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resonance imaging data
Yuan Wang , Xiyao Wan , Ziyan Liu , Ziyi Liu  and Xiaohua Huang *

Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China

Objective: This study sought to clarify the utility of T2-weighted imaging (T2WI)-
based radiomics to predict the recurrence of acute pancreatitis (AP) in subjects 
with metabolic syndrome (MetS).

Methods: Data from 196 patients with both AP and MetS from our hospital 
were retrospectively analyzed. These patients were separated into two groups 
according to their clinical follow-up outcomes, including those with first-onset 
AP (n = 114) and those with recurrent AP (RAP) (n = 82). The 196 cases were 
randomly divided into a training set (n = 137) and a test set (n = 59) at a 7:3 
ratio. The clinical characteristics of these patients were systematically compiled 
for further analysis. For each case, the pancreatic parenchyma was manually 
delineated slice by slice using 3D Slicer software, and the appropriate radiomics 
characteristics were retrieved. The K-best approach, the least absolute shrinkage 
and selection operator (LASSO) algorithm, and variance thresholding were all 
used in the feature selection process. The establishment of clinical, radiomics, 
and combined models for forecasting AP recurrence in patients with MetS was 
then done using a random forest classifier. Model performance was measured 
using the area under the receiver operating characteristic curve (AUC), and 
model comparison was done using the DeLong test. The clinical utility of these 
models was evaluated using decision curve analysis (DCA), and the optimal 
model was determined via a calibration curve.

Results: In the training set, the clinical, radiomics, and combined models yielded 
respective AUCs of 0.651, 0.825, and 0.883, with corresponding test sets of 
AUCs of 0.606, 0.776, and 0.878. Both the radiomics and combined models 
exhibited superior predictive effectiveness compared to the clinical model in 
both the training (p = 0.001, p < 0.001) and test sets (p = 0.04, p < 0.001). The 
combined model outperformed the radiomics model (training set: p = 0.025, 
test set: p = 0.019). The DCA demonstrated that the radiomics and combined 
models had greater clinical efficacy than the clinical model. The calibration 
curve for the combined model demonstrated good agreement between the 
predicted probability of AP recurrence and the observed outcomes.

Conclusion: These findings highlight the superior predictive power of a T2WI-
based radiomics model for predicting AP recurrence in patients with MetS, 
potentially supporting early interventions that can mitigate or alleviate RAP.
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1 Introduction

Acute pancreatitis (AP) affects 30–40 per 100,000 people annually 
and is one of the most common gastrointestinal problems to 
be  diagnosed (1–3). The condition, which is characterized by 
inflammatory pancreatic cell infiltration, typically presents with 
symptoms that include pyrexia, dyspepsia, and severe abdominal pain 
(4). While symptom control can be achieved in most patients within 
a reasonably short interval, recurrent AP (RAP) can develop in 
17–35% of cases (5). Such recurrence tends to coincide with a worse 
overall patient condition, together with a greater risk of chronic 
pancreatic damage and dysfunction, as well as higher odds of future 
pancreatic oncogenesis, which can ultimately lead to a reduced patient 
survival rate (6–8).

Several metabolic issues, such as obesity, decreased levels of 
high-density lipoprotein cholesterol (HDL-C), hypertension, 
hypertriglyceridemia, and hyperglycemia, are indicative of 
metabolic syndrome (MetS) (9). MetS affects an estimated 25% of 
people worldwide and is associated with an increased risk of type 2 
diabetes, coronary heart disease, stroke, and all-cause death (10, 
11). Research has shown that insulin resistance, fatty acid flux and 
chronic low-grade inflammation are key mechanisms in the 
pathogenesis of MetS. Among these, insulin resistance is a core 
mechanism, with its severity driven by excessive fatty acids resulting 
from inappropriate lipolysis (12). When free fatty acids (FFAs) 
exceed the normal binding capacity of albumin, they may directly 
damage pancreatic acinar cells and capillary endothelial cells, 
leading to RAP (13). Excess FFAs also accumulate in pancreatic 
capillaries, impairing blood supply and causing thrombus formation 
in the pancreatic microcirculation. This triggers may repeat 
ischemic necrosis of the pancreas, ultimately leading to RAP (14). 
Moreover, as MetS is a chronic low-grade inflammatory state, 
inflammatory markers such as IL-6 and TNF-α are elevated, and 
these inflammatory factors may exacerbate pancreatic inflammation 
and increase the risk of AP recurrence (15). Furthermore, studies 
have shown that patients with MetS tend to experience more severe 
AP, higher rates of local and systemic complications, prolonged 
hospitalization, and higher rates of death (9, 16). AP recurrence has 
also been closely linked to specific components of MetS, including 
obesity, diabetes, and hypertriglyceridemia (17–19). These prior 
findings, however, have been based on the clinical characteristics of 
affected patients without any corresponding investigation of the 
underlying functional and structural changes in organs that 
coincide with disease incidence, failing to fully encapsulate the 
heterogeneous nature of the biological and pathological features 
associated with the condition. There have also been few imaging 
studies focused on RAP in patients with MetS.

