal microbiota 
dysbiosis were based on variance inflation factor (VIF) less than 5, 
indicating no multicollinearity among the variables. The inclusion of 
variables was determined by considering the current research, clinical 
theory, data collection feasibility, cost-effectiveness, and the efficacy 
of computation and prediction. Binary Logistic regression analysis 
demonstrated that fatty liver, carotid atherosclerosis, HDL-C, and gut 
microbiota dysbiosis were independent risk factors for CRC, with 
odds ratios (OR) of 2.885, 11.452, 24.659, and 22.445, respectively 
(p < 0.001, Table 3). By streamlining variable selection, the aim was to 
develop a predictive model that was both cost-effective and clinically 
practical, providing an accurate tool for the risk assessment of CRC.

3.3 Establishment of the FAH model

The optimal cutoff value for HDL-C was 1.615 mmol/L, as 
determined by ROC analysis. Based on the results of the binary 
logistic regression analysis, predictive models with different 
combinations of four risk factors—fatty liver (F), carotid 
atherosclerosis (A), high-density lipoprotein cholesterol (H), and gut 
microbiota dysbiosis (D)—were constructed. Cutoff values, AUC, 
sensitivity, specificity, and 95% confidence intervals (CI) of the models 
were calculated (Table 4). After a multidimensional assessment of 
model stability, AUC, ease of operation, and cost-effectiveness, both 
the FAHD and FAH models demonstrated high AUC, sensitivity, 
specificity, and 95% CI. Considering that the FAH model is more 
economical, convenient, and rapid than the FAHD model and given 
that many primary hospitals in China have not yet implemented fecal 
microbiota ratio testing, the optimal FAH model, which includes fatty 
liver, carotid atherosclerosis, and HDL-C, was ultimately selected. The 
Hosmer–Lemeshow goodness-of-fit test for the FAH model yielded a 
p-value of 0.710, indicating a good model fit. The formula for the 
model is: CRC risk = −3.803 + 1.082 × fatty liver +2.443 × carotid 
atherosclerosis +3.165 × HDL-C (Table 5).
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The nomogram model was plotted using R 4.4.1 software 
(Figure  1). For example, a patient with fatty liver, carotid 
atherosclerosis, and an HDL-C level above 1.615 mmol/L would have 

a total score indicating a 94% risk of CRC occurrence, according to 
the nomogram model. This suggests that the higher the total score of 
the nomogram model, the higher is the risk of CRC in the patient.

TABLE 1 Clinical characteristics of CRC and control groups.

Clinical characteristics CRC group (n = 166) Non-CRC group 
(n = 448)

χ2/Z p value

Gender, n (%)

Male 105 (63.3) 292 (65.2) 0.197a 0.658

Female 61 (36.7) 156 (34.8)

