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Introduction: Liver ischemia-reperfusion injury (LIRI) is a major reason for liver injury 
that occurs during surgical procedures such as hepatectomy and liver transplantation 
and is a major cause of graft dysfunction after transplantation. Programmed cell 
death (PCD) has been found to correlate with the degree of LIRI injury and plays 
an important role in the treatment of LIRI. We aim to comprehensively explore the 
expression patterns and mechanism of action of PCD-related genes in LIRI and to 
find novel molecular targets for early prevention and treatment of LIRI.

Methods: We first compared the expression profiles, immune profiles, and 
biological function profiles of LIRI and control samples. Then, the potential 
mechanisms of PCD-related differentially expressed genes in LIRI were explored 
by functional enrichment analysis. The hub genes for LIRI were further screened 
by applying multiple machine learning methods and Cytoscape. GSEA, GSVA, 
immune correlation analysis, transcription factor prediction, ceRNA network 
analysis, and single-cell analysis further revealed the mechanisms and regulatory 
network of the hub gene in LIRI. Finally, potential therapeutic agents for LIRI were 
explored based on the CMap database and molecular docking technology.

Results: Forty-seven differentially expressed genes associated with PCD were 
identified in LIRI, and functional enrichment analysis showed that they were involved 
in the regulation of the TNF signaling pathway as well as the regulation of hydrolase 
activity. By utilizing machine learning methods, 11 model genes were identified. 
ROC curves and confusion matrix from the six cohorts illustrate the superior 
diagnostic value of our model. MYC was identified as a hub PCD-related target in 
LIRI by Cytoscape. Finally, BMS-536924 and PF-431396 were identified as potential 
therapeutic agents for LIRI.

Conclusion: This study comprehensively characterizes PCD in LIRI and identifies 
one core molecule, providing a new strategy for early prevention and treatment 
of LIRI.
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1 Introduction

Liver ischemia–reperfusion injury (LIRI) is a major reason for liver 
injury in surgical procedures such as hepatectomy and liver 
transplantation (LT) (1). LIRI involves two phases: localized ischemic 
injury and reperfusion injury, which are interrelated (2). In addition, 
LIRI can be categorized into warm LIRI and cold LIRI. Warm LIRI 
occurs in cases of transplantation, trauma, shock, and elective liver 
surgery, where the liver blood supply is temporarily interrupted. Cold 
LIRI occurs during the organ preservation period prior to 
transplantation. Several factors contribute to LIRI, including activation 
of Kupffer cells, oxidative stress, and upregulation of pro-inflammatory 
cytokine signaling (3). LIRI involves a wide range of cellular and 
biochemical processes, including dysregulation of the normal phenotype 
of every liver cellular component (1). However, a large proportion of 
these processes remain unknown or unclear. LIRI is an unavoidable 
process in LT, which may not only lead to early graft dysfunction and 
chronic rejection but also increase the risk of liver tumor recurrence and 
fibrosis (4–6). Despite considerable efforts in therapeutic strategies for 
LIRI, prevention is the primary strategy for reducing LIRI (7). Therefore, 
it is imperative to investigate novel molecular mechanisms and key 
targets for LIRI.

Programmed cell death (PCD), also known as regulated cell death, 
is a specified form of cell death that could be controlled by different 
biomolecules (8). PCD is crucial for preserving tissue homeostasis and 
getting rid of unhealthy or superfluous cells. It has become a crucial 
disorder phenotype and has received a lot of attention in many disorders 
(9–11). Numerous studies have indicated that cell death is the main 
potential mechanism of LIRI (1, 12). In the past decades, it was believed 
that necrosis and apoptosis occurred mainly in LIRI (13). Numerous 
novel forms of PCD, like ferroptosis, cuproptosis, disulfidptosis, and 
pyroptosis, have been identified in recent years. LIRI can initiate a variety 
of cellular processes that are related to multiple types of PCD (14). For 
example, it was found that the iron death marker Ptgs2 was significantly 
upregulated in the mouse LIRI model (15). Meanwhile, chronic exposure 
to excess Cu leads to an increase in ROS and promotes apoptosis in 
mouse liver (16). It was also found that pyroptosis and NLRP3 targeting 
can reduce LIRI (17). In addition, PCD is strongly correlated with the 
severity of LIRI injury, which also implies that PCD has an important 
role in the treatment of LIRI (14). However, how to effectively inhibit 
PCD and reduce the cascade of cell death in LIRI remains a challenge, 
and a deeper understanding of these cell death patterns is needed to 
identify more precise targets and therapeutic agents.