Radiomics approaches can enable the extraction of quantitative 
features from imaging data that are not readily apparent to the naked 
eye but can effectively capture disease-related heterogeneity (20). 
Previous studies have demonstrated that radiomics exhibits excellent 
performance in the diagnosis of pancreatitis and the prediction of its 
onset and progression (2, 21–23). Magnetic resonance imaging (MRI), 
with its superior soft tissue resolution, is now considered the first-line 
imaging modality for evaluating pancreatitis, especially with 
T2-weighted imaging (T2WI), which is highly sensitive to fluid 
accumulation and mild peripancreatic inflammation (24, 25). 
Compared to contrast-enhanced MRI, T2WI does not require contrast 

agents and is not affected by perfusion changes, which may lead to 
variability in radiomics feature extraction. Additionally, the T2WI used 
in this study employs a long repetition time (TR) scan, offering a high 
signal-to-noise ratio, which allows for the capture of the micro-
heterogeneity of pancreatic tissue, providing a reliable foundation for 
radiomics feature extraction. As such, this study was developed to 
construct a T2WI radiomics-based model suitable for the quantitative 
prediction of AP recurrence in individuals with MetS, thereby aiding 
clinicians in identifying AP patients who face a greater risk of 
recurrence so that timely interventions can be  applied to mitigate 
such risk.

2 Materials and methods

2.1 Study subjects

Clinical and imaging data from AP patients with MetS treated 
from June 2021 through March 2024 was retrospectively analyzed. 
Ethical permission for this investigation was granted, and informed 
consent was not required.

AP diagnoses were made based on the 2012 Atlanta criteria (26): 
(1) Abdominal pain with the characteristics expected for pancreatitis; 
(2) Serum amylase or lipase levels exceeding the upper limit of normal 
by at least three times; and (3) Abdominal imaging findings consistent 
with AP-related findings.

RAP was defined for this study based on the following (27): (1) A 
history of at least two episodes of AP; (2) An interval of >3 months 
between AP episodes; and (3) Patients had achieved recovery or near-
total recovery during the period between AP episodes.

At least three of the following factors were required for the 
diagnosis of MetS to be made (28): (1) Obesity, as determined based 
on national and population-specific waist circumference values; (2) 
hyperglycemia, as determined by a history of diagnosed and treated 
diabetes or a fasting blood glucose level ≥ 100 mg/dL (5.55 mmol/L); 
(3) hypertension, as determined by a history of prior diagnosis and 
antihypertensive treatment or systolic/diastolic blood 
pressure ≥ 130/85 mmHg; (4) Triglyceride levels ≥150 mg/dL 
(1.7 mmol/L); and (5) HDL-C < 40 mg/dL (1.03 mmol/L) or < 50 mg/
dL (1.29 mmol/L) for males and females, respectively. Because this 
study was retrospective and there were no regular measurements of 
waist circumference among inpatients, participants were considered 
obese if their BMI was greater than 28 kg/m2 (29).

Patients were excluded from this study if they exhibited: (1) AP 
but not MetS; (2) any concurrent benign or malignant pancreatic 
tumors; (3) episodes of acutely exacerbated chronic pancreatitis; (4) 
missing clinical data, loss to follow-up, or poor quality images; or (5) 
an age < 18 years.

This study included 196 AP patients with MetS, of whom 114 were 
first-onset AP cases and 82 had RAP. The patients were randomized 
into two sets: a training set (n = 137) and a test set (n = 59) at a ratio 
of 7:3 (Figure 1).

