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Introduction: Pulmonary granulomatous nodules (PGN) often exhibit similar 
CT morphological features to solid lung adenocarcinomas (SLA), making 
preoperative differentiation challenging. This study aims to address this 
diagnostic challenge by developing a novel deep learning model.

Methods: This study proposes MAEMC-NET, a model integrating generative 
(Masked AutoEncoder) and contrastive (Momentum Contrast) self-supervised 
learning to learn CT image representations of intra- and inter-solitary 
nodules. A generative self-supervised task of reconstructing masked axial CT 
patches containing lesions was designed to learn intra- and inter-slice image 
representations. Contrastive momentum is used to link the encoder in axial-CT-
patch path with the momentum encoder in coronal-CT-patch path. A total of 
494 patients from two centers were included.

Results: MAEMC-NET achieved an area under curve (95% Confidence Interval) 
of 0.962 (0.934–0.973). These results not only significantly surpass the joint 
diagnosis by two experienced chest radiologists (77.3% accuracy) but also 
outperform the current state-of-the-art methods. The model performs best on 
medical images with a 50% mask ratio, showing a 1.4% increase in accuracy 
compared to the optimal 75% mask ratio on natural images.

Discussion: The proposed MAEMC-NET effectively distinguishes between 
benign and malignant solitary pulmonary nodules and holds significant potential 
to assist radiologists in improving the diagnostic accuracy of PGN and SLA.
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1 Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide, 
responsible for more deaths than breast, prostate, and colon cancers 
combined (1). Each year, millions are diagnosed with lung cancer, with 
a significant portion identified at advanced stages where treatment 
options become limited and prognosis worsens (2). Early detection of 
lung cancer dramatically elevates survival rates and can mitigate the 
invasiveness and costs of treatments (3). Often, early-stage lung cancer 
presents with little to no discernible symptoms, meaning that by the 
time symptoms do emerge, the cancer may have metastasized (4). Given 
this, the pivotal role of routine screening, particularly via computed 
tomography (CT) scans known for their high resolution and sensitivity, 
becomes evident in enhancing early diagnosis (5).

Solitary pulmonary nodules (SPN) present as distinct, 
rounded opacities often smaller than 3 cm in diameter, typically 
encapsulated entirely within the pulmonary parenchyma without 
adjacent lung abnormalities (6). These radiographic features, 
while seemingly straightforward, hide a more complex underlying 
reality. In the clinical realm, a significant proportion of malignant 
peripheral SPNs are identified as solid lung adenocarcinomas 
(SLA) (7). However, a confounding factor in SPN evaluation 
emerges with pulmonary granulomatous nodules (PGN). These 
benign lesions can sometimes demonstrate spiculated or lobulated 
appearances on CT scans, closely mimicking the characteristics of 
their malignant counterparts, making differentiation between the 
two an intricate task (8). The striking radiological similarities 
between PGN and SLA have led to a reliance on invasive 
diagnostic tools, primarily percutaneous needle biopsies, to obtain 
a definitive diagnosis (9). While effective, these procedures come 
with their own set of challenges, often escalating the discomfort, 
anxiety, and potential complications for patients. In this context, 
the potential of a purely CT imaging-based diagnostic method not 
only represents a step forward in terms of patient comfort but also 
holds the promise of expediting diagnosis and subsequent 
treatments, thus revolutionizing the clinical approach to SPN (3).

Computer-Aided Diagnosis (CAD), especially when bolstered 
by deep learning techniques, offers a novel approach to diagnosing 
lung conditions, such as differentiating isolated granulomas from 
adenocarcinomas. CAD’s consistent and objective evaluations 
often exceed the capabilities of human expertise, which can 
be  affected by factors such as fatigue, biases, and limited data 
processing abilities (10). Notably, deep learning, a sophisticated 
branch of machine learning, swiftly scans countless image slices, 
identifying minor abnormalities with remarkable accuracy (11). 
Trained on extensive datasets, these algorithms differentiate 
benign and malignant SPNs, thereby minimizing unnecessary 
biopsies and enhancing diagnostic reliability (12). Lakhani et al. 
(13) developed a convolutional neural network (CNN) that could 
effectively classify pulmonary tuberculosis from chest radiographs. 
Lee et al. (14) innovated a deep learning-based CAD system that 
excels at localizing and diagnosing metastatic brain tumors thus 
redefining the efficiency of tumor identification. Rajkomar et al. 
(15) employed machine learning to predict patient outcomes, such 
as unexpected readmissions, using routinely collected data during 
hospital admissions. However, classifying pulmonary nodules is 
challenging as benign and malignant lesions share similar imaging 
features, like morphology, edge characteristics, and tissue density, 
especially in CT images. This complicates automated diagnosis 

compared to conditions like tuberculosis or brain tumors. A key 
limitation of using deep learning for this task is the need for large, 
accurately annotated medical datasets, which require significant 
time and financial resources to obtain (16).

In recent years, the advent of self-supervised learning (SSL) has been 
recognized as a potential solution to the challenges posed by the need for 
meticulously annotated medical data (17). Distinguished from traditional 
supervised learning, SSL capitalizes on unlabeled data, deriving proxy 
tasks from the data itself to train models without human annotation (18). 
This technique not only alleviates the constraints and costs associated with 
data labeling but also harnesses the vast volumes of unlabeled medical 
images available, often yielding results comparable to, if not surpassing, 
supervised methods (19). In the realm of SSL, two dominant paradigms 
have notably emerged: generative and contrastive SSL.

Despite the pivotal advancements in self-supervised learning, two 
significant challenges persist. These challenges are often overlooked in 
prevailing literature: The first challenge pertains to the disparities between 
natural and medical imaging modalities. Medical images predominantly 
stem from radiographic, functional, magnetic resonance, and ultrasonic 
imaging modalities, whereas natural images are primarily captured 
through ambient light. This distinction underscores significant disparities, 
affecting both the application and the design of algorithms. Medical 
images are typically acquired through controlled environments with 
specific imaging devices, resulting in highly standardized formats, such 
as 3D single-channel grayscale representations for CT scans. In contrast, 
natural images come from natural environments and capture a broad 
spectrum of colors and structures under varying lighting conditions. This 
divergence impacts the algorithms designed for image classification. For 
example, traditional deep learning models are optimized for 2D, color-
rich natural images, making it difficult to apply the same models to 3D 
grayscale medical images without losing crucial information. Additionally, 
natural images often contain a wide range of textures and diverse features 
that are not typically observed in medical images, where anatomical 
structures and subtle pathological variations are paramount. Additionally, 
the high similarity among medical images from the same anatomical 
region, even in healthy subjects, presents another unique challenge: 
minute differences between benign and malignant nodules may appear 
nearly identical, requiring algorithms to identify subtle variations that are 
critical for accurate diagnosis. The challenge here is evident: leveraging 
the success of SSL techniques in natural imaging for medical applications 
requires a comprehensive re-evaluation from a radiological perspective, 
followed by the formulation of a tailored approach. The second challenge 
involves the dichotomy between generative and contrastive SSL 
methodologies. Generative SSL focuses on pixel reconstruction, 
calculating the loss between the generated and original image, 
emphasizing intra-instance feature variations (Figure 1A). Conversely, 
contrastive SSL focuses on constructing positive and negative sample 
pairs, thereby determining the contrastive similarity metric and 
emphasizing inter-instance feature differences (Figure 1B), Given the 
inherent complexity and diverse feature information within medical 
images, integrating these two SSL methodologies could prove beneficial.

