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Background: The prognostic prediction of patients with hypercapnic respiratory

failure holds significant clinical value. The objective of this study was to

develop and validate a predictive model for predicting survival in patients with

hypercapnic respiratory failure.

Methods: The study enrolled a total of 697 patients with hypercapnic respiratory

failure, including 565 patients from the First People’s Hospital of Yancheng in the

modeling group and 132 patients from the People’s Hospital of Jiangsu Province

in the external validation group. The three selected models were random survival

forest (RSF), DeepSurv, a deep learning-based survival prediction algorithm,

and Cox Proportional Risk (CoxPH). The model’s predictive performance was

evaluated using the C-index and Brier score. Receiver operating characteristic

curve (ROC), area under ROC curve (AUC), and decision curve analysis (DCA)

were employed to assess the accuracy of predicting the prognosis for survival at

6, 12, 18, and 24 months.

Results: The RSF model (c-index: 0.792) demonstrated superior predictive ability

for the prognosis of patients with hypercapnic respiratory failure compared to

both the traditional CoxPH model (c-index: 0.699) and DeepSurv model (c-

index: 0.618), which was further validated on external datasets. The Brier Score

of the RSF model demonstrated superior performance, consistently measuring

below 0.25 at the 6-month, 12-month, 18-month, and 24-month intervals. The

ROC curve confirmed the superior discrimination of the RSF model, while DCA

demonstrated its optimal clinical net benefit in both the modeling group and the

external validation group.

Conclusion: The RSF model offered distinct advantages over the CoxPH and

DeepSurv models in terms of clinical evaluation and monitoring of patients with

hypercapnic respiratory failure.
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Introduction

Hypercapnic respiratory failure (HRF) is typically defined
as the presence of elevated arterial carbon dioxide levels
(pCO2 > 45 mmHg), often accompanied by hypoxemia
(pO2 < 60 mmHg) (1, 2). HRF is commonly associated with
respiratory diseases, including chronic obstructive pulmonary
disease (COPD), obstructive sleep apnea syndrome/hypopnea
syndrome (OSASH), and congestive heart failure (CHF) (3, 4).
Each of these ailments can contribute to impaired failure, resulting
in a significant number of patients experiencing “multifactorial”
HRF. The potential causes of HRF are not readily apparent upon
initial assessment, and there may even be concurrent multiple
etiologies requiring targeted treatment. Some researchers still
regard HRF as a singular yet heterogeneous disease (5).

HRF is prevalent in clinical settings, with the majority of
patients necessitating hospitalization, thereby incurring substantial
healthcare expenditures (6). Furthermore, HRF is associated with
adverse clinical outcomes, and the onset of HRF is predictive of
shortened survival time. Specifically, the 1-year, 3-year, and 5-
year survival rates were 81, 59, and 45%, respectively, indicating
a significantly elevated mortality risk (approximately tenfold)
compared to individuals of similar age without this condition (4).
Therefore, the factors influencing the outcomes of HRF patients
warrant careful consideration.

Currently, there is a paucity of research on the prevalence
and prognosis of HRF as an individual entity. Despite excluding
underlying diseases and comorbidities, the available study remains
relatively limited in scope and fails to address the prediction
of mortality risk (7–9). There is currently no existing clinical
model available to assess the prognostic survival risk of an
individual with HRF.

To more effectively address these issues, numerous experts and
clinicians have devoted themselves to ascertain prognostic models
for respiratory failure (10, 11). The current prevailing models used
for event timing prediction include Cox proportional risk models
(commonly known as Cox regression), random survival forests,
and DeepSurv (nonlinear versions of Cox regression utilizing deep
learning techniques) (12).

However, the limitations of traditional survival prediction
tools are primarily manifested in their inadequate handling
of nonlinear relationships and complex interactions, limited
adaptability to high-dimensional data, challenges in addressing
data heterogeneity and missing values, insufficient individualized
predictive capabilities, and limited explanatory power (13).
Machine learning approaches, such as random survival forests
(RSF), effectively address these challenges by leveraging advanced
nonlinear modeling, high-dimensional data processing, robust
training mechanisms, and interpretable tools. These capabilities
offer more flexible and efficient solutions for precision medicine
and personalized therapy, thereby demonstrating significant
potential in complex clinical settings (14, 15).

Therefore, assessing algorithm accuracy and comparing
performance across different prediction algorithms was a crucial
aspect of our study due to the intricacy of the data and
algorithms involved.

The objective of this study is to comprehensively gather
pertinent information on influential factors in hospitalized patients

with HRF, conduct a comparative analysis and selection of three
predictive models for survival and prognosis, and assess the clinical
significance of variables in prediction, thereby providing a practical
prognostic prediction tool for managing patients with HRF.

Materials and methods

Data sources

The training set comprised a total of 565 patients diagnosed
with hypercapnic respiratory failure who were admitted to the First
People’s Hospital of Yancheng from October 2020 to September
2021. The external validation dataset consisted of 132 patients
with hypercapnic respiratory failure hospitalized at the People’s
Hospital of Jiangsu Province between October 2021 and December
2021. The primary objective of this data partitioning was to assess
the model’s generalizability across different institutions, patient
populations, and time periods. The training dataset included a
relatively large number of patients primarily sourced from a
regional hospital, while the external validation dataset originated
from a higher-level medical institution, thereby simulating the
diversity of real-world application scenarios. Although the current
datasets are derived from two hospitals, we have selected data
from different levels of care and across continuous time periods,
which enhances the robustness of the model’s generalization. To
demonstrate consistent performance across diverse datasets, we
also evaluated the model’s generalizability.

