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Introduction: Osteoporosis increases the risk of fragility fractures, especially of

the lumbar spine and femur. As fractures affect life expectancy, it is crucial to

detect the early stages of osteoporosis. Dual X-ray absorptiometry (DXA) is the

gold standard for bone mineral density (BMD) measurement and the diagnosis

of osteoporosis; however, its low screening usage is problematic. The accurate

estimation of BMD using chest radiographs (CXR) could expand screening

opportunities. This study aimed to indicate the clinical utility of osteoporosis

screening using deep-learning-based estimation of BMD using bidirectional

CXRs.

Methods: This study included 1,624 patients aged ≥ 20 years who underwent

DXA and bidirectional (frontal and lateral) chest radiography at a medical facility.

A dataset was created using BMD and bidirectional CXR images. Inception-

ResNet-V2-based models were trained using three CXR input types (frontal,

lateral, and bidirectional). We compared and evaluated the BMD estimation

performances of the models with different input information.

Results: In the comparison of models, the model with bidirectional CXR showed

the highest accuracy. The correlation coefficients between the model estimates

and DXA measurements were 0.766 and 0.683 for the lumbar spine and femoral

BMD, respectively. Osteoporosis detection based on bidirectional CXR showed

higher sensitivity and specificity than the models with single-view CXR input,

especially for osteoporosis based on T-score ≤ –2.5, with 92.8% sensitivity at

50.0% specificity.

Discussion: These results suggest that bidirectional CXR contributes to

improved accuracy of BMD estimation and osteoporosis screening compared

with single-view CXR. This study proposes a new approach for early detection

of osteoporosis using a deep learning model with frontal and lateral CXR

inputs. BMD estimation using bidirectional CXR showed improved detection
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performance for low bone mass and osteoporosis, and has the potential

to be used as a clinical decision criterion. The proposed method shows

potential for more appropriate screening decisions, suggesting its usefulness in

clinical practice.
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bone mineral density, osteoporosis, screening, chest radiograph, artificial intelligence

1 Introduction

Osteoporosis is a systemic bone disease that causes bone
fragility due to loss of bone mass (1). Osteoporosis is the most
significant risk factor for fragility fractures and has a substantial
impact on life prognosis (1–3). Among these, lumbar spine and
femur fractures significantly worsen quality of life (4). In addition,
osteoporosis typically does not cause symptoms until a fracture
occurs (5, 6). Delayed diagnosis of osteoporosis leads to fragility
fractures, with an estimated 37 million fragility fractures occurring
annually in people aged 55 years and older worldwide between 1990
and 2019 (7). Therefore, early detection of osteoporosis before its
progression is essential to prevent fragility fractures (8, 9).

Cost-effective screening is required to reduce the incidence
of fragility fractures caused by osteoporosis (10). Osteoporosis
is examined by measuring bone mineral density (BMD). Dual-
energy X-ray absorptiometry (DXA) is the most accurate method
for measuring BMD and remains the gold standard for screening
osteoporosis (11, 12). Individual BMD measurements are assessed
based on differences and ratios against the young adult mean
(YAM) in skeletally healthy young adults. The T-score is an
assessment index widely used as an international standard, and
is the difference in an individual’s BMD measurement against
the YAM divided by the standard deviation of young adults’
BMD. Corresponding to the World Health Organization (WHO)
diagnostic categories, –2.5 ≥ T-score indicates osteoporosis, and –
1 > T-score > –2.5 indicates low bone mass (13). In some countries,
the relative ratio of an individual’s BMD to YAM is also used; for
example, the diagnostic criteria for osteoporosis and osteopenia in
Japan define osteoporosis as a BMD less than 70% of the YAM (14).
Thus, osteoporosis can be objectively diagnosed based on BMD
measurements. However, the high cost of DXA equipment limits
the availability of medical facilities that can perform DXA, and the
low uptake of DXA measurements poses a challenge for the early
detection of osteoporosis (13).

Effective screening opportunities should be expanded for the
early detection of osteoporosis. It would be useful if BMD could
be obtained from popular medical data other than bone mineral
density testing, the risk of osteoporosis could be assessed, or
medical examinations could be encouraged based on objective data.
Previous studies have shown that the values obtained by analyzing
anatomical features, such as the cortical thickness of the clavicle,
spine, and ribs on radiographs, correlate with BMD and bone mass
(15–17). Furthermore, many recent studies have used deep learning
and other artificial intelligence (AI) methods to analyze medical
images and obtain information for purposes other than the original

use. Previous studies have used deep learning models to estimate
BMD using radiographic images of the lumbar spine and hip joint
as inputs (18, 19) and to identify the presence of osteoporosis
(20, 21), indicating the possibility of identifying osteoporosis with
high accuracy. However, because lumbar and hip radiography are
performed mainly as adjuncts to orthopedic consultations, the
target population for the method of osteoporosis screening using
lumbar and hip radiographs is limited to orthopedic patients. It
has been reported that ≥ 75% of all individuals for whom DXA
testing is recommended do not undergo it (22–27). Thus, it remains
important to promote screening more broadly to target individuals
without orthopedic consultation or those who have not undergone
DXA testing. A method that utilizes medical data obtained at a
high frequency regardless of orthopedic symptoms could effectively
extend osteoporosis screening opportunities.

Chest radiography is performed consistently in primary care
and during health checkups and is the most widely and frequently
performed basic diagnostic imaging technique worldwide. It would
be promising to expand screening without requiring additional
imaging if chest radiographs (CXRs) could be used to accurately

TABLE 1 Summary of data characteristics.