Given the distinct challenges arising from the disparities between 
natural and medical images and the nuanced differences between 
contrastive and generative SSLs, conventional neural networks often 
struggle in classifying pulmonary granulomatous nodules and solid lung 
adenocarcinomas. Consequently, developing a specialized self-
supervised learning model that is custom-designed for this task and 
adept at navigating these challenges is crucial. To this end, we propose 
MAEMC-NET, an innovative self-supervised learning network 
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conceived to address the limitations of existing methodologies. Figure 1C 
shows an approximate structure of the model. MAEMC-NET is designed 
for medical image classification, particularly focusing on differentiating 
Pulmonary granulomatous nodules and solid lung adenocarcinomas 
from CT scans of lung cancer patients. The architecture of MAEMC-NET 
integrates several critical components to achieve its outstanding 
effectiveness. Firstly, and most importantly, we have curated sample pairs 
by extracting regions of interest (ROI) from the axial and coronal planes 
of each patient case, thus ensuring a comprehensive and diverse dataset. 
Subsequently, the MAEMC-NET model, a hybrid of SSL strategies, 
effectively combines the strengths of both generative and contrastive 
SSLs. This integration allows the MAEMC-NET to exploit the capability 
to distinguish between inter-instance feature differences while also 
emphasizing intra-instance feature variations. Additionally, an optimized 
transformer module encoder has been developed, incorporating a 
dimensionality reduction module. This design enables a more effective 
synergy of contrastive and generative SSL techniques, further enhancing 
the performance of the model.

In this study, we present several key contributions: (1) We integrate 
generative and contrastive self-supervised learning techniques to 
develop robust CT image representations for both intra-and inter-
solitary pulmonary nodules. (2) A novel generative self-supervised 
task is introduced, focusing on reconstructing masked axial CT 
patches that encompass lesions. This approach enhances our 
understanding of intra-inter-slice image representation. (3) We employ 
contrastive momentum to establish a connection between the encoder 
used in the axial-CT-patch pathway and the momentum encoder in 
the coronal-CT-patch pathway, thereby improving the coherence of 
our model. (4) To facilitate the computation of infoNCE loss in 
contrastive learning, we introduce a feature flattening module. This 
addition streamlines the processing and enhances the effectiveness of 

our methodology. (5) Through extensive comparative and ablation 
studies, we demonstrate the superior performance of our proposed 
model in predicting the malignancy of solitary pulmonary nodules.

2 Related works

2.1 Generative SSL and its applications in 
the medical field

Generative SSL has emerged as a powerful paradigm in machine 
learning, particularly in the medical domain, where labeled data is 
often scarce and expensive to obtain. This approach revolves around 
training models to understand the underlying data distribution by 
generating or reconstructing data samples without explicit 
supervision. In the medical field, where accurate diagnosis and 
interpretation of images are paramount, generative self-supervised 
learning techniques play a crucial role in tasks such as disease 
classification, anomaly detection, and image reconstruction. Figure 1A 
shows an approximate structure of the model.

One of the seminal contributions in generative SSL is the 
Variational Autoencoder, proposed by Kingma et  al. (20), which 
introduced a mechanism to approximate complex data distributions 
using a probabilistic framework. Meanwhile, Creswell et  al. (21) 
ushered in a transformative approach with Generative Adversarial 
Networks, wherein a duo of neural networks (generator and 
discriminator) engage in an adversarial game to create synthetic data 
that closely mirrors real data. The Denoising Autoencoder, 
conceptualized by Vincent et  al. (22), is designed to reconstruct 
slightly corrupted input data. By prioritizing the reconstruction of this 
perturbed data, the model naturally learns to capture essential 

FIGURE 1

The general structure of self-supervised learning. (A) Generative self-supervised learning; (B) Contrastive self-supervised learning; (C) The proposed 
hybrid self-supervised learning.
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structures while discarding noise. Another significant contribution is 
a masked autoencoder architecture for scalable learning in computer 
vision tasks (23). This approach emphasizes the utilization of sparse 
representations and convolutional layers to facilitate efficient feature 
extraction and dimensionality reduction in large-scale visual datasets.

In the medical domain, generative SSL has been instrumental in 
various applications. A notable example is the work of Chen et al. (24), 
which introduces a SSL method for medical image analysis through 
image context restoration. Their model is trained to restore missing or 
corrupted regions in images, thereby enhancing representation 
learning for medical imagery. Taleb et al. (25) have also contributed to 
this field with their SSL framework based on image reconstruction. 
Using a generative model, their approach learns representations by 
reconstructing medical images, proving effective across various 
medical imaging tasks. Hu et al.’s research introduces Differentiable 
Architecture Search (DARTS) for 3D medical image analysis (26). 
Although not strictly a generative SSL method, it employs SSL to 
optimize neural network architectures, thereby enhancing 
performance in medical image tasks. Zhu et al. (27) have developed 
DeepEM, a method for weakly supervised pulmonary nodule 
detection using SSL. The model utilizes self-generated pseudo-labels 
and reconstructs 3D image patches, leading to improved nodule 
detection in medical imaging.

In a different application, Halimi et al.’s work, although not in the 
medical sector, introduces a self-supervised approach for dense 
correspondence learning (28). This method is significant for medical 
image-based 3D reconstruction tasks, enabling the generation of 3D 
models from 2D medical images. Another study by Chen et al. (29) 
explores a generative SSL approach where a network is trained to 
predict pixel values in medical images. This enhances the network’s 
capability to comprehend complex image structures. Lastly, Taleb 
et al.’s research focuses on the use of 3D medical images for SSL (30). 
Their model learns to reconstruct 3D medical scans, aiding in tasks 
like anomaly detection.

In summary, generative SSL is rapidly transforming the landscape 
of medical image analysis. Through innovative approaches like image 
context restoration, image reconstruction, optimization of neural 
network architectures, and 3D image processing, researchers are 
pushing the boundaries of what’s possible in medical diagnostics and 
treatment planning. These advancements not only demonstrate the 
versatility and power of generative SSL in handling complex, unlabeled 
medical data, but they also pave the way for more accurate, efficient, 
and accessible healthcare solutions. Despite promising results, 
generative SSL faces limitations in medical imaging. Models like 
variational autoencoders and GANs struggle with capturing fine-
grained pathological features and handling the complexities of 
medical images. Moreover, unsupervised learning may lead to 
suboptimal representations when data distributions differ from the 
training data, highlighting the need for more specialized models.