The criteria for research patients with HRF were as follows:
Arterial oxygen partial pressure (PaO2) was less than 8.0 kPa
(60 mmHg) and arterial carbon dioxide partial pressure (PaCO2)
was greater than 6.0 kPa (45 mmHg) based on blood gas
analysis (16).

Patients who had incomplete clinical data, were under the
age of 18, experienced death during hospitalization, suffered
from trauma or malignancy (including hematological malignancy),
or were pregnant were excluded from the study. Following
a comprehensive understanding and explanation of the study
procedure, all participants provided written informed consent.

Research variable

The following clinical data were collected within 24 h
of admission: demographic information, clinical manifestations,
comorbidities, various scoring systems upon admission, laboratory
test results, etc. The follow-up indicators involved monitoring the
post-discharge survival time of patients diagnosed with HRF for a
period of 2 years. The patient’s tracking process was conducted by
telephone interviews and the further verification of their condition
was used by the hospital system.

The current project follows the principles of the Declaration
of Helsinki. The study was approved by the ethics committees
of the First People’s Hospital of Yancheng (No. 2020-K062) and
the People’s Hospital of Jiangsu Province (No. 2021-SR-346). The
participants at both hospitals were required to provide informed
written consent in order to participate in the clinical study.
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FIGURE 1

Flow chart of this study.

Model construction and validation

The modeling data was utilized for model construction and
validation, while the external validation data was employed for
subsequent model verification. The flowchart of this experiment for
a multi-center prospective cohort study was depicted in Figure 1.
Firstly, variable screening was performed using LASSO regression
(Least Absolute Shrinkage and Selection Operator), followed by
the construction of a multivariate CoxPH model based on the
selected variables. Simultaneously, two models (RSF and DeepSurv)
were constructed using the selected variables, and hyperparameters
were optimized in the training set using mesh search method to
determine the optimal values. The performance of the three models
was subsequently assessed in both the modeling data set and the
external validation data set.

CoxPH, as a classical parametric method, offers high
interpretability and robustness. RSF employs non-parametric
methods to capture nonlinear relationships and variable
interactions, demonstrating greater resilience to data quality
issues and multicollinearity. DeepSurv leverages deep learning
techniques to handle high-dimensional and complex data,
excelling in modeling nonlinear features and variable interactions.
By integrating these three models, we can accommodate diverse
data characteristics, achieve comprehensive and robust analysis
both theoretically and practically, and provide multidimensional
support for our research objectives.

The following evaluation indicators were employed: the
conformance index (C-index) and the area under the receiver
operating characteristic curve (at 6, 12, 18, and 24 months)
was utilized to evaluate the discriminative ability of each model.

The calibration of the model was assessed using Brier Score (at
6, 12, 18, and 24 months). Decision curve analysis (at 6, 12,
18, and 24 months) was utilized to calculate the clinical net
benefit of each model.

The C-index reflects the ability of the model to distinguish
between high and low risk individuals, with values ranging from 0.5
(nearly random) to 1.0 (completely accurate). The higher the value,
the more accurately the model can distinguish between high and
low risk individuals (17). The Brier Score assesses the accuracy and
reliability of probabilistic predictions made by a model, with values
ranging from 0 to 1. A lower score indicates a smaller prediction
error, thereby reflecting greater accuracy and consistency in the
model’s forecasts (18).

Time-dependent ROC analysis serves as a robust tool for
assessing the predictive accuracy of survival models across various
time points. By computing the sensitivity and specificity at each
time point, a time-dependent ROC curve is generated, and
the AUC (area under the curve) is calculated to quantify the
model’s predictive performance. This method initially estimates
an individual’s survival probability or risk score using a survival
model. Subsequently, it constructs a time-dependent confusion
matrix based on varying thresholds to evaluate the model’s
classification performance at specific time intervals (19, 20).
For right-censored data, the inverse probability weighting (IPW)
method is employed to adjust for censoring bias, thereby ensuring
the precision of AUC calculations. Through repeated analyses at
multiple time points, the temporal changes in the model’s predictive
power can be dynamically monitored and utilized for comparing
different survival models (21, 22).
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TABLE 1 The information for patients with hypercapnic respiratory failure in the training set and the external validation set.

Variables Total (n = 697) Training set (n = 565) External validation set
(n = 132)

P

Survival month 24.02 [7.39, 24.02] 24.02 [7.1, 24.02] 24.02 [8.72, 24.02] 0.151

Status 0.059

Alive 379 (54.38) 297 (52.57) 82 (62.12)

Dead 318 (45.62) 268 (47.43) 50 (37.88)

Treatment 0.385

Oxygen therapy 352 (50.5) 285 (50.44) 67 (50.76)

Non-invasive ventilation 242 (34.72) 201 (35.58) 41 (31.06)

Invasive and non-invasive sequential
ventilation

103 (14.78) 79 (13.98) 24 (18.18)

Gender 0.218

Female 246 (35.29) 206 (36.46) 40 (30.3)

Male 451 (64.71) 359 (63.54) 92 (69.7)

ICU admission 0.777

No 620 (88.95) 504 (89.2) 116 (87.88)