Recently, the emergence of bioinformatics, machine learning, and 
molecular docking technologies has accelerated the processing and 
analysis of large-scale data to efficiently identify hub molecules and 
potential therapeutic agents of diseases (18, 19). The study will utilize 
bioinformatics, machine learning and molecular docking techniques 
to comprehensively explore the expression and mechanism of 
PCD-related genes in LIRI and provide a theoretical basis for future 
studies of PCD in LIRI.

2 Methods

2.1 Data collection

The datasets analyzed in this study were downloaded from the 
GEO database. The GSE12720 (20) contains 21 preoperative samples 

and 21 post reperfusion samples, GSE112713 (21) contains 11 
preoperative samples and 11 post reperfusion samples, and GSE14951 
(22) contains 5 preoperative samples and 5 post reperfusion samples. 
They were merged as a training set by the “ComBat” function from 
“sva” package (23). Principal component analysis (PCA) was 
performed to verify the batch effect before and after the data operation. 
PCA is a method of data dimensionality reduction, which extracts the 
feature vectors (components) of data from high latitude data, converts 
them into low dimensional data, and displays these features using 
two-dimensional or three-dimensional graphs. The GSE23649 (33 
LIRI and 33 control samples), GSE15480 (6 LIRI and 6 control 
samples), and GSE151648 (24) (40 LIRI and 40 control samples) 
datasets were used as validation sets for subsequent 
biomarker validation.

The PCD-related genes were carefully hand-curated from a variety 
of reliable sources, such as the KEGG database, the MSigDB database, 
review articles, and manual curation (8, 25–29). A total of 1,567 genes 
associated with 19 types of PCD were eventually included, as shown 
in Supplementary Table S1.

2.2 Analysis of differences between LIRI 
and normal samples

Using the “limma” software, the criteria for detecting differentially 
expressed genes (DEGs) between LIRI and normal samples were set 
to |log2 fold change (FC)| > 0.585 and adjust p < 0.05 (18). The 
expression differences for LIRI were visualized by a volcano plot using 
the “ggplot2” package in R and a heatmap using the “pheatmap” 
package in R. The proportions of various immune cell types were 
evaluated using ssGSEA from the “GSVA” package in order to compare 
the differences in immunity status between groups (30). Gene Set 
Enrichment Analysis (GSEA) is a computational method used to 
determine differences in biological process activity or pathway 
enrichment across different samples. It evaluates whether predefined 
sets of genes are statistically significantly associated with a biological 
state. In this study, all genes were first categorized into two groups 
based on their positive and negative logFC values. We then performed 
enrichment analysis on the positive and negative logFC gene groups 
using the “clusterProfiler” package in R (31).

2.3 Functional enrichment analysis of 
PCD-related DEGs

The Venn map was applied to select the common genes between 
DEGs and PCD-related genes. The STRING database1 was used to 
investigate protein interactions, with the validity of such interactions 
being determined by a composite score greater than 0.4. The 
GeneMANIA database2 prioritized genes for functional tests. Finally, 
the Metascape database3 was used to conduct functional enrichment 
analysis (32).

1 https://cn.string-db.org/

2 https://genemania.org/

3 https://metascape.org/
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2.4 Using machine learning to screen 
characteristic genes

Different machine learning methods have different characteristics 
in data processing and pattern recognition, and their combined use 
can more comprehensively mine the potential information in the data, 
while avoiding the bias that may be brought by relying on a single 
method. We  used 12 machine learning methods (Lasso, Ridge, 
Stepglm, XGBoost, Random Forest, Enet, plsRglm, GBM, Naïve 
Bayes, LDA, glmBoost, and SVM) to build the diagnostic model. 113 
combinations of these 12 techniques were investigated through 
methodical designs for model generation and variable selection 
utilizing the training dataset (33). Three datasets were then used as 
external test datasets to validate the model’s performance. We also 
calculated the AUC values of each model and output the AUC matrix, 
and then used “ComplexHeatmap” to draw the AUC heatmap for 
visualizing the performance of each model on the training and testing 
sets. The best model is the one with the highest average AUC over 
training and testing cohorts (29).

