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Lung cancer remains a major global health issue, with non-small cell lung

cancer (NSCLC) constituting approximately 85% of cases. Ferritinophagy, a

pivotal autophagic process in ferroptosis, plays an essential role in tumor

initiation and progression. However, the specific contributions of ferritinophagy-

related genes (FRGs) to NSCLC pathogenesis remain incompletely understood.

In this study, weighted gene co-expression network analysis (WGCNA) was

employed to identify key modular genes associated with FRG scores. Genes

overlapping between these modules and differentially expressed genes (DEGs)

were selected for further investigation. Prognostic genes were identified

through univariate Cox regression and least absolute shrinkage and selection

operator (LASSO) analysis, with subsequent validation using quantitative reverse

transcriptase polymerase chain reaction (qRT-PCR) on both clinical samples

and the TCGA-NSCLC dataset. A nomogram incorporating clinicopathological

features and risk scores was developed to predict patient outcomes. Further

analyses focused on functional enrichment, drug sensitivity, and the immune

microenvironment. Cross-referencing 2,142 key modular genes with 2,764

DEGs revealed 600 candidate genes. Univariate Cox regression and LASSO

analysis of these candidates identified eight prognostic genes: KLK8, MFI2,

B3GNT3, MYRF, CREG2, GLB1L3, AHNAK2, and NLRP10. Two distinct risk

groups exhibited significant survival differences. Both the risk score and

pathological N stage were found to be independent prognostic factors, forming

the basis for the nomogram. Notable correlations were observed between

certain immune cells, prognostic genes, and immune responses, affecting

the efficacy of immunotherapy and drug sensitivity. qRT-PCR confirmed that,
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except for NLRP10, all prognostic genes exhibited expression patterns consistent

with TCGA-NSCLC data. This study highlights the significant role of FRGs

in NSCLC prognosis and regulation, offering novel insights for personalized

treatment strategies.
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1 Introduction

Lung cancer remains a significant global health threat, with
non-small cell lung cancer (NSCLC) accounting for roughly
85% of all cases (1). Recent advancements in molecular targeted
therapies have brought new hope for NSCLC treatment. Drugs
such as osimertinib, which targets EGFR mutations, lorlatinib
for ALK rearrangements, dabrafenib for BRAF V600E mutations,
and adagrasib for KRAS G12C mutations, have demonstrated
clinical efficacy. Despite these developments, the 5 years survival
rate for NSCLC remains below 18% (2). Concurrently, PD-1/PD-
L1 inhibitors have been approved for the first-line treatment
of advanced NSCLC; however, their response rate is only
around 20% in unselected patients with advanced disease (3–5).
These challenges underscore the ongoing need to identify novel
mechanisms and therapeutic targets to improve prognosis and
treatment outcomes for NSCLC.

In recent years, ferroptosis has garnered significant attention
for its pivotal role in the progression of malignant tumors (6).
First described by Stockwell, ferroptosis is a regulated form of cell
death that diverges from apoptosis, necrosis, and autophagy in
terms of its morphological, biochemical, and genetic characteristics
(7). This process is primarily characterized by disruptions in iron
homeostasis, alongside the accumulation of reactive oxygen species
(ROS) and lipid peroxides, which ultimately lead to cell death (8, 9)
Central to the regulation of ferroptosis is ferritinophagy, a selective
autophagy process that controls intracellular iron homeostasis.
This process is particularly significant in cancer cells, as it directly
influences the availability of free iron, a key driver of ferroptosis
(10–13). In the context of NSCLC, understanding ferritinophagy
is crucial as it may provide new insights into tumor progression
and resistance mechanisms, while also offering potential targets for
therapeutic intervention.

Recent studies have highlighted the significant impact of
ferritinophagy on the development and progression of various
cancers. For instance, Zhao et al. (14) demonstrated that NCOA4-
mediated ferritinophagy activates the JNK pathway, inducing

Abbreviations: FRGs, ferritinophagy-related genes; qRT-PCR, quantitative
reverse transcriptase polymerase chain reaction; AUC, area under the
curve; ICI, immune checkpoints; IPS, immunophenoscores; ROC, receiver
operating characteristic; KM, Kaplan-Meier; PH, proportional hazards;
WGCNA, weighted gene co-expression network analysis; LASSO, least
absolute shrinkage and selection operator; KEGG, Kyoto Encyclopedia of
Genes and Genomes; GO, Gene Ontology; PPI, protein-protein interaction;
NSCLC, non-small cell lung cancer; LUAD, lung adenocarcinoma; LUSC,
Lung Squamous Carcinoma; TCGA, The Cancer Genome Atlas; GEO, Gene
Expression Omnibus; ssGSEA, single sample gene set enrichment analysis;
DEGs, differentially expressed genes.