2.2 Contrastive SSL and its applications in 
the medical field

Contrastive SSL is a potent technique in machine learning, 
particularly within computer vision. It operates by discerning positive 
and negative pairs of data samples, optimizing neural architectures to 
minimize the distance between positive pairs while maximizing that 

between negative pairs. Figure 1B shows an approximate structure of the 
model. Several influential frameworks have emerged within this 
approach: SimCLR, pioneered by Chen et  al. (31), harnesses data 
augmentations to extract positive pairs from identical images, 
demonstrating robust performance across various visual representation 
tasks. Meanwhile, the Momentum Contrast method, introduced by 
He et al., extends SimCLR by utilizing a momentum-based encoder to 
dynamically update a sample dictionary during contrastive learning, 
particularly effective in handling restricted dictionary sizes (19). SimCLR 
and Momentum Contrast work well with 2D images but face challenges 
with 3D medical images. For lung CT images, 3D-specific augmentations 
like rotation, translation, and scaling are needed to maintain spatial 
consistency and capture texture details. Additionally, Grill et al. (32) 
innovatively introduced Bootstrap Your Own Latent (BYOL), which 
eliminates the need for negative pairs altogether. Instead, it utilizes two 
differently augmented views of the same image, simplifying the learning 
process while maintaining comparable performance.

In the medical field, contrastive SSL has made significant 
contributions, particularly in disease classification, interpretation, and 
various medical imaging tasks. For instance, Chen et al. (24) proposed 
a new self-supervised learning strategy, a context-based recovery 
strategy, which can effectively learn the semantic features of medical 
images without labeled data and significantly improve the performance 
of the model in tasks such as classification, localization, and 
segmentation. In another approach, Zhang et al. (33) The ConVIRT 
model is proposed, which is an unsupervised learning method that 
combines medical images and natural language description text. It can 
learn effective visual representations of medical images and performs 
well in multiple medical image tasks. In addition, compared with the 
traditional ImageNet pre-trained model, the ConVIRT method not 
only performs better in classification tasks, but also is more efficient 
in data utilization, especially when labeled data is scarce. Similarly, 
Zhuang et al. (34) adopted an innovative strategy by training a model 
on 3D medical images to solve a Rubik’s cube-like puzzle, facilitating 
the extraction of rich, transferable features for pathology analysis. 
Moreover, advancements in contrastive SSL have led to novel 
applications in histopathology image analysis. Srinidhi et  al. (35) 
introduced an innovative framework that integrates task-agnostic self-
supervised pre-training with task-specific semi-supervised learning 
consistency strategies. This approach has led to substantial 
advancements in image analysis tasks within computational pathology, 
particularly in situations where labeled data is limited. In cardiology, 
The CLOCS method proposed by Kiyasseh et al. (36) is an improved 
contrastive learning approach that effectively utilizes unlabeled 
physiological data. By performing contrastive learning across space, 
time, and patients, it learns more robust data representations. This 
method demonstrates excellent performance in various downstream 
tasks, especially when labeled data is scarce, offering strong 
generalization capabilities and accurate patient-specific predictions, 
with broad potential for application. Additionally, Xie et al.’s work on 
SSL of graph neural networks, and Wang et al.’s research in molecular 
contrastive learning of representations via graph neural networks have 
opened new avenues in molecular biology and chemistry (37, 38).

These diverse applications of contrastive SSL in the medical field 
not only highlight its versatility but also underscore its potential to 
revolutionize medical imaging and diagnostics. The ability to leverage 
unlabeled data effectively, understand complex image-text 
relationships, and extract meaningful features from various medical 

https://doi.org/10.3389/fmed.2025.1507258
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhao et al. 10.3389/fmed.2025.1507258

Frontiers in Medicine 05 frontiersin.org

data points to promising advancements in diagnostic accuracy and 
efficiency. Despite its potential, contrastive SSL faces challenges in 
handling complex medical data and class imbalances, leading to 
suboptimal feature representations. Additionally, it requires large 
negative samples, which are often scarce in medical datasets. These 
issues suggest that integrating both generative and contrastive SSL 
methods could improve model performance.

3 Materials and methods

3.1 Dataset collection and characteristics

In order to comprehensively investigate the classification process 
of PGN and SLA, our research team collaborated with the First 
Affiliated Hospital of Guangzhou Medical University and Shengjing 
Hospital of China Medical University. We conducted a retrospective 
collection of data from 494 cases.

3.1.1 Inclusion and exclusion criteria
The inclusion criteria for cases were as follows: (1) Patients with 

confirmed pathological diagnoses of pulmonary granulomatous 
lesions (tuberculous or fungal granulomas) and adenocarcinomas 
through surgical resection or image-guided biopsies. (2) All patients 
underwent routine and contrast-enhanced CT scans of the entire chest 
using the same CT machine and standardized reconstruction 
parameters within 2 weeks post-surgery. (3) Isolated solid SPNs with 
sizes ranging from 7 to 30 mm, without calcification or fat content, 
exhibiting characteristics such as spiculation, lobulation, or pleural 
indentation, and without associated lung atelectasis or lymph node 
enlargement. (4) Preoperative laboratory analysis of routine tumor 
markers (CEA, CA125, CA153) within 1 week before surgery, with 

positive thresholds set at >5 ng/mL, >35 ng/mL, and > 25 ng/mL, 
respectively, according to our institution’s reference ranges.

Exclusion criteria included: (1) Nodules with features highly 
suggestive of benign lesions, such as caseous necrosis with cavitation in 
tuberculomas or characteristic halo sign in fungal granulomas. These 
features are typically associated with granulomatous inflammation or 
infection, which are non-malignant in nature, and could lead to 
misclassification of malignant lesions if included. (2) Individuals with a 
history of other malignant tumors or concurrent malignant tumors. (3) 
Cases imaged using different algorithms, different slice thicknesses, or 
on different CT machines. Some typical examples (both CT and 
pathology images) can be seen in Figure 2.

3.1.2 Data collection and preparation
Among these cases, 333 cases were sourced from the First 

Affiliated Hospital of Guangzhou Medical University, comprising 
105 cases of PGN and 228 cases of SLA. This specific dataset, 
designated as Dataset 1, served as the basis for model training, 
testing, and validation. Additionally, an additional 161 cases were 
gathered from Shengjing Hospital of China Medical University, 
encompassing 67 cases of PGN and 94 cases of SLA. This external 
dataset, referred to as Dataset 2, was utilized for external model 
validation to assess the generalization capability of the model. All 
CT images of the patients were acquired using a multi-detector CT 
system (AS+ 128-Slice; Siemens Healthineers, Germany). For 
Dataset 1, the CT scan parameters were set as follows: Tube Voltage 
at 120 kVp, Tube Current at an average of 299.88 mAs with a 
standard deviation of ±134.62 mAs, and an average Slice Thickness 
of 2.31 mm with a standard deviation of ±0.71 mm. In the case of 
Dataset 2, the parameters included a Tube Voltage of 120 kVp, a 
Tube Current averaging 194.31 mAs with a standard deviation of 
±116.13 mAs, and an average slice thickness of 4.03 mm with a 

FIGURE 2

Samples of lesion images (CT and pathology) and excluded lesion images for PGN and SLA in Dataset 1 and Dataset 2.
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standard deviation of ±1.57 mm. All images from these datasets 
were exported in the DICOM format and subsequently utilized for 
image feature extraction by the MAEMC-NET model.

