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The incidence of skin cancer continues to rise due to increased sun exposure and 
tanning habits, requiring early detection and treatment for favorable outcomes. 
Skin biopsy is an important diagnostic tool in dermatology and pathology, as it 
provides a valuable understanding of various skin diseases. Proper handling of skin 
biopsy specimens is vital to ensure accurate histopathological assessment. Still, 
the use of light microscopy and immunofluorescence provides a comprehensive 
approach to evaluating skin biopsy specimens, with each contributing unique 
information to aid in accurate diagnosis and management. This review highlights 
the evolution of skin biopsy practices, from traditional techniques to advanced 
methods incorporating artificial intelligence (AI) and convolutional neural networks. 
AI technologies enhance diagnostic accuracy and efficiency, aiding in the rapid 
analysis of skin lesions and biopsies. Despite challenges such as the need for 
extensively annotated datasets and ethical considerations, AI shows promise in 
dermatological diagnostics. The future of skin biopsy lies in minimally invasive 
techniques, liquid biopsies, and integrated pharmacogenomics for personalized 
medicine.
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Introduction

Skin cancer is one of the most common types of cancer globally, affecting millions of 
people each year. The primary types are basal cell carcinoma (BCC), squamous cell carcinoma 
(SCC), and melanoma, with BCC being the most frequent (1). In 2020, non-melanoma skin 
cancer (NMSC), after lung and prostate cancers, was the third most frequently diagnosed 
cancer in males worldwide. In fact, NMSC was the first and most common cancer in Northern 
America, Australia, and New Zealand (2). The rate of skin cancer is increasing because of more 
sun exposure and tanning habits. Detecting and treating skin cancer early is essential for a 
positive outcome, but there are obstacles to diagnosis and healthcare accessibility. Raising 
public awareness and promoting preventive actions, like applying sunscreen and limiting sun 
exposure, are critical to lowering the risk of skin cancer (3, 4).

Skin biopsies are crucial diagnostic procedures in dermatology, providing valuable 
information about various skin conditions. Skin biopsy is valuable in distinguishing between 
different types of skin diseases, including but not limited to bullous pemphigoid, dermatitis 
herpetiformis, pemphigus vulgaris, epidermolysis bullosa simplex, discoid lupus 
erythematosus, systemic lupus erythematosus, erythema multiforme, lichen planus 
actinicus, leukocytoclastic vasculitis, vasculitis, urticarial vasculitis, polymorphous light 
eruption, demodex follicularis, porphyria, thrombotic thrombocytopenia, vitiligo, and 
psoriasis. Furthermore, it helps in diagnosing spongiotic patterns such as spongiotic 
dermatitis, pompholyx, and pityriasis. Recent advances in skin biopsy techniques for 
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diagnosing alopecia have improved precision in identifying 
underlying causes, particularly in distinguishing between scarring 
and non-scarring types (5). Key techniques include the use of punch 
biopsy, ideally taken at a 4 μm thickness to ensure deeper analysis 
and assessment across all follicle levels (6). Both vertical and 
horizontal sectioning are commonly used to evaluate different layers 
of hair structure and associated pathologies (7, 8). Findings such as 
follicular miniaturization, perifollicular fibrosis, and the ratio of 
growth phase to resting phase hairs help in diagnosing conditions 
such as androgenetic alopecia, alopecia areata, and scarring 
alopecia (9).

A typical skin biopsy involves taking a small tissue sample from 
the skin and examining it under a microscope to identify abnormalities 
and diagnose different skin diseases (10). This method provides 
detailed information about the tissue’s structure and any pathological 
changes. The combined use of light microscopy (LM) and 
immunofluorescence (IF) provides a full approach to diagnosing 
skin biopsies.

LM, through the use of mainly hematoxylin and eosin (H&E), 
offers detailed views of cellular architecture, which facilitates the 
identification of general pathological changes. IF techniques, which 
involve the use of antibodies tagged with fluorescent dyes to detect 
specific antigens in the tissue, are useful for diagnosing autoimmune 
and inflammatory diseases, such as lupus erythematosus and 
pemphigoid, by revealing the presence and distribution of immune 
deposits in the skin. Combining LM and IF enhances diagnostic 
accuracy and provides a comprehensive evaluation of skin biopsy 
specimens (11).