ferroptosis in colorectal cancer cells. Similarly, Santana-Codina
et al. (15) revealed that ferritinophagy, which is upregulated
in pancreatic cancer, supports tumor growth by maintaining
iron levels and enhancing mitochondrial function. Elevated
ferritinophagy activity correlates with accelerated tumor growth
and poorer outcomes. In liver cancer, Xiu et al. (16) showed
that inducing NCOA4-mediated ferritinophagy significantly
inhibits tumor progression in both in vivo and in vitro models.
Emerging evidence also suggests that ferritnophagy plays a pivotal
role in NSCLC progression and drug resistance. For instance,
NCOA4, a key mediator of ferritinophagy, is upregulated in
osimertinib-resistant NSCLC cells, promoting ferritinophagy
and contributing to adaptive resistance (17). Similarly, DTX2,
a ubiquitin ligase, negatively regulates NCOA4-mediated
ferritinophagy, and its knockdown enhances cisplatin-induced
ferroptosis and overcomes drug resistance in NSCLC (18). COPZ1
silencing has also been shown to promote NCOA4-mediated
ferritinophagy, triggering ferroptosis in lung adenocarcinoma
cells (19). Additionally, interferon (IFN)-γ-induced TFR1
upregulation promotes ferritinophagy and ferroptosis in NSCLC,
suggesting a potential synergy between immune signaling and iron
metabolism therapies (20). Furthermore, the compound ShtIX
induces ferroptosis in NSCLC cells through NCOA4-mediated
ferritinophagy, highlighting the therapeutic potential of targeting
this pathway (21).

These findings collectively emphasize the significance of
ferritinophagy in regulating ferroptosis and its potential as a
therapeutic target in NSCLC. This study aims to further explore
the prognostic and regulatory roles of ferritinophagy-related genes
in NSCLC, providing new insights into the molecular mechanisms
underlying ferroptosis and its therapeutic implications.

2 Materials and methods

2.1 Data source

The datasets for TCGA-Lung Adenocarcinoma (LUAD) and
Lung Squamous Carcinoma (LUSC) were initially sourced from
the UCSC Xena website1 and subsequently merged into The
Cancer Genome Atlas Non-Small Cell Lung Cancer (TCGA-
NSCLC) dataset. This dataset included 1,025 primary tumor
samples (NSCLC) and 108 paraneoplastic normal tissue samples

1 https://xena.ucsc.edu/
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(Normal), comprising gene expression data for 1,004 individuals
with available overall survival (OS) data (Dead: 396, Alive:
608), as well as associated clinical data. Additionally, the
GSE37745 dataset (GPL570), containing 196 NSCLC tissue
samples, was retrieved from the Gene Expression Omnibus (GEO)
database2. Furthermore, 20 ferritinophagy-related genes (FRGs)
were identified using the GeneCards database3 (22).

2.2 Single sample gene set enrichment
analysis (ssGSEA) and weighted gene
co-expression network analysis
(WGCNA)

In order to explore the relationship between FRGs and the
prognosis of NSCLC patients, based on 20 FRGs, the ssGSEA
method of GSVA (v 1.42.0) was used to generate FRGs-related
ssGSEA enrichment scores for 1004 NSCLC samples with survival
data in the TCGA-NSCLC dataset (23). The samples were
categorized into high and low scoring groups based on optimal
cut-off values for the scores using the survminer::surv_cutpoint
function with minprop = 0.1. Kaplan-Meier (KM) survival analysis
was conducted between these groups using the R package
survminer (v 0.4.9) (p < 0.05) (24).

Subsequently, to explore the relationship between co-expressed
gene modules and FRGs, the WGCNA (v 1.71) (25) was applied to
the TCGA-NSCLC dataset to identify genes associated with FRG
scores in NSCLC. Hierarchical clustering, based on the Euclidean
distance of expression, was first performed to identify and exclude
outliers. A scale-free network was constructed with a minimum of
500 genes per module, applying a soft threshold where R2 exceeded
0.85 and mean connectivity approached zero. Then, the ssGSEA
scores related to FRGs were used as the phenotype to construct
a phenotype-module correlation heatmap, and todules exhibiting
the highest positive and negative correlations with the scores were
selected as key modules, and genes within these modules were
identified for further analysis.

2.3 Differential expression and functional
enrichment analysis

Differentially expressed genes (DEGs) between tumor and
normal tissue groups were identified using DESeq2 (v 1.34.0) (26)
with the following criteria: p.adj < 0.05 and | log2Fold Change
(FC)| > 2.0. In order to understand the distribution of differentially
expressed genes as a whole, the DEGs were visualized using
the R packages ggplot2 (v 3.4.1) (27) and ComplexHeatmap (v
2.15.1) (28).

Overlapping genes between the differentially expressed genes
(DEGs) and key module genes were identified as candidate genes,
and Venn diagrams were generated using the VennDiagram
package (v 1.7.1) (29). Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were performed on these candidate genes with the

2 https://www.ncbi.nlm.nih.gov/geo/

3 https://www.genecards.org/

clusterProfiler R package (v 4.2.2) (30) to identify functional
pathways (p.adj < 0.05). Additionally, a medium confidence score
of 0.4 was applied in the STRING database4 to explore potential
protein-protein interactions (PPIs) among the proteins encoded by
the candidate genes and construct a PPI network.