2.2 Scanning protocol

A 16-channel phased-array coil MRI instrument (Unite Imaging 
Healthcare, uMR790) was used for plain upper abdominal scanning 
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for all patients. Before scanning, patients were directed to refrain from 
eating and drinking and were provided respiratory training. Scanning 
was conducted supine with head entry, placing a respiratory gating 
device at maximal abdominal movement. The entire upper abdomen 
was scanned during the procedure, and an axial rapid spin-echo was 
carried out using the following settings: 8,000 ms for TR; 116 ms for 
echo time; 38 cm × 30 cm for field of view; 5.0 mm for slice thickness; 
2.0 mm for slice gap; and 256 × 171 for matrix size.

2.3 Image segmentation and feature 
extraction

Pancreatic segmentation was performed manually on T2WI 
images using 3D Slicer software (v5.2.21) by an experienced 
radiologist. The pancreatic parenchyma was carefully delineated slice 
by slice while ensuring the exclusion of surrounding structures such 
as the intestines, blood vessels, and the common bile duct. When the 
pancreatic tissue boundaries were unclear in severe cases, T1-weighted 
and contrast-enhanced images were referenced to improve 
segmentation accuracy. In cases where necrosis extended into the 
peri-pancreatic region, only the pancreatic component was included 
in the region of interest (ROI), while extra-pancreatic necrotic areas 
were excluded (Figure 2). After applying the Laplacian of Gaussian 
and wavelet filtering to the original images, 1,223 features were 
obtained, including shape features, neighborhood gray-tone difference 
matrix (NGTDM), gray-level size zone matrix (GLSZM), gray-level 

1 https://www.slicer.org/

run-length matrix (GLRLM), gray-level dependence matrix (GLDM), 
gray-level co-occurrence matrix (GLCM), and first-order features. Of 
the analyzed patients, one-third were selected randomly, and the 
target ROI was independently delineated by another senior radiologist 
blinded to patient clinical data. The interclass correlation coefficient 
(ICC) was then used to assess inter-observer reliability, with an 
ICC > 0.75 deemed reliable such that all features clearing this 
threshold were retained for further analysis.

2.4 Feature selection and ranking

Those features exhibiting an ICC > 0.75 were normalized to 
eliminate differences in dimensionality among these features through 
Z-score preprocessing. A multi-step feature selection process was 
employed to ensure the robustness and generalizability of the model. 
Initially, variance thresholding was used to remove features with low 
variability (<0.8). The K-best method was then applied to rank features 
based on their statistical association with AP recurrence, retaining the 
most discriminative ones. Subsequently, the least absolute shrinkage 
and selection operator (LASSO) regression was implemented to 
eliminate redundant features and select the most informative 
predictors. This sequential integration of methods helped enhance 
model stability and avoid overfitting. The Gini impurity-reduction 
feature-ranking technique was then used to rank the final sets of 
radiomics and clinical features linked with AP recurrence based on 
the random forest algorithm.

2.5 Model development and assessment

Significant clinical features and optimal radiomics features 
were used to develop clinical and radiomics models through a 
random forest classifier, with a combined model integrating both 
feature sets also being established. Using criteria including the 
area under the receiver operating characteristic (ROC) curve 
(AUC), sensitivity, specificity, and accuracy, these models’ ability 
to forecast AP recurrence in MetS patients was assessed. While the 
clinical value of these models was investigated using a decision 
curve analysis (DCA), model predictive efficacy was evaluated in 
line with the DeLong test. A calibration curve was constructed for 
the combined model. R (v4.3.22) and the United Imaging uAI 
Research Portal (v1.6) were used for feature selection and 
model generation.

2.6 Statistical analyses

All analyses were conducted using SPSS 26.0, with normally 
distributed data given as means ± standard deviation and skewed 
data as median (interquartile range). Comparisons were made 
using independent sample t-tests and Mann–Whitney U tests. 
Categorical data were reported as numbers (%) and compared 
with χ2 tests. Risk variables independently associated with AP 

2 https://www.r-project.org/

FIGURE 1

Flow chart of patient recruitment in this study.
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recurrence in individuals with MetS were identified using 
multivariate logistic regression analysis, with p < 0.05 indicating 
statistical significance.

3 Results

3.1 Clinical data

Table 1 summarizes the clinical characteristics of the study 
participants. No additional significant changes were observed 
between the first-onset AP and RAP groups, but there were 
substantial differences in the levels of triglycerides, total 
cholesterol, and hyperlipidemia (p < 0.05). Triglyceride levels 
were found to be independently associated with the probability of 
AP recurrence in patients with MetS in multivariate logistic 
regression analysis, with an odds ratio (OR) of 1.061 (95% 
confidence interval [CI]: 1.021–1.102).