The literature lacks a review that bridges traditional biopsy 
techniques with modern advancements such as AI and convolutional 
neural networks (CNNs). This gap leaves a need for a resource that 
highlights the progression from traditional to modern techniques 
and discusses their combined potential to enhance diagnostic 
accuracy. As the incidence of skin cancer continues to rise, there is a 
pressing need for improved diagnostic tools and techniques. 
Traditional skin biopsy methods, while effective, can be  further 
enhanced by incorporating modern technologies such as AI and 
CNNs (12). These technologies promise to increase diagnostic 
accuracy and efficiency, addressing some limitations of current 
practices. This review highlights the evolution of skin biopsy 
practices, from traditional techniques to advanced methods 
incorporating AI and CNNs.

Histopathological processing of skin 
biopsies

After obtaining informed consent, the area of the skin to 
be  biopsied is cleaned with an antiseptic solution, and using a 
dissecting microscope to look for gross indications such as blisters or 
vesicles, a fresh skin biopsy is bisected into two pieces: one half for 
light microscopy and the other half for immunofluorescence (13). For 
light microscopy, the skin biopsy portion is fixed in 10% neutral 
buffered formalin, processed for histology, sectioned at 3 μm 
thickness, and stained using the hematoxylin and eosin method. For 
immunofluorescence, the skin biopsy portion is snap-frozen in liquid 
nitrogen, sectioned at 5 μm thickness, fixed in cold acetone, and 
stained with fluorescence isothiocyanate-conjugated antibodies.

Immunofluorescence (IF)

IF is a powerful technique used in conjunction with skin biopsy 
to diagnose various skin diseases. In dermatology, IF is particularly 
useful for diagnosing autoimmune blistering diseases and other 
dermatoses (14). When combined with a skin biopsy, IF provides 
detailed information about the presence and distribution of immune 
components in the skin (15). Direct IF (DIF) is the most commonly 
used method for skin biopsies. DIF demonstrates IgG, IgA, and IgM 
immunoglobulins, and C3 complement in skin biopsies (16). For 
example, DIF shows IgG and C3 deposits in the epidermis in 
pemphigus vulgaris, reveals linear IgG and C3 deposits along the 
basement membrane zone in Bullous Pemphigoid, demonstrates 
granular IgA deposits at the dermal-epidermal junction in dermatitis 
herpetiformis, and shows a full band of IgG, IgM, IgA, and C3 at the 
dermo-epidermal junction in lupus erythematosus (17, 18).

Skin frozen section

The frozen section procedure for skin biopsy is a quick, 
intraoperative diagnostic method, often used in surgeries for skin 
cancer, such as Mohs micrographic surgery (MMS) (19). After the 
tissue sample is collected, it is rapidly frozen in a cryostat, allowing the 
tissue structure to be preserved temporarily without formalin fixation. 
A measure of 5–6 μm thickness is then cut using a cryostat and stained 
with hematoxylin and eosin, for microscopic examination. Then, the 
pathologist assesses the tissue’s cellular structures and determines 
whether cancer cells are present at the margins, which guides the 
surgeon on whether further excision is needed (20).

Types of skin biopsy

Several techniques are used to obtain skin biopsy specimens, each 
with its indications: Punch biopsy, where a circular blade is used to 
remove a cylindrical core of skin, including the epidermis, dermis, and 
superficial subcutis. It is commonly used to diagnose inflammatory 
and neoplastic skin conditions. Shave biopsy, where a scalpel or razor 
blade is used to shave off a superficial layer of skin. This method is 
suitable for lesions confined to the epidermis, such as warts and 
superficial basal cell carcinomas. Excisional biopsy, where the entire 
lesion is removed with a margin of normal skin. It is used for small, 
suspicious lesions where complete removal is necessary. An incisional 
biopsy, where a portion of the lesion is removed, is often used for 
larger lesions or when a diagnosis cannot be made with less invasive 
methods (21). Figure 1 shows the different types of skin biopsies.