Two experienced chest radiologists, each possessing 10 and 
20 years of experience in interpreting chest images, independently 
reviewed all CT images stored within our Picture Archiving and 
Communication System. Any discrepancies were resolved through 
discussion and consensus. Lesion Size was defined as the maximum 
diameter of the tumor in the axial image. Spiculation is defined as 
the presence of linear or pointed extensions that emanate from the 
edge of a nodule or mass and extend into the lung parenchyma, 
without reaching the pleural surface. Lobulation is characterized 
by a wavy, lobulated structure on a portion of the surface of the 
lesion, excluding areas adjacent to the pleura. Pleural Indentation 
is identified as a linear structure that originates from the tumor 
and extends to the pleural surface. These morphological 
assessments offer essential information for the subsequent analysis 
and classification of PGN and SLA. We  have summarized the 
clinical characteristics of Dataset 1 in Table 1.

This retrospective research received approval from our 
institution’s Institutional Review Board, and all procedures were 
conducted in accordance with the ethical guidelines established by 
the institution.

3.2 Data processing

To assure the quality and uniformity of the dataset for training and 
evaluation purposes, a comprehensive series of data processing and 
augmentation techniques was employed. The preprocessing of the CT 
images involved critical steps such as standardizing resolution, reducing 
noise, and enhancing contrast. These measures were instrumental in 
ensuring dataset consistency and improving the quality of the input 
data, which is crucial for the subsequent stages of analysis.

First, given the variability in slice thickness across different scans, 
an initial step involved the resampling of all CT images to a uniform 

slice thickness of 1 mm using trilinear interpolation. This meticulous 
process guaranteed that all images conformed to a consistent format, 
facilitating seamless subsequent analysis. Furthermore, a critical 
aspect of the preprocessing pipeline was intensity normalization. The 
CT images underwent intensity normalization to alleviate variations 
in image intensity attributed to differences in acquisition settings. 
This calibration involved standardizing the Hounsfield units (HU) to 
establish a uniform intensity scale across all images. As a result, all 
CT data were uniformly configured with a window width of 1,400 
HU and a window level of −500 HU. Additionally, to reduce 
interference from surrounding information and focus specifically on 
the lesions, we selected the center point of each lesion as an anchor. 
We then extracted square ROI regions with a side length of 50 mm to 
ensure the entire tumor region, including surrounding tissue or 
irregularities, was covered. This size accommodated variations in 
tumor size, capturing both small and large lesions, and prevented 
clipping of the tumor, ensuring complete coverage. A total of 25 slices 
containing the tumor lesion were obtained from both the axial and 
coronal planes. Subsequently, these slices from the axial and coronal 
planes were sequentially arranged to generate two sets of 5 × 5 sample 
pairs, which were used as the training dataset for the model.

To mitigate the risk of overfitting during model training, a 
variety of data augmentation techniques were applied to enlarge the 
dataset. This approach successfully enhanced the diversity of the 
dataset, thereby improving the model’s ability to generalize. In this 
study, specific augmentation techniques such as rotation, horizontal 
flipping, and four-directional translations centered on the central 
anchor point were implemented, resulting in the generation of 
additional valuable data. The incorporation of these techniques 
substantially increased the dataset size, leading to a total of 13,320 
sample pairs in Dataset 1. Subsequently, Dataset 1 was utilized for 
the self-supervised pre-training of the MAEMC-NET model. 
During the fine-tuning phase in downstream tasks, the unexpanded 
original dataset was employed for training, where the data was split 
into training and testing sets in an 8:2 ratio and subjected to five-
fold cross-validation. Dataset 2 was utilized as an external validation 
set to independently assess the performance of the model.

3.3 Architecture of MAEMC-NET

In our study, we  introduce the MAEMC-NET, a novel self-
supervised learning network tailored for CT image-based classification 
of PGN and SLA. This innovative network uniquely combines 
generative and contrastive self-supervised learning. A custom-
designed pretext task is also developed, ensuring a perfect fit for the 
classification requirements. Figure 3 in our paper provides a detailed 
overview of the methodology, comprising three integral components: 
a data processing module, a generative self-supervised learning task 
module, a contrastive self-supervised learning task module. These 
modules collaboratively work to significantly enhance the accuracy 
and efficiency of PGN and SLA classification in CT imaging.

3.3.1 Data processing module and position 
embedding

In alignment with the Vision Transformer (ViT) architecture and 
the intermediate task designed for this experiment, we amalgamated 
training set images composed of multiple lesion images (39). They were 

TABLE 1 Clinic characteristics of dataset 1.

Clinic 
characteristic

PGN 
(n = 105)

SLA 
(n = 228)

p value

Age, mean ± SD, years 50.02 ± 12.05 58.66 ± 12.63 <0.001*a

Age, <50/≥50, years 49/56 50/178 <0.001*b

Gender, Male/Female 68/37 118/110 0.009*b

Spiculated sign, Yes/No 72/33 155/73 0.930b

Lobulated sign, Yes/No 63/42 177/51 0.001*b

Pleural retraction sign, 

Yes/No

28/77 139/89 <0.001*b

Lesion size, mean ± SD, 

cm

1.81 ± 0.62 2.05 ± 0.34 <0.001*a

kVp, kV 120 120 –

Slice thickness, mm 2.25 ± 1.32 2.34 ± 1.07 <0.001*a

X-ray tube current, 

mean ± SD, mA

311.28 ± 159.76 294.63 ± 114.27 <0.001*a

*Indicates that the significance is available. a,b indicates the two-sample t-test and Chi-square 
test, respectively.
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derived from a previously obtained preprocessed dataset extracting 
sample pairs from multi-slice axial and coronal views of the lesion. 
We  divided these composite images into regular, non-overlapping 
patches, treating each patch independently. Specifically, we partitioned 
the 250 × 250 images into 25 uniform, non-overlapping 50×50 patches, 
each encompassing a portion of the lesion image. Subsequently, these 
patches underwent uniform, randomly distributed sampling, with a 
certain proportion being masked.

