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Purpose: Acute Mesenteric Ischemia (AMI) is a critical condition marked by

restricted blood flow to the intestine, which can lead to tissue necrosis

and fatal outcomes. We aimed to develop a deep learning (DL) model

based on CT angiography (CTA) imaging and clinical data to diagnose

AMI.

Methods: A retrospective study was conducted on 228 patients suspected

of AMI, divided into training and test sets. Clinical data (medical history

and laboratory indicators) was included in a multivariate logistic regression

analysis to identify the independent factors associated with AMI and establish

a clinical factors model. The arterial and venous CTA images were utilized

to construct DL model. A Fusion Model was constructed by integrating

clinical factors into the DL model. The performance of the models was

assessed using receiver operating characteristic (ROC) curves and decision

curve analysis (DCA).

Results: Albumin and International Normalized Ratio (INR) were associated

with AMI by univariate and multivariate logistic regression (P < 0.05). In

the test set, the area under ROC curve (AUC) of the clinical factor model

was 0.60 (sensitivity 0.47, specificity 0.86). The AUC of the DL model

based on CTA images reached 0.90, which was significantly higher than

the AUC values of the clinical factor model, as confirmed by the DeLong

test (P < 0.05). The Fusion Model also showed exceptional performance in

terms of AUC, accuracy, sensitivity, specificity, and precision, with values of

0.96, 0.94, 0.94, 0.95, and 0.98, respectively. DCA indicated that the Fusion

Model provided a greater net benefit than those of models based solely

on imaging and clinical information across the majority of the reasonable

threshold probabilities.

Conclusion: The incorporation of CTA images and clinical information into

the model markedly enhances the diagnostic accuracy and efficiency of AMI.
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This approach provides a reliable tool for the early diagnosis of AMI and the

subsequent implementation of appropriate clinical intervention.
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acute mesenteric ischemia, multiphase CT angiography, artificial intelligence, deep
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1 Introduction

Acute mesenteric ischemia (AMI) is a life-threatening
condition characterized by restricted blood flow to the intestine,
leading to tissue necrosis and potentially fatal outcomes if not
promptly diagnosed and treated (1, 2). The pathophysiological
processes underlying AMI are complex, involving embolic,
thrombotic, and low-perfusion states that complicate early
detection and effective intervention (3, 4). Despite advances in
medical imaging and surgical techniques, the morbidity and
mortality rates associated with AMI remain alarmingly high
(5, 6).

Abdominal pain is the sole presenting symptom of most
AMI patients when they seek medical treatment. Some AMI
patients present with "severe symptoms and mild signs" in
the early stage of the disease, but this clinical picture lacks
specificity (7). Therefore, many scholars focus on laboratory test
indicators to diagnose whether patients with acute abdomen
have AMI, such as white blood cell counts, C-reactive protein,
and lactate levels (8–11). However, elevated white blood cells
and C-reactive protein levels are typically responses to various
infections, inflammation, or stress and are not specific to AMI.
While AMI can lead to increased lactate levels, changes in lactate
levels may be delayed and might not immediately reflect the
condition in the disease’s early stages. Therefore, relying solely
on laboratory indicators challenges capturing the complexity
of AMI due to their inadequate sensitivity and specificity
(12, 13). As the understanding of AMI deepens, developing a
comprehensive diagnostic approach that combines laboratory tests
and imaging techniques will be crucial for improving diagnostic
accuracy and timeliness.

Computed tomography angiography (CTA) stands as a
cornerstone in the diagnostic workup of suspected AMI (14). CTA
technology enables the clear observation of the extent of mesenteric
vascular occlusion and stenosis, as well as the evaluation of
their relationship with adjacent branch vessels. Furthermore, CTA
can facilitate the assessment of intestinal lesions and mesenteric
changes associated with AMI (15). However, the interpretation
of CT images is often challenging due to the subtle and variable
imaging manifestations of AMI, necessitating significant expertise
and may result in delayed or missed diagnoses (16).