Artificial intelligence (AI) and convolutional 
neural networks (CNNs)

AI is a branch of computer science focused on creating systems 
capable of performing tasks that typically require human intelligence. 
These tasks include learning, reasoning, problem-solving, 
understanding language, and recognizing patterns (22). AI 
technologies, such as machine learning and neural networks, enable 
computers to learn from data and improve over time. AI is widely used 
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in various fields, including healthcare, helping to automate processes, 
enhance decision-making, and solve complex problems. It enhances 
the ability to diagnose, treat, and manage diseases (23). In 
dermatology, AI, particularly through technologies such as CNNs, is 
used to analyze images of skin lesions, helping to detect conditions 
such as skin cancer with high accuracy (24). AI assists dermatologists 
by providing quick and precise analyses, reducing the time needed for 
diagnosis, and improving patient outcomes.

CNNs are a specialized type of AI designed to process and analyze 
visual data. It mimics the human brain’s way of recognizing patterns 
and features in images, making it particularly effective for tasks such 
as image classification, object detection, and facial recognition (25). 
CNNs are widely used in various fields, including healthcare, where 
they assist in diagnosing medical images, as well as in technology for 
applications such as self-driving cars and image search engines. Their 
ability to learn from large sets of labeled data allows them to identify 
complex patterns and provide accurate predictions. There are different 
types of CNN architectures available, such as NASNet-Large, AlexNet, 
Inception-ResNet-v2, Inception-v3, ResNet-50, SqueezeNet, and 
Vgg19, and (26, 27). In dermatology, CNNs are used to help diagnose 
skin conditions by examining images of skin lesions (28, 29). They can 
differentiate between various types of skin cancers such as melanoma 
and basal cell carcinoma, with high accuracy (30). By learning from 

thousands of labeled images, CNNs can assist dermatologists in 
making quicker and more accurate diagnoses, improving patient care 
and outcomes (31). However, a key concern with AI is bias caused by 
a lack of diverse skin tones in training data. Research shows that many 
AI systems are mainly trained on images of lighter skin, making them 
less accurate at diagnosing conditions in people with darker skin 
(32–34). A review, which identified that only 20% (14/70) about race 
and 10% (7/70) about skin color, reported that bias may contribute to 
higher rates of false positives and false negatives, thus affecting patient 
outcomes and contributing to healthcare differences (35). A recent 
systemic review has also reported that the majority of the studies 
reviewed were obtained from light skin and therefore provide 
insufficient evidence to comment on the overall accuracy of AI models 
for darker skin types. They concluded that the lack of diversity in 
studies is likely caused by the shortage of available datasets (36).

AI techniques in skin biopsy

The excitement regarding AI in dermatology began in 2017 when 
a study compared the diagnostic performance of an AI-powered 
network with that of 21 board-certified dermatologists in evaluating 
biopsy-proven clinical images of benign and skin cancers. The findings 

FIGURE 1

Illustration of different types of skin biopsies.
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showed that the AI system demonstrated diagnostic accuracy equal to 
that of human experts, achieving a level of competence comparable to 
that of experienced dermatologists (24).

Not widely applied but several studies have shown that direct 
image analysis is a reality for accurate classification of routine 
diagnoses for skin biopsies (37–40). In fact, one of the common 
uses of AI in skin biopsy is diagnosis. Basal cell carcinoma (BCC) 
showed a sensitivity of 98.23% and a specificity of 98.51% using 
CNNs from 1,255 whole-slide images (41). Another study revealed 
that CNNs achieved an accuracy of 99.5% for nodular BCC, 99.3% 
for dermal nevus (DN), and 100.0% for seborrheic keratosis (SK) 
(42). Another interesting finding regarding the AI is that CNNs, 
which were trained using 595 histopathologic images of 
melanomas and nevi, were classified by an expert dermato-
histopathologist. When tested with an additional 100 images, the 
CNNs showed a discordance rate of only 19% compared to the 
histopathologist’s classifications (43). This rate is similar to the 
discordance between human pathologists, which is reported in the 
literature to be 25–26% (44, 45).