Age [years, M (Q1, Q3)] 70 (61 ~ 76) 61 (53 ~ 70) −6.230b <0.001*

BMI (Kg/m2) 23.3 (20.9 ~ 25.3) 24.0 (22.5 ~ 25.9) −2.887b 0.004*

Smoking, n (%) 68 (41.0) 105 (23.4) −4.472b <0.001*

Alcohol consumption, n (%) 60 (36.1) 96 (21.4) −3.936b <0.001*

Family history of CRC, n (%) 5 (3.0) 4 (0.9) 2.442a 0.118

Aspirin use, n (%) 12 (7.2) 9 (2.0) −2.877b 0.004*

Intestinal polyps, n (%) 97 (58.4) 337 (75.2) 16.477a <0.001*

Diabetes, n (%) 31 (18.7) 40 (9.0) −3.141b 0.002*

Hypertension, n (%) 56 (33.7) 73 (16.3) −4.270b <0.001*

Heart failure, n (%) 2 (1.2) 0 (0.0) – 0.073

Chronic kidney disease, n (%) 3 (1.8) 2 (0.5) 1.348a 0.246

Cerebral infarction, n (%) 27 (16.3) 51 (11.4) 2.602a 0.107

Carotid atherosclerosis, n (%) 98 (59.0) 61 (13.6) 130.209a <0.001*

COPD, n (%) 16 (9.6) 16 (3.6) −3.760b <0.001*

Gut microbiota dysbiosis, n (%) 23 (13.8) 3 (0.6) −7.200b <0.001*

Fatty liver, n (%) 76 (45.8) 161 (36.0) 4.954a 0.026*

Fatty liver absent, n (%) 90 (54.2) 287 (64.1) – –

Mild fatty liver, n (%) 65 (39.2) 114 (25.5) – –

Moderate fatty liver, n (%) 11 (6.6) 46 (10.3) – –

Severe fatty liver, n (%) 0 (0.0) 1 (0.2) – –

Fatty liver grading – – −1.637b 0.102

Platelet count (×109/L) 216.5 (173.0 ~ 272.0) 186.5 (147.0 ~ 226.0) −5.018b <0.001*

ALT (U/L) 13.0 (8.5 ~ 20.3) 18.0 (12.9 ~ 28.1) −5.683b <0.001*

AST (U/L) 25.6 (20.4 ~ 32.5) 26.7 (21.5 ~ 33.4) −1.499b 0.134

AST/ALT 1.80 (1.3 ~ 2.7) 1.4 (1.0 ~ 2.0) −5.698b <0.001*

Total bilirubin (umol/L) 12.0 (9.0 ~ 15.5) 13.3 (10.3 ~ 16.8) −2.835b 0.005*

Direct bilirubin (umol/L) 4.1 (3.2 ~ 5.2) 4.2 (3.3 ~ 5.2) −0.323b 0.747

Indirect bilirubin (umol/L) 7.6 (5.6 ~ 10.5) 9.0 (6.8 ~ 11.8) −3.674b <0.001*

GGT (U/L) 19.8 (14.3 ~ 34.1) 21.4 (14.8 ~ 33.5) −0.587b 0.557

Total bile acids (umol/L) 4.0 (2.2 ~ 6.5) 3.3 (1.6 ~ 5.8) −2.682b 0.007*

Serum creatinine (umol/L) 64.8 (54.1 ~ 78.5) 64.4 (52.6 ~ 76.4) −1.243b 0.214

Carcinoembryonic antigen (ng/mL) 3.9 (2.1 ~ 10.9) 2.0 (1.2 ~ 2.4) −10.559b <0.001*

Total cholesterol (mmol/L) 4.2 (4.1 ~ 4.7) 4.6 (4.1 ~ 5.4) −4.665b <0.001*

Triglycerides (mmol/L) 1.28 (0.96 ~ 2.34) 1.28 (0.86 ~ 2.18) −0.399b 0.690

HDL-C (mmol/L) 3.11 (3.11 ~ 3.11) 1.24 (1.02 ~ 1.53) −13.552b <0.001*

LDL-C (mmol/L) 2.74 (2.24 ~ 3.74) 2.52 (2.01 ~ 3.20) −0.721b 0.471

a is χ2; b represents the z-value; *: p < 0.05; CRC, colorectal cancer; BMI, body mass index; COPD, chronic obstructive pulmonary disease; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; AST/ALT, ratio of aspartate aminotransferase to alanine aminotransferase; ALP, alkaline phosphatase; GGT, gamma-glutamyltransferase; HDL-C, high-density lipoprotein 
cholesterol; LDL-C, low-density lipoprotein cholesterol.
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3.4 Clinical efficacy and validation of the 
FAH model

ROC curves were plotted for the FAH model and the individual 
components of fatty liver, carotid atherosclerosis, and HDL-C to 
obtain their respective AUCs. The AUC for the FAH model in 
predicting CRC was 0.902 (95% CI: 0.875–0.929), with a sensitivity of 
86.7% and a specificity of 78.1% (p < 0.001). The AUCs for predicting 
CRC with fatty liver disease, carotid atherosclerosis, and HDL-C levels 
were 0.549, 0.727, and 0.807, respectively (Figure 2). The predictive 
ability of each individual risk factor for CRC was lower than that of 
the FAH model, indicating the model’s strong discriminative power. 
Internal validation of the model was performed using the bootstrap 
resampling method with 1,000 repetitions. The adjusted 
bootstrap-AUC was 0.899 (95% CI: 0.871–0.925), p < 0.001 (Figure 3). 
The calibration curve after internal validation revealed that the bias-
corrected calibration curve of the model was close to the ideal curve, 
indicating good predictive stability and consistency (Figure  4). 
Decision Curve Analysis demonstrated that the model had a favorable 
clinical net benefit (Figure 5).