Recent advancements in artificial intelligence, particularly deep
learning (DL), have demonstrated substantial promise in enhancing
diagnostic accuracy and efficiency across a range of medical
imaging tasks (17, 18). Moreover, they have exhibited significant
advantages in identifying other acute abdominal conditions, such
as acute pancreatitis and appendicitis (19, 20).

We hypothesize that DL is able to be utilized in CTA images to
build an early diagnostic model for AMI. Additionally, integrating
clinical information with DL may provide supplementary data for
the diagnostic model. Therefore, it is necessary to develop a more
systematic and comprehensive model to achieve multi-level clinical
decision-making. This study aims to construct an integrated model
utilizing DL and clinical information to provide a reliable tool for
early diagnosis in patients with AMI.

2 Materials and methods

2.1 Subjects

This retrospective study was approved by our ethic institutional
review board.

The electronic medical records of 385 adult patients suspected
of AMI from 2011 to 2023 were retrieved using a lexicon
search tool. This tool identified specific keyword phrases such
as “acute mesenteric ischemia,” “bowel ischemia/necrosis,” and
“pneumoperitoneum.” The exclusion criteria were as follows: (1)
no exploratory laparotomy, no pathological analysis of any resected
specimen, or death before receiving the intervention or surgical
treatment (79 patients); (2) no multi-phase contrast-enhanced
CT scans (45 patients); and (3) missing clinical information or
laboratory indicators (33 patients).

A total of 228 patients (about 182,000 CTA images in total,
an average of 800 CTA images per patient) were enrolled in
this study. All patients were divided into AMI and non-AMI
according to verified clinical diagnoses, and randomly assigned
to a training set and a test set at a ratio of 7:3. The training set
comprised 160 patients, of which 111 were identified as having
acute mesenteric ischemia (AMI) and 49 as non-AMI. The test set
included 68 patients, with 47 identified as AMI and 21 as non-
AMI.

2.2 CT examinations

CT examinations were performed on two CT scanners from
GE (256 and 64-slice CT). All patients underwent abdominal
arterial and venous CTA examinations. Firstly, arterial angiography
was performed using bolus tracking technology, with the area of
interest located in the descending aorta (threshold = 180 HU).
Subsequently, a venous CTA examination was conducted after a
30-s delay. The scan range of all phases was from the diaphragm
to the symphysis pubis in a supine position. All patients underwent
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FIGURE 1

Schematic diagram of the Fusion Model construction.

CT scans at 120 kVp tube voltage and automatic tube current. CT
images were reconstructed with a section thickness of 1.25 mm.

2.3 Clinical factor model

The comprehensive clinical data for all patients was collected,
including the history of hypertension, diabetes, atrial fibrillation,
coronary heart disease, previous strokes, liver cirrhosis, lower
limb venous thrombosis, average pulse rate, and systolic and
diastolic blood pressure, along with laboratory indicators such as
white blood cell count, hemoglobin, platelet count, lymphocytes,
neutrophils, serum creatinine, albumin, fasting blood glucose,
alanine aminotransferase (ALT), aspartate aminotransferase (AST),
D-dimer, fibrinogen, and International Normalized Ratio (INR).
Independent risk factors related to AMI were identified through
univariate and multivariate logistic analyses to establish a
clinical factor model.

2.4 Deep learning model

An automatic segmentation algorithm was employed to
delineate 3D volumes of interests (VOIs) for the superior
mesenteric artery (SMA), small intestine, colon, and abdominal fat
were delineated on arterial phase images, as well as VOIs for the
portal vein, superior mesenteric vein, small intestine, colon, and
abdominal fat on venous phase images. In total, eight VOIs were
outlined for each patient. To ensure accuracy, two radiologists with
10 years of experience in abdominal imaging reviewed all VOIs
while being blinded to clinical and pathological information. The
labels for the images were based on verified clinical diagnoses,
categorizing them into acute mesenteric ischemia (AMI) and non-
AMI groups. These labels served as the ground truth for model
training and evaluation.

In the data preprocessing stage, all images were resampled
with voxel spacing of 1 × 1 × 1 mm3 and normalized by
Z-score normalization. After cropping the borders of the 8
VOIs to 32 × 32 × 32, they are input into the network

for subsequent analysis. To improve data diversity and the
generalization ability of the model, data augmentation techniques
were employed. These included horizontal flip, vertical flip,
and transposition.