2.4 Construction and validation of risk
models

To evaluate whether prognostic genes were associated with
patient survival, the expression levels of candidate genes were
used as continuous variables to correlate with survival information
for each sample, with survival outcomes and survival time as
the dependent variables. Univariate Cox analysis (hazard ratios
(HR) 6= 1 and p < 0.05) was performed on the candidate
genes using the survival (v 3.3-1) and survminer R packages.
A proportional hazards (PH) hypothesis test was subsequently
applied (p > 0.05). Genes passing the PH hypothesis test were
designated as candidate prognostic genes. LASSO (Least Absolute
Shrinkage and Selection Operator) analysis was then applied to
these candidate genes using the glmnet R package (v 4.1-2) (31)
to identify the genes that best fit the model with the smallest
error. During the model training process, 10-fold cross-validation
(CV) was used to obtain the optimal Lambda (lambda.min),
corresponding to the value that produced the smallest cross-
validation error. Genes with regression coefficients that were not
penalized to zero were selected as prognostic genes and risk scores
were computed using the corresponding formula:

RiskScore=
n∑

i = 1

Coefi × Xi

The coefficients (Coef) and gene expression values (X) representing
the model parameters.

Risk scores for NSCLC samples from both the TCGA-NSCLC
and GSE37745 datasets were calculated, and the samples were
divided into high- and low-risk groups based on optimal cutoff
values. KM survival analysis was performed to compare survival
differences between these groups using the survminer package. In
parallel, risk score distributions and risk curves were visualized.
To assess the prognostic performance, survival ROC analysis
(v 1.0 3.1) (32) was performed to generate receiver operating
characteristic (ROC) curves, with areas under the curve (AUC)
exceeding 0.6 for predicting 1, 3, and 5 years survival outcomes in
patients with NSCLC.

2.5 Independent prognostic analysis

To determine independent prognostic factors for NSCLC,
univariate Cox regression analysis (p < 0.05) was conducted
combining risk scores with clinical features, including age, gender,
pathologic T, pathologic N, and pathologic M stages. These
variables were tested for the PH hypothesis, and factors passing
the test were subjected to multivariate Cox regression analysis to
identify independent prognostic factors (p < 0.05). Based on these

4 https://string-db.org/
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factors, a nomogram was constructed using the rms package (v 6.2-
0) to predict 1, 2, and 3 years survival probabilities in patients with
NSCLC. The predictive accuracy of the nomogram was validated
using calibration curves and ROC curves.

2.6 Functional enrichment analysis

To explore the functional pathways associated with prognostic
genes, GSEA was performed separately for the two risk groups and
individual prognostic genes. The log2FC between the two groups
were calculated using DESeq2, with differential genes ranked by
log2FC from highest to lowest. The cc2.cp.kegg.v7.4.symbols.gmt
file from the Molecular Signatures Database (MSigDB5) served
as the background gene set, and GSEA was conducted with
clusterProfiler (p < 0.05). Additionally, Spearman correlations
were calculated between prognostic genes and other genes in
TCGA-NSCLC, with correlation coefficients ranked from highest
to lowest, followed by GSEA (p < 0.05).

2.7 Immune microenvironmental analysis
in NSCLC

To assess the involvement of immune cells in NSCLC, immune
cell infiltration was analyzed using the immunedeconv package (v
2.0.4) (33), excluding samples with p > 0.05. Differences between
the two risk groups were compared, and Spearman’s correlation was
calculated between prognostic genes and differential immune cells
(p < 0.05). Data on tumor-associated major histocompatibility
complex molecules, chemokines, immunosuppressive, and
immunostimulatory factors were retrieved from the TISIDB
database6 and analyzed for correlations with prognostic genes and
risk scores using Spearman’s correlation.

The ssGSEA algorithm in the GSVA package (v 1.42.0) (23) was
employed to compute immunotherapy pathway scores for NSCLC
samples and examine the relationship between risk scores and
immune pathways. Differences in immune checkpoint inhibitor
(ICI) gene expression between risk groups were assessed using
the Wilcoxon test (p < 0.05), with further evaluation of their
correlation with risk scores. Immunophenoscores (IPS) from The
Cancer Immunome Atlas (TCIA)7 were used to predict responses
of the two risk groups to anti-CTLA-4 and anti-PD-1 therapies
(p < 0.05).

2.8 Drug sensitivity analysis and
prognostic gene expression verification

To evaluate differences in drug sensitivity, the half-maximal
inhibitory concentration (IC50) of chemotherapeutic agents was
assessed between the two risk groups using the pRRophetic
algorithm (v 0.5) (34). Additionally, the expression of prognostic

5 https://www.gsea-msigdb.org/gsea/msigdb

6 http://cis.hku.hk/TISIDB/

7 https://tcia.at/home

TABLE 1 Sequence information of polymerase chain
reaction (PCR) primers.