A total of 1,377 patches of healthy tissue and 2,141 patches of 
melanoma were assessed in the training/validation set, while 791 
patches of healthy tissue and 1,122 patches of pathological tissue 
were evaluated in the test dataset. The CNN findings showed 
95.7% sensitivity, 97.7% specificity, and 96.5% accuracy when 
compared with the dermatopathologist results (46). In a 
retrospective study, which reviewed 225,230 pathological patches 
cut from 79 formalin-fixed paraffin-embedded pathological slides 
from 73 patients (55 non-malignant eyelid nevus slides from 55 
patients and 24 malignant melanoma slides from 18 patients), 
H&E stained whole-slide images (WSIs) and compared with 7 
board-certified pathologists, the CNN findings showed 91.4% 
accuracy, 91% sensitivity, and 92.8% specificity (47).

In comparison with 95 human experts, of whom 62 were board-
certified dermatologists, the CNNs, which were trained on 7,895 
dermoscopic and 5,829 close-up images of lesions excised at a 
primary skin cancer clinic, showed a higher accuracy rate than those 
experts in diagnosis of common malignant cases such as basal cell 
carcinoma, actinic keratoses or Bowen disease, and squamous cell 
carcinoma or keratoacanthoma but did not reach the accuracy of 
human experts in rare malignant non-pigmented lesions such as 
amelanotic melanoma and benign non-pigmented lesions (48). It is 
important to note that amelanotic melanoma is not easy to diagnose, 
even for experts (49). Another systematic review of 39 studies for the 
detection of NMSC found that the AI overall diagnostic accuracy, in 
comparison with histopathologic diagnosis, was high and ranged 
from 72 to 100% (50). In a training set of 1,629 images (743 malignant 
lip, 886 benign lip diseases), the findings showed that CNNs were 
equivalent to the dermatologists and superior to the 
non-dermatologists in classifying malignancy (51). On a set of 1,417 
images from 308 regions of interest on skin histopathology slides, 
where the presence or absence of basal cell carcinoma needs to 
be determined, the findings showed that deep learning architectures 
had a 91.4% accuracy in comparison with histopathology (52).

Another important use of AI in dermatology is with 
onychomycosis, which is best demonstrated by the periodic-acid-
Schiff (PAS) staining method in comparison with other methods 
such as direct microscopy using potassium hydroxide staining, 
fluorescence optical preparation, and culture (53, 54). PAS has high 

specificity, is not expensive, and the detection of tinea is high if 
present in a high number (55). However, if the fungi are present in 
a small number, histopathologic detection is time-consuming and 
the risk of missing fungi is high (56). Subsequently, this might result 
in a delay in diagnosis and repeating preparation and analysis (57). 
The literature shows that the sensitivity of detecting fungi using 
histopathologic evaluation has been reported to range between 80 
and 85% (58). A study, that used CNNs with 664 corresponding 
H&E- and PAS-stained histologic whole-slide images (WSIs) of 
human nail plates from four different laboratories, showed a 
sensitivity and specificity of 93 and 77%, respectively. Their study 
demonstrated comparable sensitivity to that of the 11 board-
certified dermatopathologists (56). Another similar study reported 
that CNNs showed 94.1% sensitivity and 98% specificity, for a 
dataset of 528 whole-slide images of nail samples for onychomycosis 
(59). Another interesting finding of AI with microorganisms is that 
the CNN model in a dataset of 1,819 thick smear images from 150 
patients showed effectiveness in discriminating between positive 
(parasitic) and negative image patches with 93.46% accuracy, 
92.59% sensitivity, 94.33% specificity, 94.25% precision, and 92.74% 
negative predictive value (60). A recent systemic review on the use 
of AI in skin disease diagnosis in primary care settings showed that 
CNN has a sensitivity ranging from 58 to 96.1%, with accuracies 
varying from 41 to 93% (61). Other studies have used AI in research 
in dermatopathology (62, 63). These findings highlight the AI 
potential to enhance diagnostic accuracy and efficiency 
in dermatopathology.

Artificial intelligence (AI) applications in frozen section analysis 
are advancing to assist pathologists in rapidly evaluating slides, 
identifying cancerous cells, and distinguishing them from healthy 
tissue, which enhances diagnostic speed and accuracy in the operating 
room setting. Several studies using AI and deep learning models have 
been valuable tools in enhancing the assessment of MMS slides for 
skin cancer detection with high sensitivity and specificity rates (64, 
65). A review of selected recent articles on the application of artificial 
intelligence in diagnosing and managing skin diseases is shown in 
Table 1.