2.5 Potential functions of the hub gene in 
LIRI

To identify the hub gene, the cytoHubba plug in Cytoscape was 
applied (34). GSEA and GSVA were utilized to elucidate the molecular 
mechanisms between high- and low-hub gene expression samples 
(35). Meanwhile, the ssGSEA was also used to assess the correlation 
between significantly different enriched immune cell types and the 
hub gene. These gene sets used in these analyses were obtained 
from MSigDB.

2.6 Construction of the transcription factor 
(TF) and ceRNA networks of hub gene

We utilize TFTF online (36) to predict the hub gene for TFs based 
on the integration of five major TF-Target online tools, namely 
hTFtarget (37), ENCODE (38), JASPAR (39), GTRD (40), and ChIP_
Atlas (41). In addition, the TargetScan, miRDB, and miRanda 
databases were used to anticipate miRNA-mRNA pairs in order to 
identify the ceRNA network that might be influenced by model genes 
(42). Genes that were simultaneously listed in three databases were the 
only ones that were thought to be possible mRNA targets for further 
research (43). To predict miRNA-lncRNA pairs, the spongeScan 
database was used. At last, the ceRNA network could be seen using 
Cytoscape (44). Meanwhile, the Human Protein Atlas (HPA4) was 
utilized to examine the hub gene’ immunofluorescence and single-cell 
type atlases.

4 https://www.proteinatlas.org/

2.7 Identifying potential small-molecule 
compounds for the treatment of LIRI

The CMap database5 can link diseases, genes, and drugs based on 
gene expression profiles. The upregulated DEGs of LIRI were entered 
into the CMap database to identify potential small-molecule 
compounds for the treatment of LIRI (43). Then, the protein structures 
of the feature genes were obtained from the PDB database, and the 
AutoDock tool was utilized to compute the hydrogenation and charge 
of proteins. PubChemdatabase to download the chemical structure of 
the drug’s active ingredient. The AutoDock is used to examine the 
rotatable bonds and charge balance of small molecules. Finally, PyMol 
software was used to check the docking complex.

3 Results

3.1 Gene expression and biological 
characteristics of patients with LIRI

The flow chart of the research is presented in Figure 1. Initially, 
we merged three datasets of LIRI and corrected batch effects using the 
“sva” software package. As can be  seen from 
Supplementary Figures S1A–D, after data normalization, the 
difference between batches is effectively eliminated, and the three 
datasets can be merged. The volcano map and heatmap showed the 
DEGs for the LIRI (Figure 2A and Supplementary Figure S1E). Given 
the important role of immune cells in LIRI, differences in immune cell 
infiltration were subsequently compared between LIRI patients and 
controls. It was found that LIRI patients had a higher percentage of 
activated CD4 T cells, dendritic cells, eosinophils, MDSC, mast cells, 
NK T cells, neutrophils, T helper cells, and CD8 T cells, while central 
memory CD4 T cells and NK cells were in contrast (Figure  2B). 
Further GSEA analysis was then performed to explore the differences 
in biological function between LIRI patients and controls. The results 
showed that relevant pathways and functions such as apoptotic and 
cytokines were significantly upregulated in the LIRI group 
(Figures 2C,D), while metabolism-related pathways and functions 
were significantly upregulated in the control group (Figures 2E,F).