Yes 77 (11.05) 61 (10.8) 16 (12.12)

Smoking < 0.001

No 297 (42.61) 222 (39.29) 75 (56.82)

Yes 400 (57.39) 343 (60.71) 57 (43.18)

Hypertension disease 0.499

No 422 (60.55) 346 (61.24) 76 (57.58)

Yes 275 (39.45) 219 (38.76) 56 (42.42)

Diabetes 0.999

No 593 (85.08) 481 (85.13) 112 (84.85)

Yes 104 (14.92) 84 (14.87) 20 (15.15)

Cerebrovascular 0.729

No 598 (85.8) 483 (85.49) 115 (87.12)

Yes 99 (14.2) 82 (14.51) 17 (12.88)

Cardiovascular 0.082

No 529 (75.9) 437 (77.35) 92 (69.7)

Yes 168 (24.1) 128 (22.65) 40 (30.3)

COPD 0.07

No 113 (16.21) 99 (17.52) 14 (10.61)

Yes 584 (83.79) 466 (82.48) 118 (89.39)

Asthma 0.999

No 681 (97.7) 552 (97.7) 129 (97.73)

Yes 16 (2.3) 13 (2.3) 3 (2.27)

ILD 0.999

No 679 (97.42) 550 (97.35) 129 (97.73)

Yes 18 (2.58) 15 (2.65) 3 (2.27)

Bronchiectasis 0.049

No 618 (88.67) 494 (87.43) 124 (93.94)

Yes 79 (11.33) 71 (12.57) 8 (6.06)

Pneumonia < 0.001

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 697) Training set (n = 565) External validation set
(n = 132)

P

No 532 (76.33) 451 (79.82) 81 (61.36)

Yes 165 (23.67) 114 (20.18) 51 (38.64)

Age 74 [68, 80] 74 [68, 80] 73.5 [67, 79.25] 0.959

BMI 21.8 [18.67, 25.39] 21.48 [18.38, 25.39] 22.6 [19.53, 25.71] 0.064

Fall risk score 4 [3, 5] 4 [3, 5] 4 [2.75, 5] 0.727

Braden score 18 [14, 20] 18 [15, 20] 17 [14, 20] 0.127

Barthel Index Rating Scale 56 [33, 76] 56 [35, 78] 58 [18, 68.75] 0.163

VAS pain score 0.949

0 618 (88.67) 501 (88.67) 117 (88.64)

1 32 (4.59) 25 (4.42) 7 (5.3)

2 36 (5.16) 30 (5.31) 6 (4.55)

3 7 (1) 6 (1.06) 1 (0.76)

4 4 (0.57) 3 (0.53) 1 (0.76)

mMRC score 0.044

0 2 (0.29) 2 (0.35) 0 (0)

1 22 (3.16) 13 (2.3) 9 (6.82)

2 69 (9.9) 52 (9.2) 17 (12.88)

3 211 (30.27) 170 (30.09) 41 (31.06)

4 393 (56.38) 328 (58.05) 65 (49.24)

Padua score 3 [1, 4] 3 [1, 4] 3 [1, 4] 0.73

PH 7.37 [7.31, 7.41] 7.37 [7.31, 7.41] 7.36 [7.32, 7.4] 0.666

Standard bicarbonate (mmol/L) 32.1 [29.1, 35.3] 32.2 [29.3, 35.6] 31.35 [28.78, 34.82] 0.334

PO2 (mmHg) 48 [40, 54] 49 [40, 56] 43 [37, 49] < 0.001

PCO2 (mmHg) 65 [56, 78] 65 [56, 78] 64.5 [56, 77] 0.525

Blood gas calcium (mmol/L) 1.16 [1.12, 1.19] 1.16 [1.12, 1.2] 1.15 [1.1, 1.18] 0.007

Methemoglobin (%) 1.2 [1, 1.4] 1.2 [1, 1.4] 1.2 [1, 1.4] 0.385

Reduced hemoglobin (%) 4.6 [2.2, 9.1] 4.2 [2.2, 8.5] 6.2 [2.45, 11.43] 0.011

Hematocrit (%) 44 [38, 49] 43 [38, 49] 45 [39, 49] 0.228

Remaining alkaline (mmol/L) 9.4 [5.9, 13.5] 9.6 [6, 13.8] 8.7 [5.18, 13.3] 0.185

Lactic acid (mmol/L) 1.5 [1.2, 2] 1.5 [1.2, 1.9] 1.6 [1.2, 2.1] 0.063

Actual Bicarbonate (mmol/L) 37.8 [33.1, 42.8] 37.8 [33.3, 42.8] 37.8 [32.48, 42.55] 0.474

Carboxyhemoglobin (%) 2.4 [1.9, 2.9] 2.4 [1.9, 2.9] 2.3 [1.8, 2.82] 0.245

Oxyhemoglobin (%) 91.8 [87.2, 94.3] 92.2 [87.6, 94.4] 90.35 [85.15, 93.75] 0.015

Anion gap (mmol/L) 4 [2, 7] 4 [2, 7] 5 [1, 7] 0.982

TCO2 (mmol/L) 39.8 [35, 45.2] 39.8 [35.2, 45.4] 39.85 [34.2, 44.65] 0.464

Rdwcv (%) 13.5 [12.9, 14.6] 13.6 [12.9, 14.7] 13.4 [12.7, 14.5] 0.062

Rdwsd (fl) 46 [42.9, 49.8] 46.1 [43, 50.1] 45.65 [42.5, 48.85] 0.31

WBC (109/L) 7.99 [6.2, 10.86] 7.82 [5.82, 10.47] 9.24 [6.84, 12.6] < 0.001

Large platelet ratio (%) 34.6 [28.6, 43.1] 34.5 [28.6, 42.7] 34.95 [28.58, 43.78] 0.715