Benefits of AI in skin biopsy

AI assists in the interpretation of biopsy samples. AI serves as 
a valuable tool for pathologists, offering second opinions and 
highlighting areas of concern within biopsy samples (40). AI can 
reduce diagnostic errors by providing consistent and objective 
analysis, minimizing inter- and intra-observer variability (66). AI 
can process large volumes of biopsy samples quickly, reducing 
turnaround times and enabling faster diagnosis and treatment 
initiation. AI can be  used to predict disease outcomes and 
responses to treatment based on biopsy findings and other patient 
data, aiding in personalized medicine and tailored therapeutic 
strategies (67).

Future directions for skin biopsy

As technology advances, there is a growing potential to 
enhance the diagnostic abilities of skin biopsy through innovative 
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TABLE 1 Review of selected recent articles on the application of artificial intelligence in diagnosing and managing skin diseases.

Authors Study titles AI type Publication 
year

Marsden et al. (84) Accuracy of artificial intelligence as a medical device as part of a UK-

based skin cancer teledermatology service

CNN: Artificial intelligence medical 

device

2024

Liu et al. (85) Predicting skin cancer risk from facial images with an explainable 

artificial intelligence (XAI) based approach: a proof-of-concept study

Explainable artificial intelligence 2024

Tan et al. (86) Development and validation of a deep learning model for improving 

detection of non-melanoma skin cancers treated with Mohs micrographic 

surgery

CNN 2024

Li et al. (87) Deep learning approach to classify cutaneous melanoma in a whole-slide 

image

EfficientNetB1 CNN 2023

Cozzolino et al. (88) Machine learning to predict overall short-term mortality in cutaneous 

melanoma

Logistic regression classifier, Support 

vector machine, Random forest, Gradient 

boosting, k-nearest neighbors, Deep 

neural network

2023

Aung et al. (89) Objective assessment of tumor-infiltrating lymphocytes as a prognostic 

marker in melanoma using machine learning algorithms

NN192 2022

Brodsky et al. (90) Performance of automated classification of diagnostic entities in 

dermatopathology validated on multisite data representing the real-world 

variability of pathology workload

CNN 2022

Dika et al. (91) Advantages of manual and automatic computer-aided compared to 

traditional histopathologic diagnosis of melanoma: A pilot study

CNN 2022

Couetil et al. (92) Predicting melanoma survival and metastasis with interpretable 

histopathologic features and machine learning models

CNN 2022

Figueroa-Silva et al. (93) Machine learning techniques in predicting BRAF mutation status in 

cutaneous melanoma from clinical and histopathologic features

Random forest, Support vector machine, 

and Extreme gradient boosting

2022

Li et al. (94) Application of deep learning on the prognosis of cutaneous melanoma 

based on full-scan pathology images

Deep learning (VGG-19), machine 

learning (SVM)

2022

Comes et al. (95) A deep learning model based on whole-slide images to predict disease-

free survival in cutaneous melanoma patients

CNNs: ResSVM, DenseSVM, 

InceptionSVM

2022

Mund et al. (96) Deep visual proteomics defines single-cell identity and heterogeneity Deep visual proteomics and deep learning, 

machine learning

2022

Cazzato et al. (97) Dermatopathology of malignant melanoma in the era of artificial 

intelligence: a single institutional experience

Fast random forest algorithm 2022

Wang et al. (98) Self-supervised learning mechanism for identification of eyelid malignant 

melanoma in pathologic slides with limited annotation

Self-supervised learning CNN 2022

Kriegsmann et al. (99) Deep learning for the detection of anatomical tissue structures and 

neoplasms of the skin on scanned histopathologic tissue sections

EfficientNetV2 architecture 2022

Nielsen et al. (100) Computer-assisted annotation of digital H&E/SOX10 dual stains 

generates a high-performing convolutional neural network for calculating 

tumor burden in H&E-stained cutaneous melanoma

CNN 2022

Sturm et al. (101) Computer-aided assessment of melanocytic lesions by means of a mitosis 

algorithm

CNN: mitosis algorithm 2022

Wan et al. (102) Prediction of early-stage melanoma recurrence using clinical and 

histopathologic features

Support vector machine, Gradient 

boosting, Random forest, Logistic 

regression, Multilayer perceptron

2022

Snyder et al. (103) Histologic screening of malignant melanoma, spitz, dermal, and 

junctional melanocytic nevi using a deep learning model

CNN standard ResNet-50 2022

Doeleman et al. (104) Artificial intelligence-assisted probability scoring for differentiation of 

early mycosis fungoides and benign inflammatory dermatoses on H&E-

stained pathology slides of skin biopsies

Clustering-constrained Attention Multiple 

Instance Learning (CLAM)