Demographics

Sex, n (%)

Male 2,682 (41.6%)

Female 3,764 (58.4%)

Age,mean [IQR] (years) 60.0 [47, 75]

BMI,mean [IQR] (kg/m2) 20.3 [17.7, 22.2]

Bone mineral density

Lumbar BMD, mean [IQR] (g/cm2) 0.893 [0.770, 1.012]

Femoral BMD, mean [IQR] (g/cm2) 0.616 [0.516, 0.711]

T-score, n (%)

T-score ≥ –1.0 1,373 (21.3%)

–2.5 < T-score < –1.0 2,411 (37.4%)

T-score ≤ –2.5 2,662 (41.3%)

BMD/YAM, n (%)

BMD/YAM ≥ 80% 2,650 (41.1%)

70% < BMD/YAM < 80% 1,373 (21.3%)

BMD/YAM ≤ 70% 2,423 (37.6%)

Age, BMI, lumbar BMD, and femoral BMD are shown as mean [25, 75 percentiles]. n is the
number of applicable data-pairs and not the number of participants. BMI, body mass index;
BMD, bone mineral density; IQR, Interquartile range; YAM, young adult mean.
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FIGURE 1

Sample chest radiographs of one patient used in this study. (A) Frontal chest radiograph, (B) Lateral chest radiograph. The original images were
down-sampled and zero-padded to 1,024 × 1,024 matrixes with the aspect ratio preserved and resized to 299 × 299 as the input size for the
pre-trained model.

FIGURE 2

Diagrams of the model for estimating bone density from chest radiographs. (Left) Single-input model with input of frontal or lateral chest
radiograph. (Right) Dual-input model with inputs of bidirectional chest radiographs. Each encoder block is composed of a pre-trained
Inception-ResNet-V2 network as feature extractor.
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assess the risk (28). Studies investigating approaches to detect
osteoporosis from CXR have been reported, including studies
using deep learning models that directly classified the prevalence
of osteoporosis from CXR (29) and estimated BMD from CXR
with patient information (30, 31). This BMD estimation approach
would be more valuable for flexible use in clinical practice
because BMD estimates could be used to identify osteoporosis
and/or to consider the necessity for DXA testing. Sato et al.
reported the detection of osteopenia with a cutoff T-score of –
1.0, based on estimated BMD, and obtained a sensitivity of 90.14%
(30). Meanwhile, the detection sensitivity for osteoporosis with
a cutoff T-score of –2.5 was relatively low at 77.27%. A study
evaluating the recommendation criteria for osteoporosis screening
described a sensitivity of > 90% as necessary (32); for example,
the National Osteoporosis Foundation guideline criteria in the
United States were evaluated and found to yield a sensitivity of
96.2% and specificity of 17.8% for selecting cases with T-score ≤ –
2.5 in postmenopausal women aged ≥ 45 years (32). Improving
the sensitivity of osteoporosis detection is essential to promote
adequate osteoporosis screening opportunities and to provide
more persuasive recommendations for medical examinations in
recipients undergoing chest radiography.

In primary care and health checkups in many countries, chest
radiography with frontal and lateral bidirectional imaging is often
performed depending on the patient’s symptoms (33). A lateral
CXR can visualize the thoracic region up to the upper lumbar spine,
and the shape of the vertebrae can be observed. Imaging findings
of fragility fractures such as vertebral compression fractures are
also diagnostic criteria for osteoporosis (13), and lateral CXRs are
effective for detecting vertebral fractures (34). Previous studies
using lateral CXR have been reported on osteoporosis screening
using lateral CXR with automatic detection using AI (35). Previous
studies using AI to estimate BMD from medical images tended
to show higher estimation performance when using radiographs
in which the region to be measured by DXA was imaged
than when it was not (36). Therefore, we hypothesized that AI
with input of lateral CXR can estimate BMD effectively, and
that combining frontal and lateral CXR images will improve
the accuracy of AI estimation compared with using only the
frontal image as input.

This study aimed to develop deep learning models to estimate
BMD using only bidirectional CXR as input and to clarify their
performance improvement over models using only frontal CXR as
input, as well as their utility in osteoporosis screening.

2 Materials and methods

2.1 Materials

2.1.1 Data
This study was approved by the institutional review boards

of the participating institutions (approval number: 18973-
230111). The Institutional Review Board determined that formal
informed consent was not required because this study used de-
identified clinical data.

TABLE 2 Prediction results for bone mineral density of the lumbar spine
and femoral neck by deep learning models with three different input type.

R [95% CI] MAPE [95% CI]/%

Lumbar BMD

Frontal 0.709 [0.682–0.707] 11.5 [11.3–11.8]

Lateral 0.732 [0.720–0.743] 11.0 [10.8–11.3]

Bidirectional 0.766 [0.756–0.776] 10.6 [10.4–10.9]

Femoral BMD

Frontal 0.581 [0.565–0.597] 14.7 [14.3–15.1]

Lateral 0.624 [0.609–0.638] 14.7 [14.3–15.0]

Bidirectional 0.683 [0.670–0.696] 13.8 [13.5–14.1]

BMD, bone mineral density; CI, confidence interval; R, Pearson’s correlation coefficient;
MAPE, mean absolute percentage error. Bolded values of R and MAPE represent the best
value for each BMD.