Primer Sequences

KLK8 F GCCGTGTGTCCATTTGAACC

KLK8 R AGCTGTAAGGACCCAGTTGC

MFI2 F CACAGCAGTGAGCGAGTTCT

MFI2 R CAAAGACGGTTGTGTGCCTG

B3GNT3 F AAACTCTTTCTTCGGCTCGC

B3GNT3 R GGGAACGCCGGAGACAATTA

MYRF F TGGACCTGCCATCAGTGTCT

MYRF R TGGACCTGCCATCAGTGTCT

CREG2 F TGATGCAGGCCCCTTTATCTG

CREG2 R AAGGACGAGGGGATCTCACA

GLB1L3 F AGTGCATCTCGATACCTCCCT

GLB1L3 R ATGGGAGATGGAAAGGCGTC

AHNAK2 F GCGTCTGTAGCTTCCTTGTG

AHNAK2 R TCCGTGAGTCCCCTGAATCT

NLRP10 F GTAGGTACCAGCACCACCAA

NLRP10 R GTAAGCAAAGCCTGGGGACT

Endogenous-GAPDH F CGAAGGTGGAGTCAACGGATTT

Endogenous-GAPDH R ATGGGTGGAATCATATTGGAAC

genes was compared between tumor and normal samples from both
the TCGA-NSCLC dataset and clinically collected specimens.

2.9 Quantitative reverse transcriptase
polymerase chain reaction (qRT-PCR)

The expression of prognostic genes was also analyzed in
malignant tissues from five patients with NSCLC and matched
normal tissues from five individuals at Shanxi Province Cancer
Hospital. For RNA extraction, 50 mg of tissue from each sample was
combined with 1 mL of TRIzol reagent (Ambion, United States).
RNA concentration was measured, and reverse transcription was
performed according to the manufacturer’s instructions. RNA
concentration was determined by extracting 1 µL and using a
NanoPhotometer N50. cDNA synthesis was performed using the
SureScript First-Strand cDNA Synthesis Kit (Servicebio, China),
and the resulting cDNA was diluted 5–20 times with ddH2O. qPCR
was carried out for 40 cycles (initial denaturation at 95◦C for
1 min, denaturation at 95◦C for 20 s, annealing at 55◦C for 20 s,
and extension at 72◦C for 30 s). Gene expression was normalized
to GAPDH using the 2−11CT method. Primer information is
provided in Table 1.

2.10 Statistical analysis

Machine learning and bioinformatics analyses were performed
using R statistical software (version 4.2.2). The Wilcoxon test
(p < 0.05) was applied to compare data between groups.

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2025.1480169
https://www.gsea-msigdb.org/gsea/msigdb
http://cis.hku.hk/TISIDB/
https://tcia.at/home
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1480169 March 4, 2025 Time: 16:31 # 5

Hao et al. 10.3389/fmed.2025.1480169

3 Results

3.1 The 2,142 key modular genes related
to FRG scores were discovered in NSCLC

Scores were calculated using FRGs in the TCGA-NSCLC
dataset. Subsequently, NSCLC samples were categorized into high-
and low-scoring groups (cutoff value = 2.148193). The analysis
revealed a significant survival difference between the two groups,
with the high-scoring cohort demonstrating a markedly higher
survival rate than the low-scoring group, indicating a potential
association between FRGs and NSCLC prognosis (Figure 1A).
WGCNA was then employed to identify genes associated with
FRG scores. After excluding an outlier sample (Figures 1B, C),
soft threshold screening was conducted, as shown in Figures 1A, D
threshold value of five was determined as optimal based on R2 and
mean connectivity. Hierarchical clustering subsequently uncovered
nine gene modules (Figure 1E), among which the pink module
(r = -0.375, 900 genes) and brown module (r = 0.464, 1,242 genes)
were strongly negatively and positively correlated with scores,
respectively (Figure 1F). The genes from these two modules were
merged, resulting in a set of 2,142 key module genes for further
investigation.

3.2 The 600 candidate genes had a
strong connection with cellular
functional activity

Differential expression analysis in TCGA-NSCLC identified
2,764 DEGs between NSCLC and normal samples, with 2,044
upregulated and 720 downregulated genes (Figures 2A, B). Upon
intersecting the DEGs with the key modular genes, 600 candidate
genes were identified (Figure 2C). Functional enrichment analysis
revealed these candidate genes to be involved in 143 GO terms,
including apical plasma membrane, epidermis development, and
channel activity, as well as 217 pathways such as the PI3K-Akt
signaling pathway and Neuroactive ligand-receptor interaction
(Figures 2D, E). Furthermore, the PPI network indicated complex
interactions among the proteins encoded by these candidate
genes, including SPRR2E-SPRR2B and CBR3-DSC1, among others
(Figure 2F).

3.3 A risk model created using prognostic
genes reliably predicts survival in patients
with NSCLC

Univariate Cox regression and PH assumption tests of
the 600 candidate genes identified eight genes (KLK8, MFI2,
B3GNT3, MYRF, CREG2, GLB1L3, AHNAK2, and NLRP10) with
P < 0.05 (Figure 3A). All 8 genes passed the PH assumption
test (P > 0.05) and were selected as significant prognostic
candidates (Figure 3A). LASSO analysis incorporating these
genes revealed minimal model error (λmin = 0.00263837),
confirming their role as prognostic markers (Figures 3B,
C). Risk scores were calculated from the expression levels

and coefficients of these genes using the TCGA-NSCLC data:
RiskScore=KLK8×(0.0570633314496996)+MFI2×(0.070358659
4018025)+B3GNT3×(0.0877327800833761)+MYRF×
(0.119365343024516)+CREG2(0.164451250257509)+GLB1L3
(−0.116152759959115)+AHNAK2(0.0144952367245304)+

NLRP10(0.649738673795027). Optimal cutoff values for risk
scores stratified samples into high- and low-risk groups in both
the TCGA-NSCLC (Risk score = 0.284514) and GSE37745 datasets
(Risk score = 4.83772). Higher risk scores were associated with
increased NSCLC mortality, and survival curves corroborated
poorer outcomes for the high-risk group (Figures 3D–F). The
survival AUC values at 1, 3, and 5 years surpassed 0.6, indicating
reasonable accuracy of the risk model in predicting patient survival
(Figure 3G). Similar trends were observed in the GSE37745 dataset
(Figures 4A–D).