4 Discussion

4.1 CRC screening methods

CRC remains the second leading cause of cancer-related deaths 
(15), with a 5-year survival rate of up to 90.6% for early-stage CRC, 
compared to only 14.7% for late-stage CRC (16). Despite the 
effectiveness of clinical screening in reducing CRC incidence and 
mortality, data published by the National Cancer Center highlight 

persistent high risk and fatality rates across different age groups (17), 
indicating the need for continued efforts to develop CRC screening 
methods. Current screening methods, such as colonoscopy, are highly 
invasive and have low acceptance. Serum and fecal tumor marker 
screenings, although easy to perform, have insufficient specificity, 
limiting their application in large-scale screening. Although it is 
highly sensitive and specific, fecal DNA screening is costly and 
difficult to promote routinely. Moreover, comprehensive screening 
strategies, although theoretically comprehensive, are still controversial 
regarding their long-term efficacy and practical feasibility. Therefore, 
CRC screening faces many challenges in terms of method selection, 
patient compliance, risk of overdiagnosis, personalized screening 
strategies, application of emerging technologies, and resource 
allocation. Further research and improvements are needed to enhance 
the effectiveness and feasibility of CRC screening.

4.2 Effectiveness of the FAH model in 
predicting CRC

This study constructed an FAH prediction model using binary 
logistic regression analysis. The risk prediction nomogram model can 
intuitively display the impact of each risk factor on the occurrence of 
CRC in patients, providing clinical guidance for medical staff to 
perform colonoscopies for CRC screening. The model was tested 
using the Hosmer–Lemeshow goodness-of-fit test to enhance the 
scientific and rigorous nature of the modeling process. An AUC above 
0.9 indicates good prediction performance (18), and the AUC of the 
model in this study was 0.902 with a cut-off value of 0.275, sensitivity 
of 86.7%, specificity of 78.1%, and a 95% CI of 0.875–0.929 (p < 0.001). 
This suggests that the model has a diagnostic value for predicting 
CRC. Internal validation of the model showed a sensitivity of 94%, 

TABLE 2 Analysis of colorectal cancer risk factors.

Parameters Correlation analysis Multivariable logistic regression analysis

Correlation 
coefficient

p value OR 95% confidence 
interval

p value

Age 0.247 <0.001* 1.061 1.026 ~ 1.079 <0.001*

Diabetes mellitus 0.127 0.002* 7.032 3.317 ~ 14.905 <0.001*

Hypertension 0.172 <0.001* 0.959 0.448 ~ 2.056 0.915

Carotid atherosclerosis 0.461 <0.001* 6.879 3.420 ~ 13.836 <0.001*

Fatty liver 0.090 0.026* 3.118 1.606 ~ 6.052 0.001*

COPD 0.152 <0.001* 4.659 1.364 ~ 15.913 0.014*

Smoking 0.181 <0.001* 2.501 0.942 ~ 6.636 0.066

Alcohol consumption 0.150 <0.001* 1.363 0.497 ~ 3.738 0.548

Aspirin use 0.116 0.004* 0.870 0.155 ~ 4.875 0.874

Gut microbiota dysbiosis 0.291 <0.001* 19.887 2.752 ~ 143.744 0.003*

Platelet count 0.241 <0.001* 1.008 1.004 ~ 1.012 <0.001*

AST/ALT 0.166 <0.001* 1.113 0.976 ~ 1.268 0.111

Total bile acids 0.089 0.027* 1.012 0.959 ~ 1.068 0.669

HDL-C 0.741 0.001* 29.002 14.158 ~ 59.418 <0.001*

Carcinoembryonic antigen 0.426 <0.001* 1.081 1.035 ~ 1.129 <0.001*

OR, odds ratio; *: p < 0.05; COPD, chronic obstructive pulmonary disease; AST/ALT, ratio of aspartate aminotransferase to alanine aminotransferase; HDL-C, high-density lipoprotein 
cholesterol.
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TABLE 3 Binary logistic analysis of independent risk factors for colorectal cancer.