Monocytes percentage (%) 7.2 [4.8, 9.6] 7.2 [4.7, 9.4] 7.3 [4.8, 10.03] 0.477

Monocytes (%) 0.54 [0.38, 0.77] 0.53 [0.37, 0.75] 0.62 [0.44, 0.99] 0.001

Arterial hematocrit (%) 41 [36.2, 45.4] 40.8 [36, 45] 41.65 [37.1, 46.15] 0.079

RBC (1012/L) 4.44 [3.96, 4.93] 4.42 [3.95, 4.91] 4.61 [4, 4.95] 0.167

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 697) Training set (n = 565) External validation set
(n = 132)

P

Lymphocytes percentage (%) 10.8 [5.5, 17.7] 11.3 [5.9, 17.9] 7.8 [4.3, 17.35] 0.01

Lymphocytes (109/L) 0.84 [0.48, 1.26] 0.85 [0.5, 1.24] 0.74 [0.44, 1.34] 0.421

MCV (fl) 92.1 [88.3, 95.8] 91.9 [88.2, 96] 92.8 [88.6, 95.6] 0.34

MCH (pg) 30.1 [28.6, 31.3] 30.2 [28.6, 31.5] 29.8 [28.6, 30.83] 0.018

MCHC (g/L) 325 [315, 334] 326 [316, 336] 321 [312.75, 329] < 0.001

MPV (%) 11.2 [10.5, 12.3] 11.2 [10.5, 12.2] 11.25 [10.5, 12.5] 0.635

Hemoglobin (g/L) 134 [118, 147] 134 [118, 147] 134 [118.75, 148.25] 0.646

PDW (fl) 13.8 [11.9, 16.2] 13.8 [11.8, 16.2] 13.65 [11.9, 16.62] 0.712

PLT (109/L) 171 [127, 217] 168 [125, 215] 184 [143.25, 223] 0.038

PCT (%) 0.2 [0.15, 0.24] 0.19 [0.15, 0.24] 0.21 [0.17, 0.24] 0.008

Eutrophil percentage (%) 80 [70.9, 87.9] 79.7 [71.1, 87.5] 82.4 [70.45, 89.93] 0.235

Eutrophil (109/L) 6.32 [4.47, 9.27] 6.19 [4.26, 8.97] 7.54 [5.38, 10.77] < 0.001

D-dimer (mg/LFEU) 0.71 [0.38, 1.55] 0.69 [0.37, 1.53] 0.81 [0.42, 1.71] 0.214

APTT (S) 27.8 [25.6, 30.5] 27.8 [25.6, 30.6] 27.6 [25.7, 30] 0.611

Antithrombin III (%) 76.16 ± 15.27 75.65 ± 15.15 78.34 ± 15.65 0.075

TT (S) 15.8 [15, 17] 15.8 [15, 16.9] 16.25 [14.8, 17.52] 0.136

PT (S) 11.9 [11.2, 12.8] 11.8 [11.1, 12.7] 12.2 [11.4, 13.1] 0.003

FDP (ug/mL) 3.1 [2, 5.2] 3.1 [2.1, 5.1] 3 [1.9, 5.73] 0.574

FIB (S) 3.55 [2.65, 4.79] 3.51 [2.61, 4.58] 3.98 [2.91, 5.55] 0.004

GGT (U/L) 24.3 [17, 39] 24.8 [17, 39] 24 [18, 40.02] 0.845

Albumin (g/L) 35.88 ± 4.85 35.88 ± 4.75 35.87 ± 5.28 0.972

ALT (U/L) 26 [18, 39] 25 [16.6, 38] 31 [23.95, 44.25] < 0.001

Cholinesterase (U/L) 5,000 [4,274, 6,062] 5,000 [4,319, 6,036] 5,093.5 [4,259.75, 6,366.25] 0.249

Serum calcium (mmol/L) 2.18 [2.09, 2.27] 2.18 [2.09, 2.26] 2.21 [2.1, 2.28] 0.323

Triglyceride (mmol/L) 0.98 [0.74, 1.35] 0.96 [0.73, 1.34] 1.06 [0.83, 1.44] 0.018

Creatinine (µmol/L) 65 [52.6, 83.2] 64.1 [51.7, 79.7] 69.25 [57.05, 88.6] 0.003

CK (U/L) 40 [30, 69] 38 [30, 66.4] 53 [34, 88.5] < 0.001

CK_MB (U/L) 11.9 [9, 17] 11 [9, 16] 13 [10, 18] 0.013

AKP (U/L) 77.8 [66, 96] 77 [65, 95] 80.95 [66, 98.55] 0.316

Serum phosphorus (mmol/L) 1.22 [1.07, 1.41] 1.22 [1.06, 1.4] 1.21 [1.09, 1.44] 0.545

Urea nitrogen (mmol/L) 7.34 [5.28, 9.71] 7.29 [5.28, 9.4] 7.56 [5.39, 10.34] 0.293