3.2 Feature selection

One thousand seventy features were retained when feature 
selection was performed with an ICC threshold > 0.75 (Figure 3). 
These included four optimal features chosen for model construction 
based on variance thresholding, K-best selection, and LASSO 
algorithm results (Figure 4). Random forest algorithm Gini coefficient 
means decrease-based rankings indicated that the most important 
radiomics feature was “Sphericity,” whereas triglycerides were the 
most highly ranked clinical feature (Figure 5).

3.3 Assessment of model performance

AUC of 0.883 (95% CI: 0.826–0.94), accuracy of 0.825, 
specificity of 0.875, and sensitivity of 0.754 were found in the 
combined model in the training group; AUC of 0.825 (95% CI: 

FIGURE 2

Illustration of axial T2-weighted MRI image segmentation. (A) Original image; (B) Delineation of region of interest.

TABLE 1 Clinical characteristics of patients with AP and MetS.

Characteristics First-onset AP group (n = 114) RAP group (n = 82) p value

Age (years) 48 (36–56) 46 (37–53) 0.290

Sex (male/female) 67/47 47/35 0.839

BMI (kg/m2) 26.9 (24.3–29.3) 26.6 (24.4–28.9) 0.756

Hypertension (n/%) 27/23.7 18/22.0 0.776

Hyperlipidemia (n/%) 77/67.5 66/80.5 0.044

Biliary stones (n/%) 39/34.2 16/19.5 0.330

Diabetes mellitus (n/%) 36/31.6 27/32.9 0.842

Total cholesterol (mmol/L) 5.0 (4.5–6.4) 6.0 (4.8–8.2) 0.004

Triglyceride (mmol/L) 3.7 (2.0–8.5) 6.6 (3.4–14.2) 0.001

HDL-C (mmol/L) 0.8 (0.7–1.0) 0.7 (0.6–0.9) 0.055

Smoking (n/%) 38/33.3 30/36.6 0.637

Drinking (n/%) 53/46.5 37/45.1 0.849

Severity (n/%) – – 0.945

Mild 56/49.1 42/51.2 –

Moderate 53/46.5 34/41.5 –

Severe 5/4.4 6/7.3 –

AP, acute pancreatitis; BMI, body mass index; HDL-C, high density lipoprotein cholesterol; MetS, metabolic syndrome; RAP, recurrent acute pancreatitis.

https://doi.org/10.3389/fmed.2025.1502315
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2025.1502315

Frontiers in Medicine 05 frontiersin.org

0.752–0.897), accuracy of 0.766, specificity of 0.8, and sensitivity 
of 0.719 were found in the radiomics model; and AUC of 0.651 
(95% CI: 0.562–0.74), accuracy of 0.664, specificity of 0.812, and 
sensitivity of 0.456 were found in the clinical model. In the test 
group, the combined model produced an AUC of 0.878 (95% CI: 
0.791–0.964), the accuracy of 0.814, specificity of 0.882, and 
sensitivity of 0.72; and an AUC of 0.776 (95% CI: 0.656–0.897), 
the accuracy of 0.712, specificity of 0.794, and sensitivity of 0.6 for 
the radiomics model; and an AUC of 0.606 (95% CI: 0.472–0.74), 
the accuracy of 0.61, specificity of 0.824, and sensitivity of 0.32 for 
the clinical model (Table 2).

The DeLong test confirmed that the combined model 
demonstrated significantly better predictive performance than 
both the radiomics (training set: p = 0.025, test set: p = 0.019) and 

clinical (training set: p < 0.001, test set: p < 0.001) models. The 
radiomics model consistently performed better than the clinical 
model (training set: p = 0.001, test set: p = 0.04) (Figure 6). In 
both the training and test sets, the combined model yielded the 
highest AUC, confirming its superior efficacy in RAP prediction. 
The clinical model alone had suboptimal performance, reinforcing 
the necessity of integrating radiomics features for improved 
diagnostic accuracy. Good consistency between predicted and 
actual recurrence rates was observed for both the training and test 
sets in the combined model when generating calibration curves, 
yielding respective Brier scores of 0.190 and 0.197 (Figure  7). 
DCA demonstrated that the combined and radiomics models 
outperformed the clinical model regarding the degree of clinical 
net benefit (Figure 8).