In the training data set, we used 3D convolutional neural
network ResNet50 to establish 9 deep learning models for
diagnosing AMI and non-AMI. These models are as follows,
Model A: based on the VOI of SMA in arterial phase; Model B:
based on the VOI of small intestine in arterial phase; Model C:
based on the VOI of colon in arterial phase; Model D: based
on the VOI of abdominal fat in arterial phase; Model E: based
on the VOI of vein in venous phase; Model F: based on the
VOI of small intestine in venous phase; Model G: based on the
VOI of colon in venous phase; Model H: based on the VOI of
abdominal fat in venous phase; and Model I: a comprehensive
model integrating all VOIs.

The ResNet50 architecture contained 16 residual blocks. Each
residual block consisted of three convolutional layers (1 × 1,
3 × 3, and 1 × 1), batch normalization layer and rectified
linear unit activation function. The output of the last block was
connected to a fully-connected layer and a softmax layer to give
the probability for diagnosis of AMI and non-AMI. To enhance
the transparency of the models’ decision-making process, Gradient-
weighted Class Activation Mapping (Grad-CAM) was employed to
visualize the models. By utilizing gradient information from the
last convolutional layer for weighted fusion, class activation maps
were generated to underscore key regions of the image pertinent to
classification targets (21).

Configuration: The batch size was set to 8, and the IO threads
were set to 4. The Adam training optimizer was used with a learning
rate set to 0.0001. The hardware was a GeForce RTX 2080 Ti GPU,
and the software included Python 3.7.11 and PyTorch 1.7.1.

2.5 Fusion Model

To obtain DL fused clinical factor model for diagnosing the
probabilities of AMI and non-AMI, the independent clinical risk
factors were integrated into the fully-connected layer of Model I.
Construction process seen in Figure 1.
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TABLE 1 The details of the baseline characteristics and clinical data of
all individuals.

Characteristics Training set
(n = 160)

Test set
(n = 68)

P-value

Age (years) 0.725†

Median (IQR) 71 (64, 79) 68 (65, 75)

Gender (no.) 0.905*

Female 9 6

Male 45 28

AMI (no.) 0.969*

Yes 111 47

No 49 21

Hypertension (no.) 0.398*

Yes 78 29

No 82 39

Diabetes (no.) 0.582*

Yes 28 14

No 132 54

Atrial fibrillation
(no.)

0.136*

Yes 43 12

No 117 56

Coronary heart
disease (no.)

0.490*

Yes 27 9

No 133 59

Previous strokes
(no.)

0.063*

Yes 18 14

No 142 54

Liver cirrhosis (no.) 0.941*

Yes 5 2

No 155 66

Lower limb venous
thrombosis (no.)

0.814*

Yes 6 3

No 154 65

Average pulse rate
(bpm)

78 (70, 90) 78 (74, 92) 0.15†

Systolic blood
pressure (mmHg)

138 (122, 150) 136 (124,
149.25)

0.548†

Diastolic blood
pressure (mmHg)

80 (76, 90) 85 (79.25,
90.75)

0.31†

White blood cell
count (cells/µL)

8.81 (5.79, 13.58) 9.385 (6.11,
14.1575)

0.458†

Platelet count
(platelets/µL)

131 (118.25,
144.75)

134.5(123,
145.25)

0.52†

Hemoglobin (g/dL) 192.5 (150.3,
235)

198.5 (157.75,
246.75)

0.458†

Neutrophils
(cells/µL)

1.445 (0.87, 2.05) 1.415 (0.9025,
1.83)

0.598†

(Continued)

TABLE 1 (Continued)

Characteristics Training set
(n = 160)

Test set
(n = 68)

P-value

Lymphocytes
(cells/µL)

6.76 (3.98, 11.52) 6.74 (3.96,
12.115)

0.749†

Albumin (g/dL) 68 (55, 94.25) 72.5 (55.25,
87.75)

0.751†

Serum creatinine
(mg/dL)

37.4 (32.95,
41.075)

37.2 (34.525,
39.55)