This study included patients aged ≥ 20 years who underwent
bidirectional CXR and BMD measurement using DXA within
1 year at a single medical facility in Japan from April 2010 to
July 2022. This study included DXA examinations performed
at the facility during the study period and corresponding chest
radiographs (frontal and lateral) performed at the facility within
1 year before and after the DXA examination. All the paired
data were incorporated within the inclusion period. Data were
excluded if the CXR lacked parts of the lungs or clavicles and
if the CXR was performed using portable devices. A total of
1,624 cases (520 males, 1,104 females) with 6,446 data pairs
(2,682 males, 3,764 females) of multiple BMD measurements and
bidirectional CXR images met these criteria. The data attributes
are listed in Table 1. A Horizon (Hologic Inc., Marlborough,
MA, United States) was used for BMD measurements. Lumbar
BMD measured in the lumbar vertebral region and femoral
BMD measured in the femoral neck region were targeted.
T-scores and BMD/YAM were calculated based on the mean
BMD values and standard deviations for each sex of young
adults, corresponding to the DXA device used for actual BMD
measurements. According to the WHO (Geneva) criteria, the
participants were classified based on their T-scores into normal
(T-score ≥ –1.0), osteopenia (–1.0 < T-score < –2.5, and
osteoporosis (T-score ≤ –2.5) groups (37). All bidirectional CXRs
used in this study were obtained using frontal and lateral chest
radiography. Figure 1 shows an example of a bidirectional CXR.
Each original CXR image of different sizes was resized while
preserving the aspect ratio and was zero-padded to a 1,024 × 1,024
matrix.

2.1.2 Dataset splitting
A 10-fold cross-validation method was used to create the

datasets; each of the 10 datasets was created by randomly
splitting the participants into training, validation, and
evaluation ratios of 80%, 10%, and 10%, respectively.
In each dataset used for cross validation, there was no
contamination by the same participants between the training,
validation, and evaluation data. The AI outputs for the
ten evaluation datasets were combined, and all data were
used for evaluation.
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FIGURE 3

Estimation results for bone mineral density of the lumbar spine using three different input types. Upper (A,B) Frontal chest radiographs (CXR) input,
Middle (C,D) Lateral CXR input, Bottom (E,F) Bidirectional CXR input. Left (A,C,E) Relationships of measured and estimated values, Right (B,D,F)
Bland–Altman plots. All the models confirmed the agreement between model estimates and dual-energy absorptiometry measurements.
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FIGURE 4

Estimation results for bone mineral density of the femoral neck using three different input types. Upper (A,B) Frontal chest radiographs (CXR) input,
Middle (C,D) Lateral CXR input, Bottom (E,F) Bidirectional CXR input. Left (A,C,E) Relationships of measured and estimated values, Right (B,D,F)
Bland–Altman plots. All the models confirmed the agreement between model estimates and dual-energy absorptiometry measurements.

2.1.3 Experimental environment
The specifications of the experimental computer were

an Intel Core i5-12400 CPU, 16 GB × 2 of RAM, and an
NVIDIA GeForce RTX 3090 GPU with a VRAM of 24 GB.

The experiment was implemented using MATLAB 2023b
(MathWorks, Inc.) on Windows 11 (Microsoft, Inc.). All image
processing and deep learning network computations were
performed using MATLAB.
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TABLE 3 Summary of statistics in Bland–Altman analysis.

Limits of agreement

Mean difference [95% CI] (g/cm2) Range (g/cm2) Agreement/%

Lumbar BMD

Frontal –0.0011 [–0.0079 to –0.0016] –0.262 to 0.250 96.1

Lateral 0.0009 [–0.0021 to 0.0040] –0.245 to 0.247 95.6

Bidirectional 0.0106 [0.0077 to 0.0135] –0.221 to 0.242 95.5

Femoral BMD

Frontal 0.0017 [–0.0014 to 0.0048] –0.247 to 0.250 97.2

Lateral –0.0033 [–0.0061 to –0.0005] –0.226 to 0.220 95.6

Bidirectional 0.0052 [0.0026 to 0.0078] –0.202 to 0.212 95.7

CI, confidence interval; BMD, bone mineral density.

TABLE 4 Detection results with predicted values by different models for osteoporosis and osteopenia based on T-score of measured bone
mineral density.

Accuracy Sensitivity Specificity PPV NPV AUROC/%

BMD T-score < –1.0

Frontal 79.5 89.1 43.8 85.4 52.1 79.4%

Lateral 78.9 90.3 36.9 84.1 50.7 79.0%

Bidirectional 80.6 90.0 46.0 86.0 55.4 81.5%

BMD T-score ≤ –2.5

Frontal 74.5 64.7 81.4 71.0 76.6 82.3%

Lateral 72.6 62.1 79.9 68.5 75.0 80.7%

Bidirectional 76.5 63.4 85.6 75.6 76.9 84.2%

Accuracy, Sensitivity, Specificity, PPV, NPV, and AUROC are shown as percentage values. BMD, bone mineral density; PPV, positive predictive value; NPV, negative predictive value; AUROC,
area under the receiver operating characteristic curve. Bolded values represent the best in each BMD T-score category.

2.2 Methods

2.2.1 Experiments
The Inception-ResNet-V2 model (38) was used as the feature

extractor. The model data were acquired from the public MATLAB
add-on library (39). The model data were used as a pretrained
network obtained from a classification task using ImageNet (40).
The classifier in the base model was replaced by a single fully
connected layer, with a single output class as the regression layer.
The models used in the experiments were a single-input model,
which used one direction of the CXR as the input, and a dual-
input model, which used a bidirectional CXR as the input. Figure 2
shows a structural diagram of the models. Using the single-input
model, training was conducted to estimate the BMD using the
CXR frontal or lateral views as the input. The dual-input model
was implemented using two single-input models trained on frontal
and lateral CXR. The trained feature extractors of the single-input
models were connected in parallel to the fully connected layer. The
dual-input model was trained to estimate the BMD using paired
frontal and lateral CXRs inputs. The training conditions were
as follows: optimization method Adam, loss function root mean
square error, learning rate 1 × 10−3, 3 × 10−4, 1 × 10−4, 3 × 10−5,
1 × 10−5 (variable), batch size 32, maximum number of epochs
100, and image data augmentation with ± 5◦ rotation, horizontal
flipping, and ± 5% scaling. The learning rate was selected to obtain
the lowest loss-function value for each model. The input images

were resized to the input size of the pretrained model (299 × 299
pixels) during image data augmentation and then used as the
model input. The training dataset was used to update the network
weights and the validation dataset was used to display the model
performance at each epoch. Training was stopped early when the
loss value for the validation dataset at the end of each epoch did
not update the minimum for 10 consecutive epochs. The weights at
the epoch with the smallest loss function output on the validation
dataset were saved, thereby completing the training. Model training
was conducted separately for each target to be estimated as the
lumbar and femoral BMD.