Following this, we  employed linear projection to obtain token 
embeddings for the unmasked patches. To preserve vital positional 
information, we incorporated positional embedding techniques. For 
this purpose, we adopted the Sinusoidal Position Embedding method 
detailed in reference [40]. This method involves adding sinusoidal 
waves of varying frequencies to the embeddings of input tokens. The 
goal is to achieve the superposition of multiple cosine waves when 
performing inner products between tokens. This superposition 
effectively encodes the relative positional information between tokens, 
representing the spatial relationships within the image. The formula for 
Sinusoidal Position Embedding is presented below (Equations 1–2):

 
( ) 2 /,2 sin

10000 modeli d
posPE pos i  =  

  (1)

 
( ) 2 /,2 1 cos

10000 modeli d
posPE pos i  + =  

  (2)

where ( ),2PE pos i  and ( ),2 1PE pos i +  represent the positional 
embedding values for even ( )2i  and odd ( )2 1i +  dimensions, 
respectively. pos signifies the specific position in the sequence, while 

modeld  refers to the embedding dimension of the model. The 

application of this technique enhances the token embeddings by 
incorporating positional data, thereby enabling a more detailed and 
thorough representation of spatial relationships in the image.

3.3.2 Hybrid self-supervised learning
In the realm of SSL, we delve into the synergy of contrastive SSL 

and generative SSL. Contrastive SSL, as the name suggests, uncovers 
distinctive image features by contrasting positive and negative 
instances within a high-dimensional space. On the flip side, generative 
SSL harnesses the power of image reconstruction to grasp valuable 
image information. Our observation revealed an interesting facet: the 
masked autoencoder (MAE) tends to adopt a global perspective when 
considering an image, while the momentum contrast (MoCo) method 
leans toward scrutinizing unique image regions, strategically 
positioning positive and negative examples.

MoCo is a contrastive SSL model known for its effectiveness in 
various visual tasks. It employs a unique strategy involving a dynamic 
dictionary and momentum-based updates. This method allows MoCo 
to efficiently learn robust and distinct features by contrasting positive 
and negative data samples. MAE is a generative SSL model renowned 
for its impressive performance in a range of visual tasks. It utilizes an 
asymmetric encoder-decoder architecture. Its success is largely due to 
the use of the Vanilla Vision Transformer, adept at extracting global 
features from input data. This architecture enables MAE to effectively 
reconstruct missing parts of the input, thereby learning 
comprehensive representations.

To optimize the training of our model and to enhance the 
capabilities of the Transformer, we introduce Hybrid SSL as a pivotal 
intermediary task within the MAEMC-NET. This strategic addition 
empowers the transformer to explore both the idiosyncratic 
characteristics and holistic image context. Our approach commences 
with the initialization of two encoders, E and ME , furnished with 

FIGURE 3

The overview of our proposed MAEMC network.
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identical weights. However, it is important to note that ME  
experiences momentum-based updates. Subsequently, a series of 
random masking operations are applied to augmented images qX and 

kX , both originating from the same lesion and sourced from multi-
layered axial and coronal planes. This masking operation leads to the 
creation of mask vectors q and k .

On one front, vectorsqand k undergo dimension reduction 
through individual one-dimensional convolution layers, resulting in 
q+ and k+, respectively. Notably, k+ finds its residence in a queue-like 
memory bank, which continually evolves as new training batches are 
introduced, seamlessly replacing the oldest ones. Consequently, 
we employ the InfoNCE loss function to gage the similarity between 
q+ and k+, acting as the cornerstone of our comparative task. The 
formula for the InfoNCE loss function is as follows (Equation 3):

 

( )
( )InfoNCE k

ii 0

exp q ·k /
log

exp q ·k /

+ +
+

+ +
=

τ
= −

τ∑


 

(3)

where q+ serves as the query key, while 0k+, 1k+, 2k+ act as keys in the 
dictionary. Among these, q+ and k++  are treated as positive sample 
pairs, whereas the other keys function as negative sample pairs for q+

. Additionally, τ  represents a temperature parameter that controls the 
concentration level of the distribution. By minimizing the infoNCE 
loss, the model is trained to effectively distinguish between positive 
and negative sample pairs, thereby enhancing its capability to learn 
discriminative features from the data.

The combination of q  with the mask token constitutes the input 
to the decoder module, which is tasked with predicting the pixel 
values of the reconstructed mask patch. Subsequently, the evaluation 

utilizes the Mean Squared Error (MSE) loss function to quantify the 
discrepancy between the predicted and original pixel values. The 
formula for the MSE loss function is as follows (Equation 4):

 

2
N

i i
MSE q q

i 1

1 X X
N

∧

=

 
 = −
 
 

∑
 

(4)

where N represents the total number of missing pixels in the 
original image, i

qX  denotes the true pixel value of the i-th pixel, and 
i
qX
∧

 signifies the predicted pixel value by the model. By minimizing 
the MSE loss, the model is trained to accurately reconstruct each pixel, 
thus facilitating the learning of the global features of the image.

Finally, we combine the InfoNCE loss function with the MSE loss 
function using a specific temperature coefficient λ, to serve as the loss 
function to optimize the model. The formula for the loss function is 
as follows (Equation 5):

 ( )MSE InfoNCEL 1 L= λ× + − λ ×
 (5)

3.3.3 Detailing encoder, decoder, and momentum 
contrast components

In this section, we introduce the components of the MAEMC-NET 
model, including the encoder module, decoder module, and 
momentum encoder module, along with the specifics of the 
momentum update operation and the implementation of the 
dictionary as a queue. The detailed network architecture of this 
module is visually represented in Figure  4. The encoder and 
momentum encoder modules utilize the ViT-large model, 

FIGURE 4

The structure of the MAEMC network and its details and parameters.
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characterized by 24 stacked encoder blocks, a token vector length of 
1,024, and 16 heads in the multi-head attention mechanism. These 
modules exclusively process un-masked patches. Initially, image data 
is segmented into patches of a specified size and then flattened into 
one-dimensional arrays. Subsequently, these arrays undergo a linear 
transformation, which is then merged with the position embeddings 
of the original image and augmented by the addition of a class token 
at the beginning. Owing to the asymmetric Encoder-Decoder 
architecture employed, where the encoder only processes un-masked 
patch information to conserve computational resources, the decoder 
module is configured with 8 stacked decoder blocks and a token 
vector length of 512. The decoder is tasked with processing not only 
the un-masked tokens encoded by the Encoder but also the masked 
tokens. It is important to note that these masked tokens are not 
derived from the embedded transformation of the previously masked 
patches; rather, they are learnable and shared across all masked patches.

In traditional contrastive learning, the size of the dictionary is 
typically equivalent to that of the mini-batch. However, this approach 
is often constrained by the limitations of GPU memory and 
computational power, preventing the use of large batch sizes. To 
address this limitation, the MoCo framework employs a queue-based 
mechanism to store the dictionary, which contains feature vectors of 
images, allowing for a substantially larger dictionary size. Nonetheless, 
in cases where the dataset size is not exceptionally large, selecting an 
overly extensive dictionary can impede model convergence. Therefore, 
in our implementation, the dictionary size is set to 700, with each 
vector having a dimensionality of 128. The maintenance of the queue 
involves enqueuing the feature vectors of the most recent batch of 
images and dequeuing those of the earliest batch.