3.4 A nomogram created based on
independent prognostic factors
accurately predicts the survival in NSCLC

To identify independent prognostic factors for NSCLC, a
univariate Cox regression analysis was performed on six variables:
gender, age, pathologic T, pathologic N, pathologic M, and risk
score. Pathologic T, pathologic N, pathologic M, and risk score
showed significant associations with prognosis (pathologic T and
pathologic M were excluded after failing the PH assumption test)
(Figure 4E). Pathologic N and risk score were then integrated
into a multivariate Cox analysis, resulting in a prognosis model
where pathologic N1, pathologic N2/N3, and risk score emerged as
independent prognostic factors for NSCLC (Figure 4F). Calibration
and ROC curves affirmed the nomogram’s accuracy in predicting
survival based on these independent factors (Figures 4G–I).

3.5 Possible functional regulation among
eight prognostic genes screened in
NSCLC

To explore the functional pathways associated
with the prognostic genes and risk groups, GSEA
was performed. The analysis revealed significant
associations between the risk groups and the
METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450
pathway, among others (Figure 5A). For the prognostic genes,
GLB1L3 and NLRP10 were enriched in the KRAS signaling
pathway; MFI2, B3GNT3, and CREG2 in the Interferon Gamma
Response; and KLK8, GLB1L3, and B3GNT3 in Bile Acid
Metabolism (Figures 5B–I).

3.6 B3GNT3, GLB1L3, and CREG2, along
with regulatory T cells and resting
dendritic cells, may play a more
significant role in NSCLC

To investigate the role of immune cells and immunotherapy
in relation to prognostic genes, an immune microenvironment
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FIGURE 1

Identification of key modular genes associated with FRGs scores in NSCLC. (A) FRGs-related KM curves. (B) Clustering tree for NSCLC samples.
(C) Hierarchical clustering of samples with integrated trait information. (D) Soft threshold selection for network analysis. (E) Co-expressed modular
genes identified via WGCNA. (F) Heatmap depicting correlations between phenotype and module genes. KM, Kaplan-Meier; NSCLC, non-small cell
lung cancer; WGCNA, weighted gene co-expression network analysis; FRGs, ferritinophagy-related genes.

analysis was conducted. Immune infiltration data revealed
significant disparities in the distribution of 10 immune cell
types between the high- and low-risk groups (Figures 6A,
B). Resting dendritic cells showed the strongest positive
correlation with GLB1L3 (r = 0.259), while regulatory T cells
exhibited the most negative association with CREG2 (r = -0.177)
(Figure 6C). Additionally, correlations between prognostic

genes and immunomolecules revealed notable relationships:
CREG2 was strongly positively correlated with chemokine CCL26
(r = 0.540), PVRL2 was linked with B3GNT3 (r = 0.510), NT5E
with B3GNT3 (r = 0.440), and HLA-DMA with GLB1L3 (r = 0.460)
(Figures 6D–G).

Further analysis identified the most prominent correlation
between the risk score and immune cycle Step 4: Treg
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FIGURE 2

Identification of candidate FRGs. (A) Volcano plot illustrating the distribution of genes between NSCLC and normal samples. Red represents
upregulated genes, blue denotes downregulated genes, and gray indicates non-significant genes. (B) Heatmap visualizing differential gene
expression between NSCLC and normal groups. Red indicates high expression density, while blue indicates low expression density. (C) Venn diagram
showing the overlap between differentially expressed genes (DEGs) and WGCNA-identified genes. (D) GO enrichment analysis of candidate genes
depicted in a circular map. (E) KEGG enrichment analysis of candidate genes shown in a circular map. (F) PPI network analysis for candidate genes.
FRGs, ferritinophagy-related genes; NSCLC, non-small cell lung cancer; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
WGCNA, weighted gene co-expression network analysis.
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FIGURE 3

Construction of risk models. (A) Forest plot displaying one-factor Cox regression results for the internal training set (p < 0.05). (B) LASSO regression
coefficients for eight genes. (C) LASSO model residual sum of squares for the eight genes. (D) Risk profiles for the training set, with red indicating
high-risk samples and blue indicating low-risk samples. (E) Survival status plot for the training set, with red representing deceased samples and blue
representing survivors. (F) Kaplan-Meier (KM) survival curves for the training set. (G) ROC curve for the training set. LASSO, least absolute shrinkage
and selection operator; ROC, receiver operating characteristic.
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FIGURE 4