2.2.2 Evaluation
The trained model was used to input chest X-ray images

from the evaluation dataset and output BMD estimates. The
Pearson’s correlation coefficient (R) and mean absolute percentage
error (MAPE) between the reference measured values and model
estimates were used as the evaluation metrics. A 95% confidence
interval (CI) of the correlation coefficient was obtained using
Fisher’s z-transform. A Bland–Altman analysis was performed
using the mean values of the reference measured values and model
estimates and the differences between the estimates and measured
values. If the following conditions were met, the estimated values
and measured values were considered equivalent: (1) The 95% CI
of the mean difference between the estimated and measured values
included ± 0.01 g/cm2, and (2) more than 95% of the evaluation
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FIGURE 5

Receiver operating characteristic curves for detecting bone loss and osteoporosis based on bone mineral density (BMD) T-score using predicted
bone mineral density. (A) Detection performance for cases with measured T-score < –1.0 and (B) ≤ –2.5. The bidirectional chest radiographs (CXR)
input model performed better than the single-view models, particularly for detecting cases with a T-score ≤ –2.5.

TABLE 5 Detection results with predicted values by different models for osteoporosis and osteopenia based on the ratio of measured bone mineral
density to the young adult mean.

Accuracy Sensitivity Specificity PPV NPV AUROC/%

BMD/YAM < 80% %

Frontal 69.4 75.3 61.0 73.5 63.3 77.2%

Lateral 71.0 79.1 59.5 73.6 66.5 78.0%

Bidirectional 71.6 75.2 66.3 76.2 65.1 79.7%

BMD/YAM ≤ 70%

Frontal 76.2 61.5 85.0 71.2 78.6 83.4%

Lateral 74.9 58.7 84.6 69.6 77.3 82.0%

Bidirectional 77.8 60.8 88.0 75.4 78.9 85.6%

Accuracy, Sensitivity, Specificity, PPV, NPV, and AUROC are shown as percentage values. PPV, positive predictive value; NPV, negative predictive value; AUROC, area under the receiver
operating characteristic curve; BMD, bone mineral density; YAM, the young adult mean. Bolded values represent the best in each BMD/YAM category.

data were included within the limits of agreement (LOA) of mean
± 1.96 SD (41).

The predicted T-score and BMD/YAM ratio were calculated
using the predicted BMD and actual YAM according to sex. Based
on the WHO guidelines, osteoporosis (measured T-score ≤ –
2.5) and osteopenia (measured T-score < –1.0) were detected
from the calculated predicted T-scores. Additionally, the detection
performance for osteoporosis and osteopenia was evaluated.
Furthermore, based on Japanese guidelines (13), measured
BMD/YAM ≤ 70% (osteoporosis) and < 80% (low bone mass) were
detected from the predicted BMD/YAM. The evaluation metrics
included sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), and the area under the receiver
operating characteristic curve (AUROC).

3 Results

The results of the BMD estimation for each model with
different inputs are presented in Table 2. The model with

bidirectional CXR inputs showed superior correlation coefficients
to models with only frontal or lateral image inputs: R = 0.766 (95%
CI 0.756–0.776) and 0.683 (95% CI 0.670–0.696) for lumbar and
femoral BMD estimation, respectively.

The lumbar BMD estimation results for each input image type
relative to the DXA measurements are shown in Figure 3 and
the femoral BMD estimation results are shown in Figure 4. The
statistics for the Bland–Altman analysis are shown in Table 3.
In the Bland–Altman analysis based on lumbar BMD estimates
by the three models and actual measurements by DXA, the 95%
CIs for the mean of the differences between the estimates and
measurements overlapped with the reference range, indicating no
fixed errors. The percentage of data within the LOA was greater
than 95% for all three models. These results confirm the agreement
between the lumbar BMD estimates and measured values in the
three models with different input types. Bland–Altman analysis
for femoral BMD estimation showed that the 95% CIs of the
mean differences between the model estimates and the DXA
measurements overlapped with the reference range, indicating no
fixed errors. The percentage of data within the LOA was greater

Frontiers in Medicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2025.1499670
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1499670 March 22, 2025 Time: 14:15 # 9

Yoshida et al. 10.3389/fmed.2025.1499670

FIGURE 6

Receiver operating characteristic curves for detecting bone loss and osteoporosis based on the ratio of individual bone mineral density to the young
adult mean (BMD/YAM) using predicted bone mineral density. (A) Detection performance for cases with measured BMD/YAM < 80% and (B) ≤ 70%.
The bidirectional chest radiographs (CXR) input model performed better than the single-view models, particularly for detecting cases with
BMD/YAM ≤ 70%.

TABLE 6 Sensitivities of the models with different inputs in detecting
risk groups for osteoporosis based on measured BMD, with variable
cutoffs based on model estimates and tuned specificity.