Uric acid (µmol/L) 313.6 [231.7, 411.8] 310.1 [227, 406] 332.45 [252.8, 417.68] 0.249

Globulin (g/L) 28.5 [25.7, 31.7] 28.3 [25.6, 31.5] 29.15 [26.8, 31.92] 0.093

LDH (U/L) 338 [216, 497] 369 [224, 518] 258.5 [207.75, 432.25] < 0.001

Serum bicarbonate (mmol/L) 35.9 [32, 39.2] 36.3 [32.6, 39.6] 32.95 [28.8, 37.38] < 0.001

AST (U/L) 26 [20, 36] 26 [20, 35.8] 27 [21, 39.25] 0.216

Total cholesterol (mmol/L) 4.01 [3.34, 4.86] 4.01 [3.33, 4.83] 4.08 [3.39, 4.94] 0.543

Total bilirubin (mmol/L) 11.8 [8.3, 17] 11.9 [8.38, 16.89] 11.76 [8.16, 18.6] 0.853

Total protein (g/L) 64.76 ± 7.17 64.63 ± 7.11 65.31 ± 7.42 0.346

Myoglobin (ng/ml) 39.7 [29.2, 70.8] 40.3 [28, 68.5] 37.65 [30, 77.55] 0.404

NT-BNP (pg/ml) 538 [133, 2,580] 577 [130, 2,620] 412.5 [134.9, 2,310] 0.652
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FIGURE 2

LASSO regression model was used to select the variables. (A) Path diagram of coefficient variation (B) A 10-fold cross-validation chart.

Risk stratification, interpretation, and
web-based prediction tool for optimal
modeling

The risk score for each patient can be calculated using the
optimal model derived from comparing various models. Patients
were stratified based on their risk score, and survival analysis was
conducted using Kaplan-Meier curves with differences compared
using the log-rank test.

The SHAP plots served as a valuable tool for interpreting
machine learning models. Within these plots, the length of
the horizontal axis corresponding to each variable signified its
contribution to the outcome, while the color of the dots represented
the magnitude of that contribution.

The individual predictions comprised survival probability plots
and local SHAP plots, which offered distinct perspectives on
survival expectations and risk factors, respectively. The survival
probability of each individual was calculated using non-parametric
estimation. The local SHAP plot was an interpretive representation
that showed the individual-specific contribution of a variable in
a SHAP plot. The establishment of an association between risk
factors and individual outcomes was facilitated based on the
plots. Furthermore, we have developed a web-based prediction
tool utilizing the Shiny framework to estimate patient survival
probabilities at specified time points.

Statistical analysis

The categorical variables in both the modeling data set and the
external validation data set were presented using frequency and
percentage, and analyzed using either chi-square test or Fisher exact
test. Continuous variables conforming a normal distribution were
represented by their mean and standard deviation, and analyzed
using the t-test. Continuous variables not conforming to a normal

distribution were represented by their median and quartile, and
analyzed using the Mann-Whitney U test. A p-value < 0.05 in
bilateral test was considered statistically significant. The mlr3proba
package for R (version 0.4.13) was utilized to construct three
survival machine learning models, wherein the DeepSurv model
relied on the Pycox module. The survival machine learning model
was explained using Python’s SHAP module (version 0.37.0). The
CatPredi package in the R language was utilized for discretizing risk
scores into layers.

Results

Clinical characteristics of patients with
hypercapnic respiratory failure

The study included a total of 697 patients with HRF, and Table 1
presented the demographic and clinical information comparing the
modeling data set to the external validation data set.

LASSO regression screening variables

The study incorporated a total of 85 variables. Utilizing
the training dataset, we employed the LASSO regression (Least
Absolute Shrinkage and Selection Operator) method for variable
selection. The optimal regularization parameter λ was determined
through 10-fold cross-validation, with the model corresponding
to the minimum value being selected as the final model
(Figure 2). By incorporating an L1 norm regularization penalty
term into the model, LASSO regression achieved both variable
selection and coefficient shrinkage. This approach not only
mitigated overfitting and enhanced the model’s generalization
capability but also addressed multicollinearity issues. Through
this method, 17 variables with the highest explanatory power
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TABLE 2 Univariate and multivariate Cox regression analysis for OS
in training set.

Variables HR 95% CI P

Gender

Female Ref

Male 1.198 0.934–1.538 0.156

ICU admission

No Ref

Yes 1.998 1.404–2.845 < 0.001

Hypertension disease

No Ref

Yes 0.933 0.725–1.202 0.594

ILD

No Ref

Yes 2.717 1.536–4.806 0.001

BMI 0.957 0.931–0.984 0.002

Braden score 0.99 0.955–1.026 0.573

mMRC score 1.274 1.065–1.524 0.008

Padua score 1.067 0.998–1.141 0.057

Carboxyhemoglobin (%) 1.198 1.058–1.358 0.004

Arterial hematocrit (%) 0.974 0.919–1.031 0.364

Lymphocytes percentage
(%)

0.987 0.972–1.003 0.112

Hemoglobin (g/L) 1.000 0.982–1.019 0.977

GGT (U/L) 1.000 0.998–1.003 0.639

Albumin (g/L) 0.992 0.966–1.018 0.534

Cholinesterase (U/L) 1.000 1.000–1.000 0.175

Urea nitrogen (mmol/L) 1.027 1.006–1.048 0.011

LDH (U/L) 1.000 1.000–1.000 0.776

for the research objective were ultimately selected, including:
Gender, ICU admission, Hypertension disease, ILD, BMI, Braden
score, mMRC score, Padua score, Carboxyhemoglobin, Arterial
hematocrit, Lymphocytes percentage, Hemoglobin, GGT, Albumin,
Cholinesterase, Urea nitrogen, LDH.