Validation of risk model and construction of prognostic prediction models for the training set. (A) Risk profile plot for the validation set, with red dots
indicating high-risk samples and blue dots representing low-risk samples. (B) Survival status plot for the validation set, with red representing
deceased samples and blue indicating survivors. (C) KM survival curves for the validation set. (D) ROC curve for the validation set. (E) Forest plot of
univariate Cox regression for clinical indicators in the training set. (F) Forest plot of multivariate Cox regression for clinical indicators in the training
set. (G) Nomogram column plot for prognostic prediction. (H) Calibration curves for evaluating prognostic models. (I) ROC curves for the
prognostic prediction models. KM, Kaplan-Meier; ROC, receiver operating characteristic.

cells (r = 0.051) as well as the immunotherapy pathway
Base_excision_repair (r = 0.130) (Figures 7A, B). Immune
checkpoint analysis revealed significant differences in expression
levels of ASXL1, BCL2, CD274, CD33, CD47, CHEK1, CTLA4,
DOT1L, FLT3, MCL1, MDM2, MLH1, PDCD1, and PLK1 between
the two risk groups (Figure 7C). Notably, CD274, CHEK1, DOT1L,
IDH1, PDCD1, and PLK1 positively correlated with risk scores,
while ASXL1, BCL2, CD33, CD47, CTLA4, FLT3, IDH2, MCL1,
MDM2, and MLH1 exhibited negative correlations (Figure 7D).
Moreover, IPS analysis revealed significant differences in the levels
of PD1/PDL1/PDL2 blockers between the high- and low-risk
groups (Figure 7E).

Chemotherapy sensitivity analysis identified 119 compounds
with significantly distinct IC50 values between the two risk
groups, including A.443654 and A.770041 (Figure 7F). In the
TCGA-NSCLC dataset, eight prognostic genes were significantly
differentially expressed between tumor and normal tissues, with
MYRF showing reduced expression and the remaining genes
upregulated in tumors (Figure 7G). qRT-PCR analysis confirmed
the consistent expression patterns of most prognostic genes in the
TCGA-NSCLC dataset, except for NLRP10. Notably, the expression
levels of B3GNT3, GLB1L3, and AHNAK2 did not show significant
differences, possibly due to the limited sample size (Figure 7H).
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FIGURE 5

GSEA enrichment analysis. (A) KEGG enrichment analysis in high- and low-risk groups. (B) KEGG enrichment analysis of KLK8. (C) KEGG enrichment
analysis of MFI2. (D) KEGG enrichment analysis of B3TNG3. (E) KEGG enrichment analysis of MYRF. (F) KEGG enrichment analysis of CREG2.
(G) KEGG enrichment analysis of GLB1L3. (H) KEGG enrichment analysis of AHNAK2. (I) KEGG enrichment analysis of NLRP10. GSEA, Gene Set
Enrichment Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes.

4 Discussion

In the era of precision medicine, the management of
NSCLC has been revolutionized by targeted therapies and
immunotherapies, particularly immune checkpoint inhibitors,
which have significantly improved survival outcomes for certain
patient subsets (35, 36). However, a substantial proportion of
patients remain unresponsive to these treatments, highlighting
the urgent need to identify novel therapeutic targets (3–5).
Ferritinophagy, a selective autophagic process responsible for
the degradation of intracellular ferritin, plays a pivotal role
in ferroptosis (11, 37, 38). Targeting pathways that promote
ferroptosis thus represents a promising avenue for developing
innovative anticancer therapies (39, 40). In this study, we
identified and validated ferritinophagy-related prognostic genes
in NSCLC, constructed a robust prognostic model, and explored
their functional roles and potential as predictive biomarkers for
immunotherapy response. Our findings provide new insights
into the interplay between ferritinophagy, ferroptosis, and the
tumor immune microenvironment, offering potential strategies to
enhance therapeutic efficacy in NSCLC.

Initially, NSCLC samples were scored based on FRGs from the
TCGA-NSCLC dataset, revealing significant survival differences
between the high- and low-scoring groups, underscoring the
prognostic value of FRGs in NSCLC. While previous studies
have investigated FRGs in glioma and head and neck cancers,
similar research in NSCLC has been limited (41, 42). The
overlapping genes from DEGs and key module genes were selected
as candidate genes for further investigation. GO and KEGG
enrichment analyses of these genes indicated their involvement
in several key functions and pathways, including the PI3K-AKT
signaling pathway, Ras signaling pathway, and cytokine-cytokine
receptor interaction. The PI3K-AKT pathway, a key driver of
NSCLC, not only promotes tumor growth but also suppresses
ferroptosis by enhancing lipid metabolism and antioxidant defense
through mechanisms such as SREBP1/SCD1-mediated lipogenesis
(43). Inhibition of this pathway, as demonstrated by compounds
like auriculasin, sensitizes NSCLC cells to ferroptosis, highlighting
its therapeutic potential (44). Additionally, Ras signaling pathway
increases reactive oxygen species (ROS) and alter lipid metabolism,
promoting both cancer progression and sensitivity to ferroptosis.
The enrichment of Ras signaling pathway suggests a potential
crosstalk between Ras signaling and ferritinophagy, further
expanding the mechanistic understanding of FRGs in NSCLC (45).
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FIGURE 6