Sensitivity/%

With 40%
specificity

With 50%
specificity

BMD T-score ≤ –2.5

Frontal 93.5 88.8

Lateral 92.4 89.1

Bidirectional 94.5 91.3

BMD T-score < –1.0

Frontal 90.1 86.1

Lateral 89.7 85.3

Bidirectional 92.0 88.4

BMD/YAM ≤ 70%

Frontal 94.9 90.7

Lateral 93.7 91.0

Bidirectional 95.8 92.8

Bolded values represent sensitivity above 90%, Underlined values are the highest values for
the three input types. BMD, bone mineral density; YAM, the young adult mean.

than 95% for all three models. These results confirm the agreement
between the femoral BMD estimates and actual measurements for
the three models with different input types.

Table 4 shows the detection performance for low bone mass
and osteoporosis using the estimated T-score obtained by the
models with different inputs. The model with the bidirectional
CXR input yielded the highest values for all other indicators,
except for sensitivity. In the model with bidirectional CXR inputs,
the detection performance for T-score < –1.0 and T-score ≤ –
2.5 were 90.0% and 63.4% for sensitivity, 46.0% and 85.6% for
specificity, and 81.5% and 84.2% for AUROC, respectively. The

model with bidirectional CXR inputs improved specificity and
AUROC by approximately 2.2% and 2.1% for T-score < –1.0
and 4.2% and 1.9% for T-score ≤ –2.5, respectively, compared
with the model with frontal CXR input. Figure 5 shows the ROC
curves for detecting low bone mass (measured T-score < –1.0) and
osteoporosis (measured T-score ≤ –2.5) using predicted T-scores.
For osteoporosis detection, the model with bidirectional CXRs
showed better performance than those with only frontal or lateral
CXRs.

Table 5 shows the detection performance for low bone mass
and osteoporosis based on the estimated BMD/YAM derived from
the models with different inputs. The model with bidirectional
CXR yielded the highest values for almost all indices except
for sensitivity. The model with bidirectional CXR improved the
specificity and AUROC for detecting osteopenia with a BMD/YAM
cutoff of 80% by 5.3% and 2.5%, respectively, and for detecting
osteoporosis with a BMD/YAM cutoff of 70% by 3.0% and 2.2%,
respectively, compared with the model with only frontal CXR
input. Figure 6 shows the ROC curves for the detection of low
bone mass and osteoporosis using the predicted BMD/YAM ratios.
The model with bidirectional CXR showed higher performance
for osteoporosis detection than those with only frontal or lateral
images.

4 Discussion

The results of this study suggest that ensemble learning models
with frontal and lateral CXR inputs yield a higher BMD estimation
accuracy than models with single-view CXR inputs. To the best of
our knowledge, this is the first study to develop a deep learning
model to estimate BMD using only lateral and frontal CXR images.
The results of the ensemble model with bidirectional CXR inputs
indicated higher accuracy of osteoporosis screening in clinical
practice. Furthermore, our findings add value to the previous
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studies on BMD estimation using chest radiographs as an input.
The lateral CXR images contained information related to BMD,
and the effectiveness of the lateral CXR images for estimating BMD
using AI was demonstrated.

The results of lumbar spine BMD estimation using bidirectional
CXR (frontal and lateral) showed a strong positive correlation
of R = 0.766 with the actual DXA measurements, indicating
the feasibility of obtaining a stronger correlation than that
obtained in previous studies. Among previous studies on BMD
estimation using chest radiographs, Sato et al. reported the highest
estimation performance (30). Using CXR frontal images and
patient information (age and sex) as model inputs, they obtained
R = 0.68 for lumbar BMD estimation and R = 0.75 for femoral
BMD estimation. Meanwhile, the estimation of femoral BMD using
bidirectional CXRs in this study showed a moderate correlation of
R = 0.683, which was relatively weak. The average of 5,157 training
data points in the 10-fold cross-validation in this study was about
58.8% less than the 12,529 training data points used by Sato et al.
Generally, the performance of deep learning models increases with
the number of training data points. Our model with bidirectional
CXR inputs has the potential to achieve even higher estimation
performance with greater amounts of training data.

The developed dual-input model with bidirectional CXR inputs
is more effective than the single-input model in terms of application
to osteoporosis screening. The estimates from the model with
bidirectional CXR inputs in this study identified the presence of
a measured T-score of < –1.0, with 90% sensitivity and 46%
specificity, and a cutoff predicted T-score of –1.0. Regarding triage
screening for osteoporosis, a sensitivity of > 90% and a specificity
of approximately 40%–60% or higher are considered acceptable
clinical decision criteria (32), and our results with a fixed cutoff
fulfilled these criteria for the identification of a T-score < –1.0.
Furthermore, suppose that the cut-off of the predicted T-score
based on the model output is tuned according to this criterion.
In such cases, it can provide even higher sensitivity for the
detection of osteoporosis. For the detection task for cases with
T-score ≤ –2.5, the cutoff of predicted BMD was modified to 40%
and 50% specificity. Table 6 lists the sensitivities of the models
with different input information when the specificity was tuned.
The model with bidirectional CXR inputs showed a sensitivity
of 94.5% at a specificity of 40% and a sensitivity of 91.3% at
a specificity of 50% for detecting a measured T-score ≤ –2.5.
Thus, the developed model may be helpful for screening for
osteoporosis and low bone mass. The sensitivity of the model
with bidirectional CXR as input at 50% specificity was 91.3% for
T-score ≤ –2.5, which was + 2.5% higher than that of the model
with frontal CXR as input. The model with only frontal CXR
showed a sensitivity of 88.8%, which was less than acceptable for
the clinical decision criteria. These results indicate the usefulness
of deep learning methods using bidirectional CXR for osteoporosis
screening.