0.585†

ALT (U/L) 6.185 (5.24, 9.16) 5.955 (4.9625,
8.3825)

0.136†

Fasting blood
glucose (mg/dL)

20.5 (15, 30.5) 22.5 (15, 30) 0.279†

AST (U/L) 23 (18, 34.75) 25 (19.25, 34) 0.365†

D-dimer (ng/mL) 1.6 (0.61, 4.46) 1.895 (0.5925,
4.225)

0.646†

Fibrinogen (mg/dL) 3.56 (2.84, 4.61) 3.835 (2.8225,
4.8425)

0.285†

INR 1.05 (0.98, 1.16) 1.03 (0.97,
1.16)

0.443†

ALT, alanine aminotransferase; INR, International Normalized Ratio; AST, aspartate
aminotransferase. *The Chi-square test. †The Mann-Whitney U test.

2.6 Statistical analysis

Statistical analyses were performed using SPSS version 24.0 and
Python version 3.7.11. The normality of the measurement data was
assessed with the Kolmogorov-Smirnov test (n > 50) or Shapiro-
Wilk test (n ≤ 50). Data that followed a normal distribution were
expressed as mean ± standard deviation and compared between
AMI and non-AMI patients using two-sample t-tests. Data that not
followed a normal distribution were expressed as median (Q1, Q3)
and compared using the Mann-Whitney U test. Count data were
presented as frequencies and percentages, and comparisons were
made using the Chi-square test.

Independent risk factors related to AMI were identified
through univariate and multivariate logistic regression analyses
to establish a clinical factor model. First, the univariate logistic
regression analysis was conducted to screen for potential risk
factors by calculating odds ratios (ORs) with a corresponding
95% confidence interval (CI) for each variable. Variables with
a p-value of less than 0.05 in the univariate analysis were
considered eligible for inclusion in the multivariate logistic
regression model. For the multivariate logistic regression analysis,
the backward stepwise selection method was employed to further
refine the model. This method begins with the inclusion of
all candidate variables identified from the univariate analysis
and subsequently removes variables that do not contribute
significantly to the model.

The diagnostic efficiency was quantified using the area
under the receiver operating characteristic (ROC) curve
and then the area under the ROC curves (AUCs) were
calculated. The AUCs were compared using the DeLong test.
Specific performance metrics, including sensitivity, specificity,
accuracy, precision, and the F1 score, were calculated. To assess
clinical usefulness of the models, a decision curve analysis
(DCA) was conducted to evaluate the clinical net benefit.
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TABLE 2 Risk factors for diagnosing AMI and non-AMI in the training set.

Univariate logistic regression

Variables β S.E Z P OR (95%CI)

Hypertension 0.46 0.35 1.33 0.184 1.59 (0.80 ∼ 3.13)

Diabetes 0.12 0.46 0.26 0.795 1.13 (0.46 ∼ 2.77)

Atrial fibrillation 1.06 0.46 2.32 0.020 2.88 (1.18 ∼ 7.04)

Coronary heart disease 0.28 0.48 0.58 0.562 1.32 (0.52 ∼ 3.36)

Previous strokes 0.48 0.59 0.81 0.415 1.62 (0.51 ∼ 5.21)

Liver cirrhosis 0.58 1.13 0.52 0.605 1.79 (0.20 ∼ 16.48)

Lower limb venous thrombosis 15.80 979.61 0.02 0.987 7303968.37 (0.00 ∼ Inf)

Average pulse rate 0.01 0.01 1.46 0.143 1.01 (1.00 ∼ 1.03)

Systolic blood pressure 0.02 0.01 2.36 0.018 1.02 (1.01 ∼ 1.04)

Diastolic blood pressure 0.00 0.01 0.01 0.991 1.00 (0.97 ∼ 1.03)

White blood cell count 0.07 0.03 2.23 0.026 1.08 (1.01 ∼ 1.15)

Platelet count −0.00 0.00 −1.12 0.263 1.00 (0.99 ∼ 1.00)

Hemoglobin 0.01 0.01 0.87 0.385 1.01 (0.99 ∼ 1.02)

Neutrophils 0.05 0.03 1.84 0.066 1.05 (1.00 ∼ 1.11)