FIGURE 3

Inter-class consistency test. Values above the red line indicate ICC > 0.75, signifying high reliability of the radiomics features extracted by the two 
observers.

FIGURE 4

Feature dimension reduction using the least absolute shrinkage and selection operator (LASSO). (A) Feature selection; (B) Curve of coefficient variation.
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4 Discussion

As a chronic metabolic condition, MetS prevalence rates have 
progressively risen in recent years, with a parallel increase in the 
incidence of AP, which is an acute inflammatory disease. These trends 
have coincided with the recognition that AP patients with MetS often 
experience more severe disease and face a poorer AP prognosis (9, 30, 
31). Previous studies have examined the correlation between MetS 
components and AP recurrence (17, 18). However, they predominantly 
relied on clinical data, and the available quantitative tools for assessing 
the likelihood of AP recurrence in patients with comorbid MetS have 
been insufficient. Thus, this study aimed to resolve this knowledge 
deficit by developing predictive models predicated on clinical 
characteristics and radiomics features, which provide a more detailed 
and quantitative assessment of disease-related features. The radiomics 
and combined models not only outperformed the clinical feature-
based model in predicting RAP incidence among MetS patients but 
also demonstrated superior clinical utility, as indicated by DCA (32). 

Radiomics thus offers clear value as a source of clinical insight that can 
aid in formulating more effective individualized treatment strategies.

In the present research, 1,223 radiomics characteristics were 
acquired from T2WI MRI sequences of the subjects. A combination 
of variance thresholding, K-best selection, and the LASSO algorithm 
approaches ultimately led to the selection of four optimal features: 
Sphericity, Idn, Inverse Variance, and Run Entropy. Sphericity is a 
property that relates to lesion roundness and may reflect fibrosis-
related morphological alterations. In contrast, Inverse Variance and 
Idn are GLCM features corresponding to spatial information about 
particular pairs of pixels with similar or specific intensity levels in an 
image, potentially linked to inflammatory infiltration (33). Run 
Entropy is a feature derived from the GLRLM corresponding to image 
texture variation complexity and uncertainty, which may correspond 
to microscopic architectural disruptions in RAP. These features 
provide a quantitative representation of pancreatic pathology, 
reinforcing their predictive value in radiomics-based assessment. 
Model construction was performed with a random forest classifier, 

FIGURE 5

The seven features included in the combined model were ranked through mean Gini decrease value.

TABLE 2 Performance of three models in the training and test sets.

Model AUC (95%CI) Specificity Accuracy Precision Sensitivity

Training set Combined model 0.883 (0.826–0.94) 0.875 0.825 0.811 0.754

Radiomics model 0.825 (0.752–0.897) 0.8 0.766 0.719 0.719

Clinical model 0.651 (0.562–0.74) 0.812 0.664 0.634 0.456

Test set Combined model 0.878 (0.791–0.964) 0.882 0.814 0.818 0.72

Radiomics model 0.776 (0.656–0.897) 0.794 0.712 0.682 0.6

Clinical model 0.606 (0.472–0.74) 0.824 0.61 0.571 0.32

AUC, area under the curve; CI, confidence interval.
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and the included variables were analyzed with the Gini impurity-
reduction feature-ranking technique, which ranks features by 
calculating the average reductions in Gini impurity when each variable 
is removed and comparing the results against corresponding Gini 
values for all other features (34). Sphericity was found to be the most 
important of the four best radiomics traits that were used in the 
development model. This may be related to the utility of Sphericity as 
a metric for assessing the shape of the region of interest. As repeated 
episodes of AP can lead to collagen deposition around ductal sites in 
the affected area, progressive acinar cell complex obstruction and 
consequent acinar atrophy can occur, leading to altered pancreatic 
morphology (35).