To ensure consistency among the keys in the queue, it is imperative 
that the Momentum Encoder associated with the dictionary is updated 
gradually. This is achieved through the implementation of a 
momentum-based approach. Specifically, after each update of the 
encoder, only 1% of its updated parameters are used to modify the 
Momentum Encoder. Such a method ensures the slow and controlled 
update of the Momentum Encoder, maintaining the stability and 
consistency of the keys within the queue.

3.4 Performance evaluation measures

We selected commonly used evaluation metrics to assess the 
performance of our model. These include Area Under the Curve 
(AUC) (Equation 6) with 95% Confidence Interval (95% CI), 
Accuracy (ACC), Sensitivity (SEN), and Specificity (SPE). AUC 
quantifies the ability of the model to differentiate between classes.

 
( ) ( )

1

0
AUC TPR t dFPR t= ∫

 
(6)

where TPR (True Positive Rate) and FPR (False Positive Rate) vary 
with different thresholds t. AUC is presented with its 95% CI, offering 
a statistical range indicating where the true AUC value is likely to lie 
with 95% confidence. This measure enhances the interpretability and 
reliability of the AUC metric.

ACC (Equation 7) reflects the overall effectiveness of the model 
in correctly classifying both positive and negative cases. SEN 

(Equation 8) plays a crucial role in determining the proficiency of the 
model in identifying true positive cases, which is essential for ensuring 
that no actual cases are overlooked. Conversely, SPE (Equation 9) 
assesses the capability of the model in accurately recognizing negative 
cases, a critical factor in minimizing the occurrence of false positives.
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where TP is True Positives, TN is True Negatives, FP is False 
Positives, and FN is False Negatives.

3.5 Training of the models and experiment 
setting

We incorporated the MAEMC-NET model, training and testing 
all variants and comparison models on an NVIDIA GeForce RTX 
4070 with 12GB memory. This was implemented using PyTorch 
(version 1.7), with all graphics created using matplotlib in Python. 
Our network, an evolution of MAE and MoCo, pre-trained model 
parameters were not found to be  loadable into MAEMC-NET, 
necessitating training from scratch. To mitigate overfitting, 
we implemented an early stopping mechanism during the fine-tuning 
phase. The validation loss was monitored after each epoch, and 
training was halted if no improvement was observed for 10 
consecutive epochs. This helped in preserving the model’s 
generalization ability.

During pre-training stage, we  used grid search to adjust 
hyperparameters such as learning rate, batch size, and optimizer 
settings. We tested different combinations of learning rates (1 × 10−2, 
1 × 10−3, 1 × 10−4) and batch sizes (32, 64, 128) to determine the best 
configuration. Finally, the images size was 250 × 250 with a batch size 
set to 64. Optimization was carried out using the AdamW optimizer 
with betas = (0.9, 0.95), epochs set to 100 with an initial learning rate 
of 1 × 10−2, reduced by 0.1 at epochs 120 and 160. In the fine-tuning 
stage for downstream tasks, we  utilized the pre-trained encoder 
module, adding a two-class fully connected layer, maintaining the 
same image size and batch size, with 100 epochs and an initial learning 
rate of 1 × 10−3, reduced by 0.1 at epochs 40 and 70.

4 Results

4.1 Performance of MAEMC-NET and 
counterparts

We evaluated the performance of our MAEMC-NET model, 
aimed at classifying PGN and SLA in CT images, against several state-
of-the-art SSL methods, such as SimCLR (31), MoCo v1 (19), MoCo 
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v2 (19), MAE (23), CMAE (41), and Convnext v2 (42). A supervised 
learning model using the ViT architecture served as the baseline for 
performance comparison.

The test accuracy progression of each model over increasing 
epochs, as depicted in Figure 5A, highlights that our MAEMC-NET 
model, although initially moderate in performance, consistently 
achieved the highest test accuracy after epoch 75. Figure 5B presents 
the training loss curves of these models, indicating an initial slight 
increase in loss for the MAE model but eventual convergence to 
optimal accuracy for all models. Table 2 showcases the final results: 
MAEMC-NET achieved an AUC of 0.962 and an ACC of 93.7% on 
our PGN and SLA dataset, outperforming the baseline ViT model by 
0.032 in AUC and 3.6% in ACC. Additionally, it improved upon the 
previously best-performing model, CMAE (AUC 0.957, ACC 92.5%), 
by 1.2% in ACC. It is noteworthy that in all models, SPE was higher 
than SEN, a reflection of the class imbalance in our dataset, which has 
a greater number of SLA compared to PGN. This imbalance is 
common in medical datasets, where malignant cases often outnumber 
benign ones. Despite this, our model also excelled in sensitivity and 
specificity, achieving the best results with 91.2 and 95.9%, respectively. 
To further evaluate the generalization capability of the MAEMC-NET 
model, we  conducted an assessment using Dataset 2. The model 
achieved an AUC of 0.949 and an ACC of 91.5%. Additionally, the 
sensitivity and specificity were 90.3 and 92.8%, respectively. These 
results indicate that the MAEMC-NET model not only performs well 
on the original PGN and SLA dataset but also maintains high 
performance when applied to an independent external dataset, 
underscoring its robust generalization ability.

4.2 Ablation analysis

Our MAEMC-NET model consists of three pivotal modules: 
Firstly, a data processing module (DP) designed for generating pretext 
tasks in pretraining. This module plays a crucial role in preparing the 
dataset for subsequent learning tasks. Secondly, the generative SSL 
(GSSL) module emphasizes pixel reconstruction with a global 
perspective, aiming to capture valuable image information efficiently. 

This approach proves to be essential in understanding the intricate 
details and broader context of medical images. Thirdly, the contrastive 
SSL (CSSL) module, which concentrates on discerning unique image 
features by contrasting high-dimensional instances, focusing 
especially on distinctive image regions. This method plays a pivotal 
role in enhancing the discriminative power of the model.

To assess the impact of each module on the classification of PGN 
and SLA in CT images, we  conducted comprehensive ablation 
experiments. As indicated in Table 3, we initially replicated the MoCo 
model as a baseline for contrastive SSL and the MAE model for 
generative SSL. Both models were then enhanced using our data 
processing module for pretext tasks. This enhancement led to 
significant improvements in performance metrics, with notable 
increases in AUC and ACC for both models. We  attribute this 
improvement primarily to our tailored pretext tasks and data 
processing techniques, which align more closely with the extraction 
of pathological features from medical images.

Furthermore, we  experimented with a hybrid model that 
combines both the MoCo and MAE models. This experiment yielded 
substantial improvements in performance over the individual models, 
validating the effectiveness of integrating contrastive and generative 
SSL approaches. The hybrid model capitalizes on the strengths of both 
learning strategies, merging the detailed recovery and contextual 
understanding characteristic of generative learning with the feature 
distinction and relational understanding central to contrastive learning.