Lymphocytes −0.10 0.08 −1.32 0.188 0.90 (0.78 ∼ 1.05)

Albumin −0.11 0.03 −3.40 <0.001 0.90 (0.84 ∼ 0.96)

Serum creatinine 0.00 0.00 0.22 0.825 1.00 (1.00 ∼ 1.01)

ALT 0.01 0.01 1.04 0.300 1.01 (0.99 ∼ 1.03)

Fasting blood glucose 0.08 0.05 1.46 0.145 1.08 (0.97 ∼ 1.20)

AST 0.01 0.01 1.34 0.179 1.01 (0.99 ∼ 1.03)

D-dimer 0.08 0.05 1.69 0.091 1.08 (0.99 ∼ 1.18)

Fibrinogen 0.28 0.13 2.15 0.032 1.33 (1.03 ∼ 1.72)

INR 5.91 1.73 3.41 <0.001 369.83 (12.40 ∼ 11029.74)

Multivariate logistic regression

Variables β S.E Z P OR (95%CI)

Atrial fibrillation 0.36 0.52 0.69 0.493 1.43 (0.52 ∼ 3.94)

Systolic blood pressure 0.02 0.01 1.69 0.092 1.02 (1.00 ∼ 1.04)

White blood cell count 0.03 0.04 0.91 0.361 1.03 (0.96 ∼ 1.11)

Albumin −0.08 0.04 −2.32 0.021 0.92 (0.86 ∼ 0.99)

Fibrinogen 0.14 0.15 0.90 0.370 1.15 (0.85 ∼ 1.56)

INR 4.01 1.67 2.41 0.016 55.38 (2.10 ∼ 1458.26)

ALT, alanine aminotransferase; INR, International Normalized Ratio; AST, aspartate aminotransferase; OR, odds ratio; CI, confidence interval, IQR, Interquartile Range. Values with a
statistically significant difference (p-value < 0.05) are in bold.

Additionally, a calibration curve was plotted to assess the model’s
reliability. A p-value less than 0.05 was considered statistically
significant.

3 Results

3.1 Clinical data

Table 1 lists the details of the clinical data of all patients. There
were no significant differences between the AMI group and the
non-AMI group.

3.2 Performance of clinical factor model

In the training set, Albumin and INR were associated with
AMI by univariate and multivariate logistic regression (P < 0.05)
(Table 2). In the test set, the AUC of the clinical factor model
was 0.60 (sensitivity 0.47, specificity 0.86). Additional detailed
indicators were presented in Table 3.

3.3 Performance of DL model

Table 3 summarized the performances of different DL models.
The AUC values for Model A, Model B, Model D, Model F and
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TABLE 3 The performance of different models.

Set Model AUC Accuracy Sensitivity Specificity F1 Score Precision

Training set Model A 0.89 0.83 0.80 0.88 0.86 0.94

Model B 0.86 0.81 0.83 0.75 0.86 0.88

Model C 0.79 0.73 0.73 0.71 0.79 0.85

Model D 0.85 0.73 0.61 0.97 0.76 0.98

Model E 0.74 0.83 0.95 0.55 0.88 0.83

Model F 0.80 0.83 0.86 0.73 0.88 0.89

Model G 0.75 0.71 0.72 0.69 0.78 0.84

Model H 0.80 0.75 0.75 0.78 0.82 0.88

Model I 0.94 0.93 0.90 0.97 0.91 0.99

Clinical model 0.72 0.66 0.62 0.76 0.72 0.85

Fusion Model 0.99 0.98 0.98 0.98 0.99 0.98

Test set Model A 0.88 0.85 0.89 0.75 0.89 0.89

Model B 0.81 0.87 0.96 0.67 0.91 0.87

Model C 0.76 0.75 0.68 0.90 0.79 0.94

Model D 0.80 0.82 0.91 0.62 0.88 0.84

Model E 0.70 0.78 0.38 0.80 0.86 0.78

Model F 0.77 0.85 0.89 0.76 0.87 0.89

Model G 0.72 0.71 0.66 0.81 0.76 0.89

Model H 0.77 0.82 0.85 0.76 0.87 0.89

Model I 0.90 0.95 0.90 0.97 0.89 0.95

Clinical model 0.60 0.59 0.47 0.86 0.61 0.88

Fusion Model 0.96 0.94 0.94 0.95 0.96 0.98

FIGURE 2

DCA of the Model A, Model B and Model D in the test set.