3.2 PPI network and functional enrichment 
analysis for PCD-related DEGs

To further explore the role of PCD in LIRI, we  collected 
PCD-related genes from 19 types of PCD. Using the Venn diagram, 
the DEGs and PCD-related genes were crossed, and 47 PCD-related 
DEGs were obtained (Figure  3A). The PPI network complex was 
constructed by importing 47 PCD-related DEGs into the STRING 
database. PPI analysis shows tight junctions between these genes 
(Figure  3B). Then, we  used GeneMANIA to predict correlations 
between colocalization, pathways, shared protein domains, 
co-expression, and prediction. The network showed that these genes 
were mainly enriched in the regulation of apoptotic signaling pathway, 

5 https://clue.io/
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response to molecules of bacterial origin, and cell chemotaxis 
(Figure 3C). Finally, the Metascape database was used to explore the 
biological activities and pathways of PCD-related DEGs. The result 
showed that they were involved in the regulation of PCD, the TNF 
signaling pathway, and the regulation of hydrolase activity (Figure 3D).

3.3 Selection of characteristic genes via 
machine learning algorithms

A total of 12 machine learning algorithms were combined to 
identify the most robust diagnostic model based on 47 PCD-related 
DEGs. Among them, the Lasso + XGBoost machine learning method 
has the highest average AUC value in the training set and the three 
validation sets, so the Lasso + XGBoost model is chosen as the final 
prediction model (Figure  4A and Supplementary Figures S2A–D). 
We identified 11 model genes: ANGPTL4, ATF3, BAG3, IL1B, IL6, 
IRF1, KRT18, MYC, PFKFB3, TNFAIP3, and TNFRSF1B. ROC curves 
of 11 model genes were shown in Figure 4B. The confusion matrix 
shows that our diagnostic model has high sensitivity, specificity and 
accuracy (Figure 4C), and it was confirmed in the verification sets 
(Figures 4D–F).

3.4 Selection of the hub gene by the 
Cytoscape

We then performed gene expression analysis for these 11 model 
genes in the training set and validation sets, respectively. Analysis 
in the training set showed that these 11 model genes were all highly 

expressed in LIRI patients (Figure 5A). The gene expression analysis 
of the validation set was shown in Supplementary Figures S3A–C, 
which was consistent with the training set. Figure 5B demonstrated 
the correlation between these 11 model genes. To further explore 
the most critical of these genes, we examined the PPI networks of 
model genes using the STRING tool (Figure 5C) and inserted the 
results into Cytoscape. MYC was detected as the hub gene for these 
model genes using the Cytohubba plugin (Figure 5D).

3.5 Immunological characteristics and 
biological function of the MYC in LIRI 
samples

Next, the relationship between MYC and the different immune 
cells was further studied. It showed that MYC was significantly 
positively correlated with Type 2 T helper cells, mast cells, 
macrophages, eosinophils and activated CD4 T cells, while oppositely 
in monocytes (Figure  5E). Then we  performed GSVA analysis to 
further explore the biological functions of hub genes in LIRI. MYC 
was significantly positively associated with circadian rhythm, 
regulation of autophagy, and regulation of immune response-related 
pathways and functions in LIRI samples (Figures 6A,B). Subsequently, 
GSEA analysis was utilized to further explore the possible mechanism 
of action of MYC in LIRI samples. It showed that MYC was 
significantly positively associated with B cell receptor, Toll like 
receptor, and transcription regulator complex-related pathways and 
functions, while oppositely in ECM receptor interaction, complement 
and coagulation cascades, and basement membrane-related pathways 
and functions (Figures 6C–F).

FIGURE 1

The process of data analyzing in this study.
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3.6 The transcription factors (TFs), ceRNA 
networks, single-cell maps, and 
immunofluorescence analysis of MYC

TFs are critical in regulating gene expression and shaping cellular 
and organismal phenotypes. We therefore combined five databases to 
characterize TFs in MYC and identified a total of 19 reliable TFs: 
CTCF, BATF, EGR1, MAZ, PAX5, SP1, TCF12, E2F6, FOS, JUND, 
TEAD4, NFIC, PBX3, STAT3, TFAP2A, TFAP2C, TCF7L2, FOSL2, 
and RELA (Figure 7A). In addition, the ceRNA network of MYC was 
built using various public databases. Ultimately, we  were able to 
identify 2 objective miRNAs and 12 objective lncRNAs of MYC 
(Figure  7B). The network disclosed transcriptional regulatory 
mechanisms for MYC. The cellular location of MYC was then 

investigated. It can be found that MYC is mainly expressed in the 
nucleoplasm, where green represents the target protein and red 
represents microtubules (Figure 7C). In addition, we evaluated MYC 
expression at the single-cell data level using the HPA database. It was 
found that MYC was mainly distributed in smooth muscle cells and 
fibroblasts (Figure 7D).