The radiomics model developed in this study may be better at 
making predictions for several reasons. Firstly, the start of AP might 

happen at the same time as the appearance of small changes in the 
pancreatic parenchymal tissue that cannot be seen with the naked eye 
(36, 37). Radiomics feature extraction, however, can detect these 
quantitative features that would otherwise be overlooked, leveraging 
them to establish new approaches to assessing the odds of AP 
recurrence (20). Secondly, the images in this study were derived from 
the same MRI instrument model with identical parameters, 
potentially limiting the effect of any variability in scanning 
parameters on extracted feature reproducibility, affording superior 
stability and repeatability (38, 39). Thirdly, the sequential 
implementation of the variance thresholding, K-best selection, and 
the LASSO algorithm approaches during feature selection also 
enabled removing redundant features while retaining highly reliable, 
relevant, and accurate features. The LASSO algorithm is widely used 

FIGURE 6

The receiver operating characteristic (ROC) curves for clinical model, radiomics model and combined model. (A) Training set; (B) Test set.

FIGURE 7

Calibration curves for the combined model in the training and test sets. (A) Training set; (B) Test set.
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for regression analyses of high-dimensional datasets, and it is suited 
to use with small samples and a broad array of features such that the 
most relevant features associated with a given disease can 
be established (40–42). Finally, the random forest ensemble learning 
method employs myriad decision trees to achieve high levels of 
robustness and accuracy while reducing the odds of overfitting 
through its multi-decision tree voting mechanism (34). The radiomics 
model designed in this study thus exhibited good predictive 
performance, providing a novel means of managing RAP for patients 
with MetS.

The superior performance of the combined model can 
be  attributed to the complementary nature of radiomics and 
clinical features. While radiomics captures microstructural 
variations in pancreatic tissue, clinical parameters such as 
triglyceride levels reflect systemic metabolic disturbances 
associated with disease recurrence. The integration of these two 
data sources enables a more comprehensive and precise prediction 
of RAP, allowing for early risk stratification and targeted 
interventions. These findings highlight the potential of a multi-
modal approach to enhance diagnostic accuracy and guide 
personalized treatment strategies. In this study, the two patient 
groups presented significant differences in triglyceride levels, total 
cholesterol levels, and hyperlipidemia; triglyceride levels were 
independently associated with the risk of AP recurrence among 
those with MetS. This is consistent with prior evidence supporting 
a close link between triglycerides and the recurrence of AP (43–
45). This effect may be related to the release of pancreatic lipase 
from the pancreatic vascular bed. After that, it can hydrolyze 
excess triglycerides circulating in the blood to produce FFAs. 
These, in turn, can injure platelets, microcirculatory endothelial 
cells, and acinar cells if they are not bound by albumin, resulting 
in the production of inflammatory mediators, the impairment of 
blood flow, and overall endothelial dysfunction (46, 47). 
Chylomicron levels in the blood also rise with levels of 
triglycerides, leading to elevated blood viscosity and altered 
pancreatic blood flow, culminating in ischemia and acidosis 

within the pancreas (47, 48). Active interventional strategies, 
including lifestyle changes, dietary adjustments, and appropriate 
pharmacological treatments, are thus warranted for patients with 
high levels of triglycerides to reduce the odds of RAP.

This study has some limitations. First, a major limitation of this 
study is the lack of external validation, as the data was collected from 
a single center. Future studies will need to include multi-center 
cohorts to validate the model’s generalizability and stability. Second, 
although the radiomics analyses in this study were based on a single 
T2WI MRI sequence that may not capture all relevant information 
about disease-related characteristics, the ultra-long TR scanning 
technique employed herein yielded images with an improved signal-
to-noise ratio. Third, this study defines obesity as BMI ≥ 28 kg/m2, 
which aligns with the metabolic characteristics of the Chinese 
population. However, this definition may not fully reflect abdominal 
obesity as defined in the metabolic syndrome criteria, potentially 
limiting the generalizability of our findings to populations with 
different definitions of obesity. In the future, research efforts will focus 
on incorporating additional MRI sequences and expanding the patient 
cohort to develop more comprehensive and generalizable 
predictive models.

5 Conclusion

In summary, T2WI MRI sequence-derived radiomics features 
can provide insight into the intrinsic differences that characterize 
first-onset AP and RAP in individuals with MetS. The radiomics 
and combined models developed herein were capable of predicting 
the recurrence of AP more effectively among MetS patients as 
compared to the clinical model. Radiomics may thus hold value as 
a noninvasive and quantitative analytical strategy suitable for 
gaging the risk of AP recurrence when evaluating individuals with 
MetS, enabling physicians to formulate personalized treatment 
plans to optimize therapeutic approaches and achieve better 
patient outcomes.

FIGURE 8

Decision curve analysis of three models. (A) Training set; (B) Test set.
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