Model H in the training set all >0.80. The AUC values were 0.89
(sensitivity 0.80, specificity 0.88), 0.86 (sensitivity 0.83, specificity
0.75), and 0.85 (sensitivity 0.61, specificity 0.97), 0.80 (sensitivity
0.86, specificity 0.83), and 0.80 (sensitivity 0.75, specificity 0.78),
respectively.

Upon validation of the models on the test set, only Model A,
Model B, and Model D had AUCs > 0.8. The AUC values were 0.88

(sensitivity 0.89, specificity 0.75), 0.81 (sensitivity 0.96, specificity
0.67), and 0.80 (sensitivity 0.91, specificity 0.62), respectively. The
DCA indicated that within the majority of reasonable threshold
probability ranges, Model A had a higher overall net benefit than
Model B and Model D. This suggests Model A is more consistent
in distinguishing between AMI and non-AMI compared to Model
B and Model D (Figure 2). In terms of model interpretability, the
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attention regions of Model A, Model B, and Model D were all
activated, and there were significant differences in distinguishing
AMI and non-AMI (Figure 3).

3.4 Assessment of the performance of
the different models

To enhance diagnostic performance, DL information was
integrated to develop Model I. Subsequently, we combined DL with

FIGURE 3

The attention regions of deep learning models in CTA image
analysis.

clinical information to create the Fusion Model. Validation results
indicated that Model I improved the accuracy of AMI diagnosis,
while the Fusion Model further enhanced diagnostic efficiency over
Model I.

In the training set, Model I achieved an AUC of 0.94 (sensitivity
0.90, specificity 0.97), which was higher than those of models based
solely on imaging and clinical information. The Fusion Model
exhibited the best performance, with an AUC of 0.99 (sensitivity
0.98, specificity 0.98), outperforming Model I. In the test set, the
AUC of Model I slightly decreased but still reached 0.90, which
remained higher than the AUC values of the imaging and clinical
models, as confirmed by the DeLong test (P < 0.05). The Fusion
Model also demonstrated exceptional performance in terms of
AUC, accuracy, sensitivity, specificity, and precision, with values of
0.96, 0.94, 0.94, 0.95, and 0.98, respectively. Within the threshold
probability range of 0.6–0.95, the clinical net benefit of Fusion
Model was higher than that of Model I (Figure 4).

4 Discussion

In this study, we constructed an early diagnosis DL model
for AMI by integrating imaging and clinical information. The
results revealed that our Fusion Model significantly outperformed
individual models based on clinical or imaging data alone.
Specifically, the Fusion Model achieved an impressive AUC
of 0.96 in the test set, alongside high values in sensitivity,
specificity, accuracy, and precision. These findings indicate that
using advanced DL technology to integrate imaging information
and clinical data can significantly improve diagnostic performance,
enabling earlier and more accurate diagnosis of AMI in
clinical settings.

AMI is defined as a sudden occlusion or reduction in blood
flow to the intestines, resulting in tissue ischemia and necrosis (22).
Early diagnosis is critical for patient survival yet, clinical symptoms

FIGURE 4

DCA of the Model I and Fusion Model in the test set.
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are often nonspecific and may overlap with other abdominal
emergencies (23). In this study, the clinical factor model alone
showed limited diagnostic performance, with an AUC of only
0.60 in the test set. Despite the fact that albumin and INR were
significantly associated with AMI in univariate and multivariate
regression analyses, relying solely on clinical indicators proved
inadequate for achieving satisfactory diagnostic efficacy. This
finding highlights the complex pathophysiological characteristics
of AMI, which likely requires a multi-faceted approach combining
various data types to attain accurate diagnostic flagging (24).