3.7 Identification of potential 
small-molecule compounds for the 
treatment of LIRI

In addition, to search for potential drugs to treat LIRI, we entered 
upregulated DEGs in LIRI into the CMap database for analysis. The 

FIGURE 2

Analysis of differences between LIRI and control samples. (A) The volcano plot for DEGs in LIRI; (B) Differences in immune cells between LIRI and 
controls; (C–F) GSEA analysis of KEGG and GO between LIRI and controls.
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FIGURE 3

Functional enrichment analysis of PCD-related DEGs. (A) The intersection of DEGs and PCD-related gene; (B) PPI of the PCD-related DEGs; 
(C) GeneMANIA analysis of PCD-related DEGs; (D) Functional enrichment analyses by the Metascape database.

https://doi.org/10.3389/fmed.2025.1501467
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2025.1501467

Frontiers in Medicine 07 frontiersin.org

top  10 small-molecule compounds are shown in Table  1 and are 
considered potential therapeutic drugs for LIRI. Then we conducted 
molecular docking analysis of these 10 small-molecule compounds 
with MYC. The minimum binding energy between the hub gene and 
each small-molecule compound is shown in Table  1. The results 

showed that the minimum binding energy between the ligand and the 
receptor was less than −7.0 kcal/mol, so the target proteins had a good 
affinity for the active ingredient, suggesting that these small-molecule 
drugs could act on MYC to treat LIRI. Among them, BMS-536924 
(−9.8 kcal/mol) and PF-431396 (−9.4 kcal/mol) have the lowest free 

FIGURE 4

The model genes of LIRI were screened by machine learning method. (A) AUC values of 113 machine learning models; (B) ROC curves of diagnostic 
performance of 11 model genes for LIRI; (C–F) Confusion matrix of the model in training and three test sets.
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binding energy for MYC and are most likely to be potential therapeutic 
agents for LIRI (Figures 7E,F).

4 Discussion

LIRI is one of the serious complications and a major risk factor 
for early allograft failure after LT, which has led to a shortage of 
transplanted organs (45). LIRI is a self-amplifying process 
involving two interrelated phases of ischemic and reperfusion 
injury (46). The ischemic insult is characterized by a dysfunction 

of the mitochondrial respiratory chain, activation of cell death 
programs, and alterations in expression of genes (47, 48). The field 
of LT has prioritized research to develop effective strategies to 
minimize IRI because LIRI is linked to increased short- and long-
term morbidity and death (49). PCD is a specified form of cell 
death that could be  controlled by different biomolecules. 
Numerous studies have demonstrated that PCD is closely 
correlated with the severity of LIRI injury, which also implies that 
PCD has an important role in the treatment of LIRI (14). The aim 
of this study was to conduct a preliminary exploration of PCD 
patterns in LIRI using integrated bioinformatics analysis and 
molecular docking techniques to identify central genes and 

FIGURE 5

Identification of the hub gene. (A) Box plot showed the expression difference of model genes between LIRI and control samples in training set. 
(B) Correlation analysis of 11 model genes; (C) PPI of the model genes; (D) The hub gene MYC was identified from 11 genes using Cytoscape; 
(E) Immune cell correlation analysis of MYC.
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potential therapeutic agents to enhance early prevention and 
treatment of LIRI.