The results of the estimates from the bidirectional CXR
model showed the feasibility of effective screening for osteoporosis
and osteopenia based on the T-score and BMD/YAM criteria.
A T-score ≤ –2.5 is a current global diagnostic criterion for
osteoporosis. However, other criteria have been used to diagnose
osteoporosis in other regions. For example, the Japanese criteria are
based on BMD/YAM (37). Future diagnostic criteria may change
based on the medical conditions. In addition, the management

of osteoporosis risk groups is essential. Therefore, it is important
to provide a robust detection performance for diagnoses based
on various cutoff values. As shown in Table 6, the results of
this study with bidirectional CXRs met the sensitivity > 90%
and specificity > 40% levels for multiple cutoffs of T-score ≤ –
2.5, T-score < –1.0, and BMD/YAM ≤ 70%. Thus, BMD
prediction using bidirectional CXRs can provide robust screening
performance for osteoporosis and its risk groups based on multiple
cut-off values.

This study used only CXR images as model input to estimate
BMD and did not use patient information such as age, sex,
or clinical covariates. Previous studies estimating BMD from
CXR used a model with frontal CXR and patient information
(30, 31), although it was not clarified to what extent the
AI model performance was affected by the input of patient
information. The reason patient information was not input in
this study was to eliminate the influence of the input of patient
information on the estimation results since the purpose was
to clarify the differences in performance depending on the
input of CXR imaging direction and number of inputs. Another
study reported that the use of patient information such as age,
sex, and body mass index improved model performance (42).
In future studies, our model may improve the accuracy of
osteoporosis screening in primary care and health check-ups by
inputting patient information and clinical covariates. This study
aimed to propose an expansion of opportunity for osteoporosis
screening by estimating BMD from chest radiographs, which
are frequently obtained in primary care. Regarding opportunistic
screening using chest radiographs, studies have reported on the
estimation of pulmonary function (43–45) and the prediction
of cardiovascular events (46) using deep learning models. These
studies have proposed the secondary use of chest radiographs
acquired for other purposes to incidentally detect the risk of
lifestyle-related diseases. This study could be applied concurrently
with these approaches to provide an opportunity to intervene
before disease progression.

This study had two limitations. Firstly, this study used data
obtained from a single facility to train and evaluate the model,
which may have been affected by the regional characteristics. To
validate the generalizability of this study’s findings, it is important
to evaluate their performance using data collected from different
facilities and/or racial groups. Secondly, the diagnostic results
of chest radiography were not considered. The results of this
study could potentially have been influenced by imaging findings;
however, their influence is unclear.

5 Conclusion

This study developed a deep learning model to estimate
BMD using frontal and lateral CXRs and demonstrated the utility
of the model for osteoporosis screening based on the model
estimates. The model with bidirectional CXR inputs showed higher
BMD estimation performance than the model with a single CXR
input. This suggests the usefulness of a BMD estimation model
using bidirectional CXR inputs for screening for osteoporosis
and low bone mass.
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5. Sözen T, Özı şık L, Başaran NÇ. An overview and management of osteoporosis.
Eur J Rheumatol. (2017) 4:46–56. doi: 10.5152/eurjrheum.2016.048

6. Johnston C, Dagar M. Osteoporosis in older adults. Med Clin North Am. (2020)
104:873–84. doi: 10.1016/j.mcna.2020.06.004

7. GBD 2019 Fracture Collaborators. Global, regional, and national burden of bone
fractures in 204 countries and territories, 1990–2019: A systematic analysis from the
global burden of disease study 2019. Lancet Healthy Longev. (2021) 2:e580–92. doi:
10.1016/S2666-7568(21)00172-0

8. Odén A, McCloskey E, Johansson H, Kanis J. Assessing the impact of osteoporosis
on the burden of hip fractures. Calcif Tissue Int. (2013) 92:42–9. doi: 10.1007/s00223-
012-9666-6

9. Mitchell P. Fracture liaison services: The UK experience. Osteoporos Int. (2011)
22:487–94. doi: 10.1007/s00198-011-1702-2

10. Rachner T, Khosla S, Hofbauer L. Osteoporosis: Now and the future. Lancet.
(2011) 377:1276–87. doi: 10.1016/S0140-6736(10)62349-5

11. US Preventive Services Task Force. Screening for osteoporosis to prevent
fractures: US preventive services task force recommendation statement. JAMA. (2025)
6:498–508. doi: 10.1001/jama.2024.27154

12. Kahwati L, Kistler C, Booth G, Sathe N, Gordon R, Okah E, et al. Screening for
osteoporosis to prevent fractures: A systematic evidence review for the US preventive
services task force. JAMA. (2025) 6:509–31. doi: 10.1001/jama.2024.21653.13

13. World Health Organization. WHO Criteria for Diagnosis of Osteoporosis.
4BoneHealth. Geneva: WHO (2023).

14. Soen S, Fukunaga M, Sugimoto T, Sone T, Fujiwara S, Endo N, et al. Diagnostic
criteria for primary osteoporosis: Year 2012 revision. J Bone Miner Metab. (2013)
31:247–57. doi: 10.1007/s00774-013-0447-8

15. Kumar D, Anburajan M. The role of hip and chest radiographs in osteoporotic
evaluation among the south Indian women population: A comparative scenario with
DXA. J Endocrinol Invest. (2014) 37:429–40. doi: 10.1007/s40618-014-0074-9

16. Chen H, Zhou X, Fujita H, Onozuka M, Kubo K. Age-related changes in
trabecular and cortical bone microstructure. Int J Endocrinol. (2013) 2013:213234.
doi: 10.1155/2013/213234

17. Holcombe S, Hwang E, Derstine B, Wang S. Measurement of rib cortical bone
thickness and cross-section using CT. Med. Image Anal Elsevier B.V. (2018) 49:27–34.