Finally, our MAEMC-NET model, which incorporates all three 
modules, achieved the most superior results. This outcome further 
illustrates the indispensable role of each module in the overall 
performance of our model, highlighting the synergy achieved through 
their combination.

4.3 Optimizing mask ratios in MAEMC-NET

This section investigates the influence of various mask ratios on 
our MAEMC-NET model during its generative SSL phase. The mask 
ratio is an essential factor, representing the proportion of the input 
image that is masked or hidden during the training process. Our 

FIGURE 5

Comparison of the MAEMC-NET model and state-of-the-art SSL methods. (A) Test accuracy curves; (B) Training loss curves.

https://doi.org/10.3389/fmed.2025.1507258
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhao et al. 10.3389/fmed.2025.1507258

Frontiers in Medicine 11 frontiersin.org

experiments focused on different ratios to strike a delicate balance 
between providing the model with a sufficient challenge for learning 
robust features, and retaining enough visible information to ensure 
effective reconstruction.

As evidenced in Figure 6 and Table 4, we observed that a 50% 
mask ratio delivered the most favorable outcomes for our model on 
the CT image dataset, specifically in distinguishing between PGN and 
SLA. This finding stands in stark contrast to the optimal 75% mask 
ratio observed in applications involving natural images. We attribute 
this variance to the complex and dense nature of medical images. 
Lesion images, for instance, contain a wealth of tissue and pathological 
features, offering a higher information density compared to natural 
images. Therefore, the MAEMC-NET model requires access to more 
image information for the accurate reconstruction of medical images.

Furthermore, our experimental results across different mask ratios 
have consistently shown superior performance of our model over 
other comparative models, regardless of the fluctuation in results due 
to varying mask ratios. This consistent outperformance underlines the 
robustness and adaptability of MAEMC-NET, further validating its 
superiority in handling medical image classification tasks.

4.4 Evaluation of different backbone 
networks in MAEMC-NET

The backbone network plays a pivotal role in our MAEMC-NET 
model, and this section provides an in-depth analysis of its impact on 
the performance of the model. We  evaluated various networks, 
including Vit-base, Swin Transformer (43), DeiT (44), LeVit (45), 
PVT (46), and our customized Vit-Large, particularly focusing on 
their efficacy in classifying PGN and SLA in CT images. The 

experimental results are shown in Table 5, and the assessment utilized 
metrics such as AUC, ACC, SEN, and SPE.

Our modified Vit-Large backbone network stood out, showcasing 
an enhanced ability in processing the intricate details of medical 
imaging data. Unlike other networks such as Swin Transformer and 
DeiT, which have their strengths, they not uniformly extract features 
across resolutions or effectively capture the subtle nuances typical in 
medical images. In comparison to Swin Transformer, it achieved an 
increased AUC of 0.019 and an ACC improvement of 1.8%. Against 
DeiT, our model showed further superiority with a 0.024 increase in 
AUC and a 2.1% boost in ACC. LeVit and PVT, while efficient in their 
respective domains, lack in the depth and complexity of feature 
extraction crucial for medical imaging. Therefore, our model to 
outperform LeVit with a 0.015 AUC and 1.4% ACC increase, and PVT 
with a 0.019 AUC and 1.6% ACC improvement.

Consequently, LeVit and PVT struggle with medical image 
tasks due to their limited ability to capture detailed features and 
global context. In contrast, Vit-Large’s global self-attention 
mechanism excels at extracting complex, high-level features 
essential for accurate PGN and SLA classification in CT images. Its 
architecture is well-suited for tasks requiring precise feature 
extraction and detailed analysis.

4.5 T-SNE analysis of original image and 
model-extracted features

We employed t-SNE for dimensionality reduction on both 
original images and high-dimensional feature maps extracted by 
our model from the training and test sets (47). Figure 7A displays 
the 2D t-SNE projection of the original training set images, where 

TABLE 2 Results of the comparison between MAEMC-NET and the state-of-the-art methods.

Method AUC (95% CI) ACC SEN SPE

Supervised learning (ViT) (39) 0.930 (0.912–0.947) 90.1% 87.3% 92.2%

MoCo v1 (19) 0.907 (0.883–0.929) 88.4% 85.8% 90.1%

MoCo v2 (19) 0.918 (0.894–0.942) 89.2% 86.5% 91.3%

MAE (23) 0.937 (0.915–0.959) 91.3% 88.7% 93.4%

SimCLR (31) 0.951 (0.927–0.975) 92.0% 89.4% 94.6%

CMAE (41) 0.957 (0.931–0.966) 92.5% 89.9% 94.3%

Convnext v2 (42) 0.935 (0.914–0.951) 90.8% 87.5% 92.6%

MAEMC-NET (Ours) 0.962 (0.934–0.973) 93.7% 91.2% 95.9%

TABLE 3 Ablation studies for MAEMC-NET.

Method AUC (95%CI) ACC SEN SPE

DP CSSL GSSL

✓ 0.875 (0.853–0.897) 86.7% 83.3% 89.6%

✓ 0.892 (0.870–0.914) 87.5% 84.7% 90.3%

✓ ✓ 0.907 (0.883–0.929) 88.4% 85.8% 90.1%

✓ ✓ 0.937 (0.915–0.959) 91.3% 88.7% 93.4%

✓ ✓ 0.925 (0.903–0.947) 90.9% 87.8% 93.7%

✓ ✓ ✓ 0.962 (0.934–0.973) 93.7% 91.2% 95.9%
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PGN and SLA are intermixed. This mix illustrates that the raw 
images of PGN and SLA lack distinct, separable features in a 
lower-dimensional space, highlighting the complexity of 
classifying these conditions from raw images alone. In contrast, 
Figure 7C presents the 2D projection of the high-dimensional 
feature maps extracted by the model. This visualization shows a 
clear distinction between PGN and SLA, with only a minor 

overlap. The marked separation achieved in this projection 
highlights the effectiveness of our model in extracting and 
transforming raw image data into a format enriched with 
discernible features. The distinct clustering of PGN and SLA in 
this space demonstrates the ability of the model to identify and 
emphasize unique class characteristics, thereby significantly 
enhancing the accuracy of medical imaging classification.

FIGURE 6

A line graph of the test accuracy of MAEMC-NET at different mask ratios.

TABLE 4 The performance of MAEMC-NET under different mask ratios.

Mask Ratio AUC (95%CI) ACC SEN SPE

20% 0.933 (0.906–0.954) 90.2% 88.7% 91.8%

30% 0.941 (0.912–0.967) 92.1% 90.2% 93.5%

40% 0.954 (0.923–0.972) 92.6% 90.8% 93.4%

50% (Ours) 0.962 (0.934–0.973) 93.7% 91.2% 95.9%

60% 0.968 (0.935–0.973) 93.2% 91.6% 94.4%

70% 0.957 (0.924–0.961) 92.8% 90.3% 94.7%

75% 0.955 (0.923–0.965) 92.3% 89.8% 95.5%

80% 0.946 (0.910–0.957) 91.8% 89.3% 93.0%

90% 0.932 (0.907–0.948) 90.8% 88.4% 92.2%

TABLE 5 Comparison of classification performance with different backbones on the dataset 1.