Construction of three survival machine
learning models

RSF model: The 17 variables selected by LASSO were used
for modeling. Grid search was conducted, and a 10-fold cross-
validation was performed to determine the optimal combination of
hyperparameters for the model, including ntree set at 900, mtry set
at 3, nodesize set at 18. The remaining hyperparameters were kept
as default values.

CoxPH model: A multivariate Cox regression analysis
was conducted using 17 variables selected by LASSO. The
analysis identified ICU admission, ILD, BMI, mMRC score,
Carboxyhemoglobin, and Urea nitrogen as significant prognostic

factors in patients with HRF. The results of the multivariate Cox
regression analysis were shown in Table 2.

DeepSurv model: The 17 variables selected by LASSO were
used for modeling. Grid search and 10-fold cross-validation were
used to determine the optimal combination of hyperparameters of
the model, including alpha set at 0.5, learning_rate set at 0.005c,
num_nodes set at 10. The remaining hyperparameters were kept
as default values.

Assessment and interpretation of the
models

The C-index of each model was compared in both the
modeling data set and the external validation set to compare
their respective discriminatory abilities. The C indices of the RSF
model, CoxPH model, and DeepSurv model (hereinafter referred
to as the “three models”) on the modeling dataset were 0.792,
0.699, and 0.618, respectively. On the external validation set, these
indices were 0.693, 0.681, and 0.532 for each respective model.
These results indicated that the RSF model exhibited superior
discriminative ability.

The comparison of the discrimination among the three models
at 6, 12, 18, and 24 months on the modeling data set revealed that
the RSF model exhibited superior discrimination (Figure 3). The
external validation set demonstrated that the RSF model exhibited
superior discrimination at 6, 12, and 18 months compared to
the other models, while its discrimination at 24 months was
comparable to that of the Cox regression model (Figure 4).

On the modeling data set, the Brier Score was utilized to assess
the model’s predictive consistency at four time points: 6, 12, 18,
and 24 months. The results showed that the Brier Score of the
RSF model was the best and was less than 0.25 at each time point.
Similarly, on the external validation set, the Brier Score was utilized
to evaluate the model’s predictive consistency at 6, 12, 18, and
24 months. The results demonstrated that once again, the RSF
model outperformed other models by maintaining a Brier Score
below 0.25 for each respective time point. The above information
was shown in Table 3.

On the modeling data set, a DCA comparison was conducted
for the three models at 6, 12, 18, and 24 months. The results
revealed that the RSF model exhibited superior clinical net benefit
(Figure 5). The RSF model also demonstrated superior clinical net
benefit at 6, 12, and 18 months on the external validation set, while
being comparable to Cox regression at 24 months (Figure 6).

In conclusion, the performance of the random survival
forest (RSF) model in survival analysis demonstrated significant
advantages. Specifically, regarding its differentiation ability, the
C-index of the RSF model outperformed both the Cox regression
model and the DeepSurv model across both the modeling
data and external validation sets. This indicated that the RSF
model possesses superior individualized prognostic differentiation
capabilities. Regarding prediction consistency, the Brier Score of
the RSF model demonstrated lower error rates across multiple
time points, thereby further validating the accuracy and stability
of its predictive performance. Simultaneously, clinical net benefit
analysis demonstrated that the RSF model exhibited superior
benefits during short-term follow-up and could more effectively
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FIGURE 3

The ROC curves of the three models were plotted based on different time points in the training set: (A) at 6 months, (B) at 12 months, (C) at
18 months, and (D) at 24 months.

support clinical decision-making. From a clinical perspective, the
high predictive accuracy and interpretability of the RSF model
not only enhance the precision of patient risk assessment but also
provide a robust tool for personalized prognostic prediction and
treatment optimization.

Additionally, the RSF model was visually elucidated. In the
SHAP diagram, the variables in the model were presented in a
descending order of importance (Figure 7). Amongst the initial five
variables, Cholinesterase emerged as the most crucial, succeeded by
Urea nitrogen, ICU admission, BMI, and Albumin.

Stratified risk of RSF in patients with
hypercapnic respiratory failure

The patients in the validation set were categorized into
three groups based on their risk scores: high-risk group (risk

score > 1.06), medium-risk group (0.24 ≤ risk score ≤ 1.06), and
low-risk group (risk score < 0.24). The Kaplan-Meier analysis and
logarithmic rank test results depicted in Figure 8 demonstrated
statistically significant differences among the high-risk, medium-
risk, and low-risk groups as a whole.

Clinical application of web-based
prediction tools

The web-based prediction tool was developed utilizing
the random survival forest (RSF) model. This tool,
implemented via Shiny,1 offered a user-friendly interface,
real-time predictive capabilities, and comprehensive

1 https://app-predict.shinyapps.io/rsf-model/
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FIGURE 4

The ROC curves of the three models were plotted based on different time points in the External validation set: (A) at 6 months, (B) at 12 months,
(C) at 18 months, and (D) at 24 months.