Risk factors B SE Wald p value OR OR95%CI

Lower limit Upper limit

Fatty Liver 1.059 0.275 14.878 <0.001 2.885 1.684 4.942

Carotid atherosclerosis 2.438 0.291 70.417 <0.001 11.452 6.480 20.239

HDL-C 3.205 0.294 118.790 <0.001 24.659 13.857 43.882

Dysbiosis of the gut 

microbiota

3.111 0.762 16.649 <0.001 22.445 5.036 100.026

S, regression coefficient; SE, standard error; Wald, statistical test; OR, odds ratio; CI, confidence interval; HDL-C, high-density lipoprotein cholesterol.

TABLE 4 Efficacy analysis of various models in predicting colorectal cancer.

Model Cut-off 
value

AUC Sensitivity Specificity 95%CI p value

FAHD 0.311 0.913 0.892 0.780 0.887 ~ 0.939 <0.001

FAH 0.275 0.902 0.867 0.781 0.875 ~ 0.929 <0.001

FA 0.381 0.760 0.590 0.864 0.714 ~ 0.805 <0.001

AH 0.166 0.884 0.934 0.708 0.853 ~ 0.914 <0.001

AHD 0.146 0.898 0.946 0.703 0.870 ~ 0.926 <0.001

CRC, colorectal cancer; AUC, area under the curve; CI, confidence interval; FAHD, Fatty Liver + Carotid Atherosclerosis + High-Density Lipoprotein Cholesterol + Gut Microbiota Dysbiosis; 
FAH, Fatty Liver + Carotid Atherosclerosis + High-Density Lipoprotein Cholesterol; FA, Fatty Liver + Carotid Atherosclerosis; AH, Carotid Atherosclerosis + High-Density Lipoprotein 
Cholesterol; AHD, Carotid Atherosclerosis + High-Density Lipoprotein Cholesterol + Gut Microbiota Dysbiosis.

TABLE 5 Variables in the FAH model equation.

Risk factors B SE Wald p value OR OR95%CI

Lower limit Upper limit

Fatty liver 1.082 0.265 16.657 <0.001 2.951 1.755 4.963

Carotid atherosclerosis 2.443 0.281 75.434 <0.001 11.513 6.633 19.983

HDL-C 3.165 0.282 126.093 <0.001 23.683 13.631 41.146

Constants −3.803 0.303 157.781 <0.001 0.022 – –

S, regression coefficient; SE, standard error; Wald, Wald test statistic; OR, odds ratio; CI, confidence interval; HDL-C, high-density lipoprotein cholesterol.

FIGURE 1

Nomogram model for predicting the risk of colorectal cancer.
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specificity of 70.8%, and accuracy of 77%, indicating that the 
prediction model had good practical predictive ability.

4.3 Theoretical basis and risk factor 
analysis of FAH model

Fatty liver, carotid atherosclerosis, and HDL-C are closely related 
to lipid metabolism and play key roles in the occurrence and 
development of CRC. Dyslipidemia provides tumor cells with 
abundant energy, nutrients, and redox requirements, supporting their 
malignant growth and metastasis (19). A study based on circular RNA 
microarray revealed that circCAPRIN1 can promote CRC progression, 
elucidating the molecular mechanism by which circular RNA promote 
tumor progression through dysregulated lipid metabolism (20). 
Dyslipidemia is a hallmark of cancer (21). Multiple enzymes, proteins, 
and transcription factors participate in the reprogramming of CRC 
lipid metabolism. Their abnormal expression promotes lipid synthesis 
and droplet accumulation through various mechanisms, thereby 
affecting the growth, proliferation, and metastasis of CRC cells.