Immune infiltration analysis and response to immunotherapy. (A) Heatmap showing immune cell distribution in the training set. (B) Box plot
comparing immune cell distribution between high- and low-risk groups. (C) Heatmap illustrating correlations between immune cell subtypes and
prognostic genes. (D) Heatmap of correlations between chemokines and prognostic genes. (E) Heatmap of genetic correlations between
immunostimulatory factors and prognosis. (F) Heatmap of histocompatibility complex and prognostic gene correlations. (G) Heatmap of
correlations between immunosuppressants and prognostic genes.
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FIGURE 7

Immunotherapeutic response analysis and qRT-PCR validation. (A) Heatmap showing the correlation between risk scores and immune pathways in
the training set. (B) Heatmap illustrating the correlation between risk scores and immune cycles in the training set. (C) Box plots of ICI-related gene
expression in high- and low-risk groups. (D) Correlation analysis of ICI expression differential genes between high- and low-risk groups.
(E) Comparison of IPS scores between groups. (F) Differential analysis of drug IC50 values between high- and low-risk groups. (G) Expression
analysis of prognostic genes in high- and low-risk groups. (H) qRT-PCR validation of prognostic gene expression. ICI, immune checkpoint inhibitors.
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

Eight prognostic genes—KLK8, MFI2, B3GNT3, MYRF,
CREG2, GLB1L3, AHNAK2, and NLRP10—were identified, and
a risk model based on these genes effectively predicts the survival
of patients with NSCLC. Several of these genes have been
shown to be significantly associated with NSCLC initiation and
progression. KLK8 (human kallikrein 8) impedes lung cancer
cell invasiveness by degrading fibronectin, reducing integrin
signaling, and inhibiting actin polymerization, thus slowing
cancer cell motility (46). Both in vivo studies and clinical

data from patients with NSCLC reveal that elevated KLK8
levels correlate with slower tumor growth, reduced invasion,
and extended time to postoperative recurrence, particularly in
early-stage cases (47). KLK8’s potential role in ferritinophagy
remains unexplored, but its involvement in extracellular matrix
remodeling suggests it may influence iron homeostasis and tumor
microenvironment dynamics (48, 49). MFI2 (melanotransferrin)
accelerates NSCLC progression by promoting cell proliferation,
metastasis, and invasion through miR-107-mediated NFAT5
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elevation, PI3K/AKT pathway activation, and facilitating exosome-
mediated progression and pre-metastatic niche formation (50).
MFI2’s role in iron transport and its potential interaction with
ferritinophagy warrant further investigation, as iron dysregulation
is a hallmark of cancer progression. Notably, an MFI2-targeting
antibody-drug conjugate is currently in phase I trials, highlighting
its therapeutic potential (51). B3GNT3 is associated with poor
prognosis in NSCLC, particularly in lung adenocarcinoma, where
it influences cell apoptosis and holds promise as an early cancer
screening marker (52, 53). Its role in cancer stem cell self-
renewal and carbohydrate metabolism suggests it may intersect
with ferritinophagy pathways, particularly in regulating iron-
dependent cell death, which is critical for tumor suppression
(54). Additionally, mutations in AHNAK2, particularly deleterious
ones, are linked to improved responses to ICIs in NSCLC,
opening new avenues for predictive biomarker development.
Patients with NSCLC harboring AHNAK2 mutations exhibit
higher tumor mutation burden (TMB), indicating enhanced
tumor immunogenicity, and these mutations are associated with
an activated immune microenvironment, marked by increased
immune cell infiltration and activation (55). Although the roles
of MYRF, CREG2, and NLRP10 in NSCLC have not been
extensively studied, their involvement in other cancers has been
documented. MYRF has been identified as a target of miR-199b-5p,
promoting pancreatic cancer progression (56). Higher expression
of CREG2 correlates with shorter survival times in esophageal
squamous cell carcinoma (57). Moreover, NLRP10 is associated
with a poor prognosis in endometrial cancer by inhibiting NF-
κB activation and apoptosis, along with caspase-1-mediated IL-1β

maturation (58). GLB1L3, expressed predominantly in the central
nervous system, is involved in carbohydrate metabolism and beta-
galactosidase activity, and has been implicated in schizophrenia
(59, 60). No reports have yet linked GLB1L3 to malignancies.
To the best of our knowledge, this study is the first to explore
ferritinophagy-related genes in NSCLC. Further investigation is
required to clarify the specific role of these genes in ferritinophagy
within NSCLC and to assess their potential impact on iron
metabolism and tumor progression.