In the current study, we comprehensively searched for LIRI-
related datasets and eventually included a total of six cohorts of 
LIRI samples. To understand the underlying mechanisms of LIRI 
occurrence, we  first compared the differences in biological 
function between LIRI and controls by GSEA analysis. The results 
showed that the intrinsic apoptotic signaling pathway was 
significantly upregulated in the samples of the LIRI group. Given 

that different forms of PCD are widely cross-talked and play 
important roles in LIRI, we collected a total of 1,567 genes for 19 
types of PCD to further comprehensively explore the potential 
mechanisms and therapeutic targets of PCD in LIRI. Among them, 
47 PCD-related genes were differentially expressed in LIRI, and 
these PCD-related DEGs were used to follow up further studies. In 
order to explore the potential mechanism of these genes in LIRI, 
we performed functional enrichment analyses of 47 PCD-related 
DEGs. The result showed that the DEGs were involved in the 

FIGURE 6

Functional enrichment analysis of MYC in LIRI. (A,B) Enrichment biological functions and pathways of MYC identified by GSVA; (C–F) Enrichment 
biological functions and pathways of MYC identified by GSEA.
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positive regulation of PCD, apoptotic signaling pathway, and TNF 
signaling pathway. These genes may contribute to the development 
of LIRI by regulating PCD, TNF signaling pathways, and 
other pathways.

Then, we applied 113 machine learning combinations to screen 
out 11 characteristic genes as diagnostic model. We used multiple 
analytical methods to further evaluate the value of our diagnostic 
model in LIRI, which showed specific expression and a high degree of 
prediction power. The average AUC value of the model was 0.955 in 
the training set and in three different external validation sets. 

Although this may be  related to the small sample size, and the 
validation of multiple cohorts is sufficient to illustrate the excellent 
performance of the model, suggesting that these 11 genes can be used 
as diagnostic biomarkers for LIRI patients.

Subsequently, Cytoscape was utilized to further screen these 11 
genes for the hub gene MYC, which is considered a hub PCD-related 
target in LIRI. MYC is a pleiotropic transcription factor involved in 
multiple cellular processes. MYC is thought to regulate more than 15% 
of human genes and is sometimes described as a “master gene 
regulator.” It is involved in the regulation of a variety of cellular 

FIGURE 7

Regulatory network, single-cell mapping and immunofluorescence analysis of MYC. (A) Prediction of TFs based on different databases; (B) The ceRNA 
network of MYC; (C) The immunofluorescence of MYC based on HPA database; (D) The single-cell mapping of MYC based on HPA database; 
(E) Molecular docking of BMS-536924 and MYC; (F) Molecular docking of PF-431396 and MYC.
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processes, including cell growth, cell cycle, differentiation, apoptosis, 
angiogenesis, DNA repair, and stem cell formation (50). Recent 
studies have shown that MYC promotes renal tubular cell apoptosis in 
ischemia–reperfusion-induced kidney injury by regulating the 
apoptotic pathway (51). In addition, Xiao et  al. (52) found that 
inhibition of the MYC/PTEN axis attenuates cerebral ischemia–
reperfusion injury in the rat. Sun et al. (53) found that MYC may 
regulate NDRG2 expression in cardiomyocytes and promote apoptosis 
in rat cardiomyocytes after ischemia–reperfusion. These studies 
suggest that MYC may play an important role in ischemia–reperfusion 
injury; however, the role of MYC in LIRI has not been reported.

To further explore the potential mechanisms of MYC action in 
LIRI, we conducted a comprehensive analysis. MYC was found to 
be significantly positively correlated with Type 2 T helper cells, mast 
cells, macrophages, eosinophils and activated CD4 T cells. Enrichment 
analysis showed that B cell receptor, Toll like receptor, and 
transcription regulator complex-related pathways and functions were 
significantly upregulated in high-MYC patients. Previous studies have 
shown that MYC expression in immune cells is tightly regulated 
during development and in response to immune stimulation (54). 
MYC plays a crucial role in governing the development, differentiation, 
and activation of immune cells. By driving the expression of a broad 
range of metabolic genes, MYC orchestrates metabolic programs that 
support immune function. For example, research has demonstrated 
that MYC is involved in regulating T cell development, activation, and 
differentiation, thereby facilitating adaptive immune responses (55). 
Our results suggested that MYC may contribute to LIRI by regulating 
these immune cells and pathways. Subsequent TF prediction and 
construction of the ceRNA network further revealed the potential 

regulatory network of MYC, providing a scientific basis for further 
studies of MYC in LIRI in the future.