This study found that fatty liver and carotid atherosclerosis were 
independent risk factors for CRC. Fatty liver may promote CRC by 
increasing insulin resistance, altering the secretion of adipokines, and 
affecting the balance of inflammatory mediators (22). The association 
between carotid atherosclerosis and CRC may be  related to 
pathophysiological mechanisms, such as chronic inflammation, 
oxidative stress, and endothelial dysfunction (6). Notably, this study 
identified HDL-C as an independent risk factor for CRC, which 
contradicts traditional views that HDL-C is generally protective 
against tumor development (23). A retrospective study observed that 
serum HDL-C levels were significantly increased in CRC patients with 
ocular metastasis, with levels above 1.27 mmol/L associated with an 
increased risk of ocular metastasis (24). This threshold was close to 
1.615 mmol/L for HDL-C, which was identified as a risk factor for 
CRC in this study. A Mendelian randomization analysis found higher 
genetically predicted HDL-C levels were associated with increased risk 
of non-endometrioid endometrial cancer (25). The findings of this 
study suggest that HDL-C may not be a universally protective factor 

for all types of cancer but rather may act as a risk factor for specific 
tumor types (26), and may also be  related to the degree of 
differentiation or staging of CRC (27). However, the exact causal 
relationship between HDL-C levels and the development of CRC 
requires further research to provide definitive evidence. Emerging 
evidence suggests that the distribution and functional aberrations of 
HDL-C subtypes may indirectly facilitate cancer progression through 
alterations in cholesterol metabolism (28). At the genetic level, 
genome-wide association studies (GWAS) have identified a functional 
mutation at the rs5888 locus of the SCARB1 gene, which can impede 
HDL-C metabolism. This leads to the accumulation of oxidized 
HDL-C in circulation, triggering the release of inflammatory 
cytokines and subsequently promoting the proliferation of colorectal 
epithelial cells via the activation of the TLR4/NF-κB signaling pathway 
(29, 30). These findings highlight that clinical practice should not only 
focus on HDL-C concentrations but also on its functional status and 
genetic background, thereby providing novel insights for the early 
detection and warning of CRC. Additionally, this study highlighted 
gut microbiota dysbiosis as another risk factor for CRC, emphasizing 
that an imbalance in the gut microbiota may lead to lipid metabolism 
disorders. Recent research has shown that an imbalance in the gut 
microbiota significantly affects lipid metabolism in the host, leading 
to diseases such as obesity, hyperlipidemia, and NAFLD (31). These 
findings provide new perspectives for understanding the mechanisms 
of fatty liver, carotid atherosclerosis, HDL-C, and gut microbiota 
dysbiosis in CRC and may have significant implications for CRC risk 
assessment and clinical treatment strategies.

4.4 Limitations of this study

Although the FAH model has certain value in CRC prediction, 
it has limitations. Firstly, there is a lack of external validation. 
External validation is a crucial step in evaluating the generalization 
ability of a model, ensuring that the model still exhibits good 
predictive performance in different populations and environments 
(32). However, the FAH model is constructed based on specific 
datasets and lacks validation from independent samples, which 

FIGURE 2

Clinical efficacy of three risk factors and the FAH model in predicting 
colorectal cancer.

FIGURE 3

Bootstrap-AUC of the FAH model.
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raises doubts about its reliability in practical applications. Therefore, 
future research should focus on conducting multi—center, large—
sample external validation to fully evaluate the stability and 
applicability of the FAH model, thus providing more robust support 
for the accurate prediction of CRC. Secondly, the FAH model 
assesses the sensitivity and specificity of the test based on a single 
screening method. Furthermore, current guidelines identify 
intestinal polyps as a risk factor for CRC. However, this study found 
no association between colonic polyps and CRC risk. On the 
contrary, patients with intestinal polyps exhibited a lower 
probability of developing CRC. This may be  attributed to the 

surgical removal of polyps following their detection through 
colonoscopy, thereby placing patients in a disease-free state and 
reducing the incidence of CRC. This observation indirectly suggests 
that early detection and intervention in patients with intestinal 
polyps could potentially decrease CRC incidence. As this was a 
retrospective study, some patients were excluded, and the analysis 
may have been biased. Large-sample, multicenter prospective 
studies are needed to explore the relationship between metabolism-
related diseases and CRC.

In conclusion, this study identified NAFLD, carotid 
atherosclerosis, low HDL-C levels, and intestinal dysbiosis as 
independent risk factors for CRC. These findings provide a scientific 
basis for healthcare professionals to implement effective preventive 
measures, thereby reducing CRC incidence. The FAH model offers a 
practical, straightforward, and rapid approach for predicting CRC, 
providing valuable guidance for clinical practice and introducing 
novel perspectives for CRC screening.
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