Additionally, significant correlations between specific
immune cells and prognostic genes were identified. Tumor
microenvironment (TME) analysis using CIBERSORT revealed
that the high-risk scoring group had lower proportions of
regulatory T cells (Tregs), monocytes, resting mast cells, memory
B cells, resting dendritic cells, activated mast cells, and resting
memory CD4+ T cells. In contrast, this group exhibited higher
proportions of M0 macrophages, M1 macrophages, and resting NK
cells. These findings suggest that ferritinophagy-related genes may
modulate immune cell infiltration, influencing NSCLC progression
and patient outcomes. M0 macrophages, often associated with poor
prognosis in cancers such as pancreatic cancer and hepatocellular
carcinoma (61, 62), were enriched in the high-risk group, consistent
with their pro-tumorigenic role. In contrast, M1 macrophages,
which exhibit anti-tumor activity, were also elevated, suggesting a
complex balance between pro- and anti-tumor immune responses.
Ferritinophagy may influence macrophage polarization by
regulating iron homeostasis, as iron accumulation is known to
drive M2-like polarization and immunosuppression (63, 64).
Targeting ferritinophagy could thus reprogram macrophages
toward an anti-tumor phenotype, enhancing immunotherapy

efficacy. Tregs, linked to poor prognosis in various cancers (65–67),
were reduced in the high-risk group. While Tregs typically suppress
anti-tumor immunity, their reduction in this context may reflect
a dysregulated immune microenvironment. Ferritinophagy could
modulate Treg activity by altering iron availability, which is critical
for T cell function (68, 69). Further research is needed to explore
whether ferritinophagy inhibition can selectively target Tregs while
preserving effector T cell responses. Monocytes, associated with
poor prognosis in early-stage lung squamous cell carcinoma (70),
were decreased in the high-risk group, while resting dendritic
cells, linked to better prognosis in lung cancer (71, 72), were also
reduced. Dendritic cells play a crucial role in antigen presentation
and T cell activation, and their suppression may contribute to
immune evasion (73). Ferritinophagy may influence dendritic cell
function by regulating iron-dependent processes such as antigen
processing and cytokine production (68, 74). Resting mast cells,
which regulate the TME and are associated with better prognosis in
lung adenocarcinoma (75), were decreased in the high-risk group.
Conversely, resting memory CD4+ T cells, linked to improved
outcomes in lung adenocarcinoma (76), were also reduced. These
findings suggest that ferritinophagy-related genes like GLB1L3
and AHNAK2 may modulate immune-inflammatory mechanisms
in NSCLC. Elevated GLB1L3 expression was associated with
increased resting dendritic cells, while high AHNAK2 expression
correlated with decreased resting mast cells, highlighting their
potential roles in shaping the immune landscape.

Finally, based on the GDSC database alongside established
prognostic models, potential therapeutic targets and associated
compounds for NSCLC were identified. These include inhibitors
targeting the cell cycle (ABT.263 and AUY922), the PI3K/Akt
pathway (A-443654), and the MAPK pathway (AICAR). ABT.263,
a Bcl-xL/Bcl-2 inhibitor, not only induces apoptosis but may
also enhance ferroptosis, by disrupting mitochondrial membrane
potential and increasing lipid peroxidation (77, 78). This dual
mechanism could explain its strong synergistic effect with TRAIL-
inducing compounds like ONC201/TIC10, which has shown
efficacy across multiple cancer types, including NSCLC (79).
AUY922, an HSP90 inhibitor, demonstrates synergistic anti-
cancer activity with lapatinib in HER2-positive cancers by
destabilizing oncogenic client proteins and modulating stress
responses, potentially including ferroptosis-related pathways (80).
A-443654, an AKT pathway inhibitor, suppresses tumor growth
by inducing apoptosis and may further sensitize NSCLC cells
to ferroptosis through metabolic reprogramming and inhibition
of survival signaling (81–83). AICAR, a purine biosynthesis
intermediate, inhibits EGFR-mutant NSCLC by inducing DNA
damage and apoptosis, with potential crosstalk with ferroptosis
through AMPK activation and subsequent modulation of lipid
metabolism (84). This approach highlights the potential of
AICAR as a therapeutic agent in targeting resistant cancer cells
by exploiting the interconnected pathways of apoptosis and
ferroptosis (85). These findings highlight the therapeutic potential
of targeting ferritinophagy-related mechanisms in NSCLC. Future
research could explore combination strategies, such as pairing
ferroptosis inducers with immune checkpoint inhibitors, to
overcome resistance and improve outcomes in NSCLC treatment.

A key contribution of this study is the development of a novel
prognostic model that effectively distinguishes survival outcomes
and immunotherapeutic responses in NSCLC, integrating clinical
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characteristics, immune infiltration, and drug sensitivity. However,
there are some limitations to this study. First, the clinical sample
size was relatively small, which may affect the broad applicability
of the results. Second, the molecular mechanisms regarding the
FRGs involved in NSCLC are still incompletely understood, and
thus further in-depth studies on the significance of these genes
in diagnosis and treatment are needed. In the future, we plan to
collect more clinical samples and conduct large-scale, prospective
randomized controlled trials to further validate the results of this
study and optimize treatment strategies.

5 Conclusion

In this study, we developed a novel prognostic model using
machine-learning techniques and TCGA data to predict overall
survival in NSCLC patients. This model not only accurately
estimates survival probabilities but also identifies a risk score
strongly associated with the immune microenvironment and
clinicopathological features. Importantly, our findings highlight the
critical role of ferritinophagy-related genes in NSCLC prognosis
and their potential influence on ferroptosis and immune regulation.
Based on these findings, prognostic genes may serve as potential
therapeutic targets to drive the development of novel therapeutic
agents. In addition, the application of this model not only provides
new ideas for the early diagnosis of NSCLC, but also provides an
important basis for the development of personalized therapeutic
regimens, which is of great clinical significance.
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