TABLE 3 Information on the predictive accuracy of the model assessed at various time points.

Dataset Model Brier score

6-month 12-month 18-month 24-month

Training set RSF 0.124 0.173 0.216 0.242

COX 0.143 0.190 0.234 0.269

DeepSurv 0.199 0.294 0.362 0.422

External validation set RSF 0.164 0.188 0.203 0.221

COX 0.175 0.206 0.218 0.229

DeepSurv 0.259 0.267 0.261 0.277

visualization features. It served as an efficient and precise
solution for individualized risk assessment and survival
prediction, specifically tailored for clinical practitioners.
By dynamically generating patient survival probability
curves and estimating survival rates at specific time points,

this tool offered robust quantitative support for clinical
decision-making. It significantly enhanced the operability and
adaptability of the model in practical applications, thereby
providing crucial technical support for the individualized
management of HRF.
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FIGURE 5

The DCA curves of the three models were plotted based on different time points in the training set: (A) at 6 months, (B) at 12 months, (C) at
18 months, and (D) at 24 months.

Prediction of individual prognosis in
hypercapnic respiratory failure

Three patients were randomly selected and numbered
sequentially to demonstrate individual prognosis. The individual
predicted survival rate is illustrated in Figure 9A. It can be observed
that the third patient exhibited a relatively favorable survival rate,
whereas the first patient exhibited a relatively unfavorable survival
rate. The local SHAP plot elucidated the prognosis for each patient
in terms of the contribution of the variables, wherein red stripes
represented risk factors associated with poor prognosis, while blue
stripes indicated relative protective factors.

Patient 1: As shown in Figure 9B, the local SHAP plot revealed
that the top five most important variables, namely ICU admission,
Cholinesterase, Albumin, LDH, and Lymphocytes percentage, were
all identified as risk factors associated with poor prognosis.

Patient 2: As shown in Figure 9C, the local SHAP plot revealed
that ICU admission, LDH, Hemoglobin hematocrit and Arterial
hematocrit were the risk factors with poor prognosis among the
top five most important variables, while Cholinesterase was the
protective factor.

Patient 3: As shown in Figure 9D, the local SHAP plot revealed
that ICU admission was the risk factor with poor prognosis
among the top five most important variables, while Urea nitrogen,
Cholinesterase, Braden score and LDH were the protective factors.

Discussion

Due to the high hospitalization rate and mortality in patients
with HRF, it is necessary to carefully evaluate and select appropriate
treatment to optimize the prognosis of patients (23). Previously,
researchers have primarily focused on analyzing the risk factors
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FIGURE 6

The DCA curves of the three models were plotted based on different time points in the External validation set: (A) at 6 months, (B) at 12 months, (C)
at 18 months, and (D) at 24 months.

influencing the survival of patients with HRF, but have not
conducted modeling analyses to further understand these factors
(4, 24–26). This is the inaugural clinical study that employs
machine learning modeling for the prediction and management of
HRF through the development, validation, and subsequent clinical
implementation of the model. In this study, we developed three
predictive models: the RSF, DeepSurv, and CoxPH models, and
assessed their performance using metrics such as the C-index, ROC
curve analysis, DCA, and Brier Score. The results indicated that the
RSF model outperformed both the Cox regression model and the
DeepSurv model in terms of modeling data and external validation
data, albeit with some variations. Specifically, the C-index for the
RSF model was 0.792 in the modeling dataset, which decreased to
0.693 in the external validation set. Despite this reduction, it still
maintained superior discrimination. The Brier Score also exhibited
a slight increase at various time points in the external validation
data (e.g., from 0.124 to 0.164 at 6 months), indicating a modest

decline in prediction consistency. Furthermore, Decision Curve
Analysis (DCA) revealed that the RSF model’s external validation
performance surpassed other models at 6, 12, and 18 months,
although its advantage diminished and approached that of the
Cox regression model at 24 months. These discrepancies may be
attributed to differences in patient characteristic distributions, data
heterogeneity, or uncertainties associated with extended follow-up
periods. Future efforts should focus on collecting larger sample
sizes or incorporating additional data dimensions to optimize the
model, thereby enhancing its generalizability to external datasets.

Furthermore, the web-based prediction tool developed by
our team utilizing the Shiny framework offers clinicians an
advanced and reliable solution for personalized risk assessment and
survival prediction. This tool featured an intuitive user interface,
real-time predictive analytics, and visualization capabilities,
enabling efficient and precise evaluation of patient outcomes.
The tool was designed to dynamically generate patient survival

Frontiers in Medicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2025.1497651
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1497651 February 19, 2025 Time: 11:57 # 13

Liu et al. 10.3389/fmed.2025.1497651

FIGURE 7

The SHAP diagram of RSF model.