Frontiers in Medicine 11 frontiersin.org

https://doi.org/10.3389/fmed.2025.1499670
http://www.editage.jp
https://doi.org/10.1016/S0140-6736(18)32112-3
https://doi.org/10.1111/j.1532-5415.2000.tb02641.x.3
https://doi.org/10.1111/j.1532-5415.2000.tb02641.x.3
https://doi.org/10.1359/jbmr.070412
https://doi.org/10.1016/j.jocd.2015.08.004
https://doi.org/10.5152/eurjrheum.2016.048
https://doi.org/10.1016/j.mcna.2020.06.004
https://doi.org/10.1016/S2666-7568(21)00172-0
https://doi.org/10.1016/S2666-7568(21)00172-0
https://doi.org/10.1007/s00223-012-9666-6
https://doi.org/10.1007/s00223-012-9666-6
https://doi.org/10.1007/s00198-011-1702-2
https://doi.org/10.1016/S0140-6736(10)62349-5
https://doi.org/10.1001/jama.2024.27154
https://doi.org/10.1001/jama.2024.21653.13
https://doi.org/10.1007/s00774-013-0447-8
https://doi.org/10.1007/s40618-014-0074-9
https://doi.org/10.1155/2013/213234
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1499670 March 22, 2025 Time: 14:15 # 12

Yoshida et al. 10.3389/fmed.2025.1499670

18. Yamamoto N, Sukegawa S, Kitamura A, Goto R, Noda T, Nakano K, et al.
Deep learning for osteoporosis classification using hip radiographs and patient clinical
covariates. Biomolecules. (2020) 10:1534. doi: 10.3390/biom10111534

19. Zhang B, Yu K, Ning Z, Wang K, Dong Y, Liu X, et al. Deep learning of lumbar
spine X-ray for osteopenia and osteoporosis screening: A multicenter retrospective
cohort study. Bone. (2020) 140:115561. doi: 10.1016/j.bone.2020.115561

20. Nguyen T, Chae D, Park S, Yoon JA. Novel approach for evaluating bone
mineral density of hips based on a sobel gradient-based map of radiographs utilizing a
convolutional neural network. Comput. Biol. Med. Elsevier Ltd. (2021) 132:104298.

21. Hsieh C, Zheng K, Lin C, Mei L, Lu L, Li W, et al. Automated bone mineral
density prediction and fracture risk assessment using plain radiographs via deep
learning. Nat Commun. (2021) 12:5472. doi: 10.1038/s41467-021-25779-x

22. Chang E, Nickel B, Binkley N, Bernatz J, Krueger D, Winzenried A, et al.
A novel osteoporosis screening protocol to identify orthopedic surgery patients
for preoperative bone health optimization. Geriatr Orthop Surg Rehabil. (2022)
6:21514593221116413. doi: 10.1177/21514593221116413

23. Bernatz J, Brooks A, Squire M, et al. Osteoporosis is common and undertreated
prior to total joint arthroplasty. J Arthroplasty. (2019) 34:1347–53. doi: 10.1016/j.arth.
2019.03.044

24. Yagi M, King A, Boachie-Adjei O. Characterization of osteopenia/osteoporosisin
adult scoliosis: Does bone density affect surgical outcome? Spine. (2011) 36:1652–7.
doi: 10.1097/BRS.0b013e31820110b4

25. Wagner S, Formby P, Helgeson M, Kang D. Diagnosing the undiagnosed
osteoporosis in patients undergoing lumbar fusion. Spine. (2016) 41:E1279–83. doi:
10.1097/BRS.0000000000001612

26. Bjerke B, Zarrabian M, Aleem I, et al. Incidence of osteoporosis-related
complications following posterior lumbar fusion. Global Spine J. (2018) 8:563–9. doi:
10.1177/2192568217743727

27. Chandran M, Ebeling P, Mitchell P, Nguyen T. Executive committee of the Asia
Pacific consortium on osteoporosis. harmonization of osteoporosis guidelines: Paving
the way for disrupting the status quo in osteoporosis management in the Asia Pacific. J
Bone Miner Res. (2022) 37:608–15. doi: 10.1002/jbmr.4544

28. Yamamoto N, Shiroshita A, Kimura R, Kamo T, Ogihara H, Tsuge T. Diagnostic
accuracy of chest X-ray and CT using artificial intelligence for osteoporosis: Systematic
review and meta-analysis. J BoneMiner Metab. (2024) 42:483–91. doi: 10.1007/s00774-
024-01532-4

29. Jang M, Kim M, Bae S, Lee S, Koh J, Kim N. Opportunistic osteoporosis
screening using chest radiographs with deep learning: Development and external
validation with a cohort dataset. J BoneMiner Res. (2022) 37:369–77. doi: 10.1002/jbmr.
4477

30. Sato Y, Yamamoto N, Inagaki N, Iesaki Y, Asamoto T, Suzuki T, et al.
Deep learning for bone mineral density and T-score prediction from chest X-rays:
A multicenter study. Biomedicines. (2022) 10:2323. doi: 10.3390/biomedicines100
92323

31. Asamoto T, Takegami Y, Sato Y, Takahara S, Yamamoto N, Inagaki N, et al.
External validation of a deep learning model for predicting bone mineral density
on chest radiographs. Arch Osteoporos. (2024) 19:15. doi: 10.1007/s11657-024-
01372-9

32. Cadarette S, Jaglal S, Murray T, McIsaac W, Joseph L, Brown J, et al.
Evaluation of decision rules for referring women for bone densitometry by
dual-energy x-ray absorptiometry. JAMA. (2001) 286:57–63. doi: 10.1001/jama.
286.1.57

33. Broder J. Diagnostic Imaging for the Emergency Physician, Chapter 5 - Imaging
the Chest: The Chest Radiograph. Amsterdam: Elsevier Health Sciences (2011).