Backbone AUC (95%CI) ACC SEN SPE

Vit-base (23) 0.927 (0.903–0.951) 90.3% 87.9% 92.7%

Swin Transformer (43) 0.943 (0.921–0.965) 91.9% 89.4% 94.3%

DeiT (44) 0.938 (0.915–0.961) 91.6% 89.1% 93.9%

LeVit (45) 0.947 (0.929–0.975) 92.3% 90.2% 95.1%

PVT (46) 0.943 (0.924–0.970) 92.1% 89.7% 94.6%

Vit-Large (Ours) 0.962 (0.934–0.973) 93.7% 91.2% 95.9%
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Furthermore, Figures 7B,D display the t-SNE results for the 
original images of the test set and the feature maps extracted by 
the model, respectively. The resemblance of Figures  7A–D 
indicates a consistency in the performance of the model. This 
similarity across training and validation sets indicates the 
robustness and generalizability of our model, affirming its 
capability to effectively differentiate between PGN and SLA in 
varied datasets. In a word, this comparison between the original 
images and the model-processed feature maps via t-SNE 
projection powerfully demonstrates the value added by our 
MAEMC-NET in medical image analysis.

4.6 Comparison of reconstructed images 
between MAEMC-NET model and MAE 
model

To further validate the performance of the MAEMC-NET 
model proposed in this study, we  conducted a comparative 
analysis by individually assessing the reconstructed images 
generated by the trained model and those produced by the MAE 
model against the target images, In Figure 8, we present a series of 
axial and coronal planes originating from the same lesion, 
reconstructed separately using the MAEMC-NET model and the 

FIGURE 7

T-SNE projections demonstrating the comparative analysis of original and model-extracted features for PGN and SLA classification. (A) The original 
images of the training set; (B) The original images of the testing set; (C) The model-extracted features of training set; (D) model-extracted features of 
testing set.
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MAE model, juxtaposed with the corresponding target images. 
Each image is accompanied by a magnified view of the same 
region on its right side, revealing a remarkable resemblance 
between the reconstructed images of the coronal planes generated 
by our model and the target images. Furthermore, we computed 
the Mean Absolute Error (MAE), Mean Squared Error (MSE), 
Structural Similarity Index (SSIM), and Peak Signal-to-Noise 
Ratio (PSNR) values for both sets of images, which are summarized 
in Table 6.

When the reconstructed images were obtained from the axial 
planes of the encoder and decoder modules of the training model, the 
corresponding MAE, MSE, SSIM, and PSNR values were 12.03 ± 2.13, 
628.21 ± 325.71, 20.15 ± 1.63, and 0.78 ± 0.02, respectively, slightly 
lower than those of the MAE model. However, when the reconstructed 
images were sourced from the coronal planes of the momentum 
encoder module of the training model, the MAE, MSE, SSIM, and 
PSNR values were notably superior at 8.20 ± 1.74, 250.39 ± 157.63, 
24.14 ± 1.86, and 0.87 ± 0.02, respectively, outperforming those of the 
MAE model.

Axial slices are effective for localizing small lesions like PGN, 
providing a clearer cross-sectional view to assess size and relationship 
with surrounding structures. However, due to their anatomical 
limitations, they perform slightly worse in overall reconstruction 
quality compared to coronal slices. Coronal slices offer more 
comprehensive spatial information, crucial for evaluating tumor 
invasion and metastasis, especially in SLA staging. Due to the specific 
design of the MAEMC-NET model, wherein the coronal planes are 
solely utilized for the contrastive SSL task module and do not directly 
engage in the training of the generative SSL task module, these planes 
remain invisible to both the encoder and decoder components used 

for image reconstruction in both the MAEMC-NET and MAE 
models. Thus, when the coronal planes are employed for image 
reconstruction, the resulting MAE, MSE, SSIM, and PSNR values 
surpass those of the MAE model, thus demonstrating the superior 
capability of MAEMC-NET in capturing and utilizing information 
from the coronal planes for enhanced image reconstruction. This 
underscores the model’s effectiveness in leveraging multi-modal 
features and exploiting contextual information, leading to improved 
accuracy and fidelity in medical image reconstruction tasks.

5 Conclusion

In conclusion, our study introduces MAEMC-NET, a novel SSL 
model specifically designed to address the classification of PGN and 
SLA from CT images. This model successfully amalgamates the 
strengths of both contrastive and generative SSL techniques. This 
synthesis enables the model not only to adopt a global perspective in 
feature extraction from medical images but also to meticulously 
examine unique image areas, significantly enhancing the generalizability 
of prototype representations. Our approach represents a groundbreaking 
SSL method that fully leverages the comprehensive contextual 
information present in medical imaging. Differing from traditional 2D 
medical imaging methods, it facilitates the extraction of multifaceted 
lesion features, ensuring thorough data representation and maximizing 
the informational content of samples. Additionally, we incorporated a 
Feature Flattening module, effectively reducing the dimensionality of 
lesion features extracted by the ViT model. Extensive comparative and 
ablation studies have confirmed the significant advantages of 
MAEMC-NET in the classification tasks of PGN and SLA.

FIGURE 8

A pair of reconstructed images of axial planes and coronal planes from our model and the MAE model.

TABLE 6 Result of our models and MAE.

Model Axial planes Coronal planes

MAE MSE PSNR SSIM MAE MSE PSNR SSIM

MAE (23) 11.17 ± 2.01 505.02 ± 264.84 21.09 ± 1.94 0.81 ± 0.02 8.92 ± 1.16 327.91 ± 172.24 22.97 ± 1.54 0.86 ± 0.02

Ours 12.03 ± 2.13 628.21 ± 325.71 20.15 ± 1.63 0.78 ± 0.02 8.20 ± 1.74 250.39 ± 157.63 24.14 ± 1.86 0.87 ± 0.02
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Looking ahead, there are several potential avenues for further 
enhancing the performance of MAEMC-NET. First, integrating other 
advanced image processing techniques, such as hybrid 3D 
convolutional networks or attention mechanisms, could improve the 
model’s ability to capture complex spatial relationships in medical 
images. Second, the incorporation of more diverse and larger clinical 
datasets, potentially from multi-center studies, could help to further 
validate the generalizability of the model and enable it to handle the 
variations present in clinical environments. Additionally, fine-tuning 
the model with more advanced semi-supervised or unsupervised 
learning strategies, such as few-shot learning or active learning, could 
enhance its performance on limited labeled data, a common challenge 
in medical image analysis. Finally, future research could explore the 
integration of MAEMC-NET with real-time clinical decision support 
systems, enabling seamless adoption in clinical workflows and aiding 
radiologists in making more accurate diagnoses.

Overall, this research provides an efficient and practical new 
method for the classification of PGN and SLA, laying a solid 
foundation for future clinical applications and research.
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