CTA has become the preferred test in diagnosing AMI due
to its ability to provide comprehensive vascular and parenchymal
information (25). The multi-phase nature of CTA facilitates
capturing both arterial and venous phases, which are crucial for the
detection of vascular occlusions and the identification of areas of
ischemia (26). Despite its utility, the interpretation of CTA images
remains a complex and demanding process, often necessitating the
expertise of seasoned radiologists (27).

Our study explored various models based on distinct VOIs
delineated from the superior mesenteric artery (SMA), small
intestine, colon, and abdominal fat in both arterial and venous
phases. Our findings revealed notable variations in the diagnostic
efficacy across these regions. Models A, B, and D-associated with
the SMA, small intestine, and abdominal fat, respectively-exhibited
a higher diagnostic performance. Specifically, Model A, which
focused on the SMA, achieved an AUC of 0.88 in the test set,
emphasizing the vital role of arterial phase imaging in detecting
AMI. This finding aligns with previous studies highlighting the
diagnostic value of arterial phase images in identifying vascular
occlusions and reduced perfusion (28, 29). The performance
of Model B underscored the critical importance of evaluating
the small intestine for ischemic changes. The sensitivity of 0.96
emphasizes its potential for detecting subtle ischemic changes
within the bowel wall, such as thickening or loss of enhancement,
which are crucial early indicators of AMI (30, 31). Model D, which
focused on abdominal fat in the arterial phase, also presented
robust performance with an AUC of 0.80. This model exhibited the
capacity to detect exudation and other secondary effects of ischemia
in the surrounding fat, thereby underscoring its complementary
diagnostic value (32, 33).

In contrast, venous phase models such as Model E, F, and G
yielded comparatively lower AUCs, indicating that while venous
phase images provide valuable supplementary information, they
may be less critical than arterial phase images for initial AMI
detection. These findings partially diverge from some earlier works
that suggest comprehensive evaluations of both arterial and venous
phases for diagnosing vascular pathologies (25, 26). Our results
indicate, however, that arterial phase images may hold greater
diagnostic yield when considered independently.

The discrepancy between the performance of different DL
models emphasizes the importance of comprehensive image
analysis across multiple anatomical regions to accurately capture
the heterogeneous presentation of AMI. Model I, as an integrated
model encompassing multiple VOIs, showed a significant
improvement in diagnosing AMI compared to models based
solely on imaging data. Specifically, Model I achieved an AUC of
0.90 in the test set, highlighting its superiority over single CTA
imaging models. To further enhance diagnostic performance,
we combined Model I with clinical information to produce the

Fusion Model. The Fusion Model, however, demonstrated superior
performance to Model I, achieving an AUC of 0.99 in the training
set and 0.96 in the test set. It also demonstrated exceptional
performance across other metrics. The DCA indicated that the
Fusion Model offered the highest clinical net benefit across a
range of reasonable threshold probabilities, further validating its
potential for clinical application.

The strength of our study mainly includes the following points.
Firstly, the integration of arterial and venous phase VOIs provided
a more comprehensive anatomical and functional landscape,
significantly enhancing the reliability of image recognition.
Secondly, advanced deep learning techniques facilitated effective
image processing and feature extraction, making automated CTA-
based diagnostics feasible. Lastly, the incorporation of clinical
information augmented the model’s diagnostic capacity, enhancing
its accuracy and suitability for the early diagnosis of AMI.

Several limitations of our study should be acknowledged.
Firstly, the retrospective nature of the study may introduce
selection bias, despite our efforts to mitigate this through the
application of strict inclusion and exclusion criteria. Secondly,
the relatively small sample size, especially in the testing set, may
affect the reliability of the results and limit the generalizability of
our findings. Thirdly, although the DL models demonstrated high
performance metrics, external validation with different datasets
is required to assess their robustness across diverse clinical
settings and populations. Furthermore, the study focuses solely on
CTA imaging data and clinical factors, which may result in the
exclusion/overlook of CT non-contrast images. In conclusion, the
DL model that integrates CTA imaging and clinical information
can significantly improve the diagnostic accuracy and efficiency of
AMI. Our approach has the potential to reduce the high mortality
associated with AMI, ultimately leading to better clinical outcomes
for patients facing this life-threatening condition.
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