34. Li Y, Yan L, Cai S, et al. The prevalence and under-diagnosis of vertebral fractures
on chest radiograph. BMC Musculoskelet Disord. (2018) 19:235. doi: 10.1186/s12891-
018-2171-y

35. Kasai S, Li F, Shiraishi J, Li Q, Doi K. Computerized detection of vertebral
compression fractures on lateral chest radiographs: Preliminary results with a tool
for early detection of osteoporosis. Med Phys. (2006) 33:4664–74. doi: 10.1118/1.236
4053

36. He Y, Lin J, Zhu S, Zhu J, Xu Z. Deep learning in the radiologic diagnosis of
osteoporosis: A literature review. J Int Med Res. (2024) 52:3000605241244754. doi:
10.1177/03000605241244754

37. Dimai H. Use of dual-energy x-ray absorptiometry (DXA) for diagnosis and
fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases. Bone.
(2017) 104:39–43. doi: 10.1016/j.bone.2016.12.016

38. Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, Inception-ResNet and
the impact of residual connections on learning. AAAI. (2017) 31:12. doi: 10.1609/aaai.
v31i1.11231

39. MathWorks. MATLAB Inceptionresnetv2. (2024). Available online at: https://
www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html (accessed July 5,
2024).

40. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet
large scale visual recognition challenge. Int J Comput Vis. (2015) 115:211–52. doi:
10.1007/s11263-015-0816-y

41. Bland J, Altman D. Statistical methods for assessing agreement between two
methods of clinical measurement. Lancet. (1986) 1:307–10. doi: 10.1016/j.ijnurstu.
2009.10.001

42. Yamamoto N, Sukegawa S, Yamashita K, Manabe M, Nakano K, Takabatake K,
et al. Effects of patient clinical variables in osteoporosis classification using hip X-rays
in deep learning analysis. Medicina. (2021) 57:846. doi: 10.3390/medicina57080846

43. Schroeder J, Bigolin L, Li T, Chan J, Vachet C, Paine I, et al. Prediction
of obstructive lung disease from chest radiographs via deep learning trained on
pulmonary function data. Int J Chron Obstruct Pulmon Dis. (2021) 15:3455–66. doi:
10.2147/COPD.S279850

44. Yoshida A, Kai C, Futamura H, Oochi K, Kondo S, Sato I, et al. Spirometry test
values can be estimated from a single chest radiograph. Front Med. (2024) 11:1335958.
doi: 10.3389/fmed.2024.1335958

45. Ueda D, Matsumoto T, Yamamoto A, Walston S, Mitsuyama Y, Takita H, et al. A
deep learning-based model to estimate pulmonary function from chest x-rays: Multi-
institutional model development and validation study in Japan. Lancet Digit Health.
(2024) 8:e580–8. doi: 10.1016/S2589-7500(24)00113-4

46. Kusunose K, Hirata Y, Yamaguchi N, Kosaka Y, Tsuji T, Kotoku J, et al. Deep
learning approach for analyzing chest x-rays to predict cardiac events in heart failure.
Front Cardiovasc Med. (2023) 10:1081628. doi: 10.3389/fcvm.2023.1081628

Frontiers in Medicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2025.1499670
https://doi.org/10.3390/biom10111534
https://doi.org/10.1016/j.bone.2020.115561
https://doi.org/10.1038/s41467-021-25779-x
https://doi.org/10.1177/21514593221116413
https://doi.org/10.1016/j.arth.2019.03.044
https://doi.org/10.1016/j.arth.2019.03.044
https://doi.org/10.1097/BRS.0b013e31820110b4
https://doi.org/10.1097/BRS.0000000000001612
https://doi.org/10.1097/BRS.0000000000001612
https://doi.org/10.1177/2192568217743727
https://doi.org/10.1177/2192568217743727
https://doi.org/10.1002/jbmr.4544
https://doi.org/10.1007/s00774-024-01532-4
https://doi.org/10.1007/s00774-024-01532-4
https://doi.org/10.1002/jbmr.4477
https://doi.org/10.1002/jbmr.4477
https://doi.org/10.3390/biomedicines10092323
https://doi.org/10.3390/biomedicines10092323
https://doi.org/10.1007/s11657-024-01372-9
https://doi.org/10.1007/s11657-024-01372-9
https://doi.org/10.1001/jama.286.1.57
https://doi.org/10.1001/jama.286.1.57
https://doi.org/10.1186/s12891-018-2171-y
https://doi.org/10.1186/s12891-018-2171-y
https://doi.org/10.1118/1.2364053
https://doi.org/10.1118/1.2364053
https://doi.org/10.1177/03000605241244754
https://doi.org/10.1177/03000605241244754
https://doi.org/10.1016/j.bone.2016.12.016
https://doi.org/10.1609/aaai.v31i1.11231
https://doi.org/10.1609/aaai.v31i1.11231
https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html
https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1016/j.ijnurstu.2009.10.001
https://doi.org/10.1016/j.ijnurstu.2009.10.001
https://doi.org/10.3390/medicina57080846
https://doi.org/10.2147/COPD.S279850
https://doi.org/10.2147/COPD.S279850
https://doi.org/10.3389/fmed.2024.1335958
https://doi.org/10.1016/S2589-7500(24)00113-4
https://doi.org/10.3389/fcvm.2023.1081628
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

	Utility of osteoporosis screening based on estimation of bone mineral density using bidirectional chest radiographs with deep learning models
	1 Introduction
	2 Materials and methods
	2.1 Materials
	2.1.1 Data
	2.1.2 Dataset splitting
	2.1.3 Experimental environment

	2.2 Methods
	2.2.1 Experiments
	2.2.2 Evaluation


	3 Results
	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References