FIGURE 8

Risk stratification of the RSF model on the modeling data set (A) and the external validation data set (B).
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FIGURE 9

Prediction of Hypercapnic respiratory failure in individual patients. (A) the Survival curves for 3 patients. (B) the Local SHAP of patient 1. (C) the Local
SHAP of patient 2. (D) the Local SHAP of patient 3.

probability curves and calculate survival rates at specific time
points, thereby enhancing the clinical utility of the model.
The tool facilitated data import, real-time computation, and
multi-platform utilization, thereby enhancing its applicability
in outpatient clinics, wards, and case discussions. Despite
challenges related to data security and computational resources,
these concerns were mitigated through on-premises hospital

deployment, robust data encryption, and optimized computational
algorithms. Consequently, this tool provided substantial support
for precision medicine and personalized treatment strategies.
Overall, this study offered valuable insights into modeling the
prognosis of HRF. Furthermore, the web-based prediction tool
developed by our team utilizing the Shiny framework offers
clinicians advanced and reliable solutions for personalized risk
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assessment and survival prediction. This tool features an intuitive
user interface, real-time predictive analytics, and visualization
capabilities to efficiently and accurately assess patient outcomes.
It is designed to dynamically generate patient-specific survival
probability curves and calculate survival rates at designated
time points, thereby enhancing the clinical utility of the model.
The tool supports seamless data import, real-time computation,
and multi-platform compatibility, improving its applicability in
outpatient clinics, wards, and case discussions. Although challenges
related to data security and computing resources exist, these
concerns are addressed through on-premises hospital deployments,
robust data encryption, and optimized computational algorithms.
Consequently, the tool provides significant support for precision
medicine and personalized treatment strategies. Overall, this study
offers valuable insights into the prognosis of simulated HRF.

The RSF model surpasses traditional CoxPH models,
particularly in the analysis of high-dimensional data, by
automatically assessing intricate effects and interactions among
all variables (27). Furthermore, by incorporating interpretative
tools such as SHAP analysis, the critical variables within the RSF
model and their contributions to the prediction outcomes can be
systematically elucidated. For instance, the SHAP plot provides a
visual representation of the positive and negative impacts of each
variable on risk prediction, along with their relative significance.
This aids clinicians in comprehending which factors are pivotal in
influencing patient prognosis (28, 29). Simultaneously, local SHAP
analysis facilitates personalized interpretation, allowing for the
identification of the specific contributions of each patient’s unique
variables to their respective risk scores (30). This interpretability
not only bridges the gap between complex models and clinical
applications but also equips physicians with a more robust
decision-making foundation, thereby enhancing the acceptance
and practical value of RSF models in precision medicine.

The difference is that DeepSurv model has been widely used in
many survival analyses, has good predictive value, and its excellent
performance is better than RSF model in many studies (31–33).
However, the performance of the RSF model in this study surpasses
that of the DeepSurv model for the following reasons: Firstly, the
inherent “black box” nature of deep neural networks remains a
hindrance (34); Secondly, it is possible that the size of the study
data may not be sufficient to effectively train deep neural networks
(35, 36).

In addition, most of the top five variables screened in the
RSF model [Cholinesterase, Urea nitrogen (37, 38), ICU admission
(3, 39), BMI (40, 41), and Albumin (42, 43)] have been shown
to be associated with death or survival prognosis in patients
with HRF. However, Cholinesterase has not been linked to
HRF, which is a novel and significant finding in our study and
associated with the survival prognosis in patients with HRF. The
specific reason may be that serum Cholinesterase is correlated
with heightened inflammation, escalated disease severity, and
deteriorating prognosis in critically ill patients (44). The serum
cholinesterase activity has also been linked to adverse outcomes
in critically ill patients who are admitted to the ICU due to acute
respiratory failure following COVID-19 infection (45).

Therefore, recognizing and enhancing awareness of these risk
factors is crucial for early intervention and appropriate treatment
of patients with HRF. Precise survival predictions offer a more
reliable individualized prognosis assessment, thereby minimizing

unnecessary medical interventions and cost inefficiencies.
Consequently, the application of the random survival forest (RSF)
model in clinical practice holds significant potential, particularly in
supporting clinical decision-making. The model can be integrated
into electronic medical record systems to provide personalized
survival predictions and risk stratification by incorporating key
clinical indicators of patients. This integration helps optimize
resource allocation and improve treatment efficiency, especially
in resource-constrained settings or varying medical conditions.
However, the broad application of the model faces certain
limitations, such as data discrepancies between different medical
institutions that may reduce the model’s generalization ability.
Therefore, considering the variations in patient characteristics
and data quality across different settings, the model may require
appropriate adjustments in practical applications to ensure its
reliability and applicability. Additionally, future studies should
further validate the model’s performance across multiple regions,
institutions, and diverse patient populations. Efforts should also
focus on optimizing model performance and exploring methods
for dynamic survival prediction and cloud deployment to support
a wider range of clinical scenarios.

The study is subject to several limitations. First, additional
multi-center data sets are required to assess the stability and validity
of the model. Second, although machine learning methods exhibit
advantages in handling limited sample sizes, their predictive power
must be validated through replication in a broader population.
Additionally, the current study did not delve into the effects of
different patient subgroups on model performance, and further
refinement of subgroup analysis is necessary to enhance the model’s
applicability (46). Third, our developed model solely utilizes clinical
variables; however, other factors such as medical imaging and omics
data may possess clinical significance in predicting HRF. Finally,
it is important to note that the prediction model is based on the
Chinese population; therefore, further verification is necessary to
determine its applicability to other ethnic groups.

In summary, a machine learning model was developed utilizing
clinical variables to accurately predict survival prognosis in patients
with HRF. The RSF model may offer distinct advantages over both
the CoxPH model and the DeepSurv model, making it a valuable
tool for clinical evaluation and patient monitoring.
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