In addition, MYC expression was significantly up-regulated in 
LIRI, so it may be new therapeutic targets for LIRI. We molecularly 
docked the top ten predicted small-molecule compounds with MYC, 
respectively, and found that BMS-536924 and PF-431396 had the 
strongest binding ability to the MYC, suggesting that BMS-536924 
and PF-431396 could be  used to treat LIRI by binding to 
MYC. BMS-536924 is an effective IGF-I small molecule inhibitor, 
while PF-431396 is a FAK small molecule inhibitor. Previous research 
has demonstrated that IGF-II knockdown can suppress MYC 
expression in hepatocellular carcinoma cells via the FAK/PI3K/AKT 
signaling pathway (56). In line with this, Zhang et al. (57) found that 
FAK inhibitors can inhibit MYC expression by disrupting the PI3K/
AKT axis. Additionally, studies have shown that IGF-1 overexpression 
can enhance MYC expression (58), and MYC also can promote tumor 
cell growth through paracrine signaling mediated by the IGF-1/
IGF-1R axis (59). These studies provide strong theoretical support for 
the possibility that both BMS-536924 (IGF-1 inhibitor) and PF-431396 
(FAK inhibitor) could treat LIRI by modulating MYC, suggesting that 
targeting MYC with these small molecules may offer a promising 
therapeutic strategy for LIRI.

This is the first bioinformatics study to uncover the potential role 
of PCD in LIRI. However, our study has some limitations. First, 
although we included multiple datasets for analysis and validation, 
clinical studies are needed in the future to support our conclusions. In 
addition, further in vivo and in vitro experiments are needed to verify 
the mechanisms of action of MYC and the therapeutic effects of 
BMS-536924 and PF-431396 in LIRI in the future.

TABLE 1 Potential treatment options for LIRI analyzed by CMap and molecular docking.

pert_iname moa target_name raw_cs fdr_q_
nlog10

norm_cs Free binding 
energy (kcal/

mol)

Alvocidib CDK inhibitor CDK2|CDK4|CDK1|CDK6|CDK7|CDK9

|CDK5|CDK8|EGFR|PYGM|BCL2|BIRC5

|CCNT1|MCL1|XIAP

−0.79 15.6536 −2.9083 −8.7

TWS-119 GSK inhibitor GSK3B|JUN|MYC −0.707 15.6536 −2.603 −9.1

Lapatinib EGFR inhibitor|ERBB2 

inhibitor

EGFR|ERBB2|CYP3A5 −0.6816 15.6536 −2.5093 −9.1

PF-431396 Focal adhesion kinase 

inhibitor

PTK2|PTK2B −0.6809 15.6536 −2.5069 −9.4

BMS-536924 IGF-1 inhibitor IGF1R|INSR|AKT1|CCNE1|CDK2|CYP3

A4|ERBB2|KDR|LCK|MAPK1|MET|PD

GFRA|PDGFRB

−0.6756 15.6536 −2.4874 −9.8

U-0126 MEK inhibitor MAP2K1|MAP2K2|JAK2|AKT1|CHEK1|

GSK3B|LCK|MAP2K7|MAPK1|MAPK11

|MAPK12|MAPK14|MAPK8|PRKCA|RA

F1|ROCK1|RPS6KB1|SGK1

−0.6751 15.6536 −2.4854 −7.6

Selumetinib MEK inhibitor MAP2K1|MAP2K2 −0.674 15.6536 −2.4814 −8.2

ER-27319 Syk inhibitor SYK −0.6708 15.6536 −2.4695 −8.0

WZ-3146 EGFR inhibitor EGFR −0.6683 15.6536 −2.4603 −9.1

A-443654 AKT inhibitor AKT1|AKT2 −0.6499 15.6536 −2.3925 −8.8
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5 Conclusion

In conclusion, by integrating a series of bioinformatics approaches, 
we identified MYC as reliable diagnostic and therapeutic targets for 
LIRI and comprehensively analyzed its mechanisms of action in the 
LIRI. More importantly, we found BMS-536924 and PF-431396 may 
be potential drugs for the treatment of LIRI by acting on MYC.
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