2022

CNN, convolutional neural network.
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techniques and tools. Future developments aim to improve the 
precision, efficiency, and comprehensiveness of skin biopsies, 
finally benefiting patient care. Regarding innovations in biopsy 
techniques, there have been significant advancements in 
minimally invasive procedures and liquid biopsy methods. 
Microneedle biopsy involves the use of microneedle arrays to 
collect small amounts of tissue or interstitial fluid with less 
discomfort and scarring for patients (68, 69). Laser-assisted 
biopsy uses lasers to precisely target and excise tissue samples, 
minimizing damage to surrounding areas and enhancing accuracy 
while reducing healing times (70). Additionally, research into 
liquid biopsy focuses on identifying circulating biomarkers, such 
as cell-free DNA, RNA, and proteins, which can provide 
diagnostic information from a blood sample and potentially 
reduce the need for traditional tissue biopsies (71). Due to 
advances in multi-omics such as genomics, transcriptomics, and 
in genomic analyses such as next-generation sequencing, the 
identification of many gene mutations has been explored, as with 
BRAF, NRAS, and c-KIT in melanoma (72–74). Regarding 
personalized medicine and precision dermatology genomic and 
molecular profiling by integrating these data with skin biopsy 
results to gain a comprehensive understanding of individual 
patient conditions. This approach can guide targeted therapies 
and improve treatment outcomes (75, 76). Pharmacogenomics, 
the study of how genes affect a person’s response to drugs, is 
increasingly being used in skin biopsy analysis to modify 
treatments and improve outcomes. This approach allows for 
personalized medicine, where genomic and molecular profiling 
of biopsy samples can reveal specific genetic variations that 
influence drug efficacy and safety (77). For instance, 
understanding a patient’s unique genetic makeup can help 
dermatologists select the most effective therapies and minimize 
adverse effects, optimizing the treatment of skin cancers and 
other dermatological conditions (78, 79). As technology evolves, 
the integration of pharmacogenomics with skin biopsies holds 
promise for more precise and effective dermatological care.

Limitations of AI in skin biopsies

Despite the prevalence of skin lesions, scientists face 
challenges in obtaining annotated training and skin images as skin 
disease images are still insufficient (80). One critical challenge 
with CNNs is their need for a large amount of data; the quality and 
size of the image dataset are essential for effective CNN training 
and validation (81). Another important drawback is that experts 
in computer science, biomedical, and medicine are insufficient 
(82). Furthermore, gaining acceptance from healthcare 
professionals requires addressing concerns about reliability and 
transparency. Another major issue with AI is determining who is 
responsible for any diagnostic errors made by the AI. As well as 
other moral and ethical issues related to the use of AI. In addition, 
there are many kinds of skin diseases (83). It might be difficult for 
AI to identify all specific skin diseases. Furthermore, as AI models 
trained mostly on lighter skin tones may have lower accuracy for 
darker skin, this might raise concerns about diagnostic 
differences (36).

Conclusion

Histopathological diagnosis of skin biopsy is still the gold 
standard method for skin diseases. However, the integration of 
traditional histopathological techniques such as light microscopy 
and immunofluorescence with advanced technologies such as 
artificial intelligence and convolutional neural networks enhances 
diagnostic accuracy and efficiency. Innovations in biopsy 
techniques, including minimally invasive procedures and liquid 
biopsies, should further improve patient outcomes by reducing 
discomfort and providing comprehensive diagnostic information. 
The application of pharmacogenomics in skin biopsy analysis 
facilitates personalized medicine by modifying treatments based 
on individual genetic profiles. Despite the advancements, 
challenges remain, in particular, in obtaining high-quality 
annotated images for training AI models and addressing ethical 
and responsibility concerns associated with AI diagnostics. 
Overall, the review highlights the evolution and future potential 
of skin biopsy practices in improving dermatological care.
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