Check for updates

OPEN ACCESS

EDITED BY Ying-Yong Zhao, Northwest University, China

REVIEWED BY Kabelo Mokgalaboni, University of South Africa, South Africa Zhejiang Chinese Medical University, China Yuwei Yang, Mianyang Central Hospital, China Fatma Ibrahim, National Research Centre (Egypt), Egypt

*correspondence Wenpeng Cui ⊠ wenpengcui@163.com

RECEIVED 31 July 2024 ACCEPTED 24 February 2025 PUBLISHED 17 March 2025

CITATION

Yu M, Liu S, Li J, Ni C, Li X and Cui W (2025) Efficacy of antioxidant intervention and exercise intervention for lipid peroxidation in dialysis patients: a meta-analysis. *Front. Med.* 12:1473818. doi: 10.3389/fmed.2025.1473818

COPYRIGHT

© 2025 Yu, Liu, Li, Ni, Li and Cui. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Efficacy of antioxidant intervention and exercise intervention for lipid peroxidation in dialysis patients: a meta-analysis

Mengyuan Yu, Shengmao Liu, Jian Li, Ce Ni, Xinyang Li and Wenpeng Cui*

Department of Nephrology, The Second Hospital of Jilin University, Changchun, China

Background: Lipid peroxidation is a major factor known to contribute to occurrence of cardiovascular events in dialysis patients. This study aims to investigate whether antioxidant interventions can improve lipid peroxidation damage in dialysis patients.

Methods: A comprehensive search in PubMed, Embase, and the Cochrane Library was conducted to identify eligible randomized controlled trials (RCTs) up to June 2024. Endpoints of interest included biomarkers related to Lipid peroxidation. The results from eligible studies were performed using RevMan 5.3 and Stata17.0 software.

Results: A total of 25 RCTs were included, involving eight interventions such as vitamin C supplementation, vitamin E supplementation, vitamin E-coated dialyzer, ω -fatty acid supplementation, curcumin supplementation, pomegranate juice supplementation, exercise intervention, and multiple antioxidant interventions. Outcome indicators included malondialdehyde (MDA) and oxidized low-density lipoprotein (Ox-LDL). The meta-analysis revealed that vitamin E supplementation caused significant reductions in MDA (p = 0.01). Treatment with vitamin E-coated dialyzer markedly decreased MDA levels (p < 0.0001). Curcumin supplementation significantly reduced Ox-LDL levels (p = 0.03). Exercise intervention decreased MDA levels (p < 0.0001). Multiple antioxidant interventions significantly decreased MDA (p = 0.01).

Conclusion: Supplementation of vitamin E, vitamin E-coated dialyzer treatment, curcumin supplementation, exercise intervention, and multiple antioxidant interventions can effectively reduce the level of lipid peroxidation biomarkers in dialysis patients.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO (CRD42023455399).

KEYWORDS

lipid peroxidation, hemodialysis, peritoneal dialysis, antioxidant intervention, exercise intervention

1 Introduction

Oxidative stress (OS) refers to the imbalance between excess oxidants (free radicals) and the complete clearance of these free radicals by the internal antioxidant system (1). The kidneys, due to their abundant polyunsaturated fatty acids, are particularly susceptible to attacks from reactive oxygen species (ROS) (2). Studies have demonstrated that as kidney function deteriorates, OS gradually worsens (3). From 2003 to 2016, while incidence rates of treated end-stage renal disease (ESRD) remained relatively stable in many high-income countries, they significantly increased, particularly in East and Southeast Asia. In 2015, China had an estimated prevalence of 402 individuals per million receiving hemodialysis (HD) and 40 per million receiving peritoneal dialysis (PD), corresponding to approximately 553,000 HD patients and 55,000 PD patients (4). In clinical practice, HD is one of the main renal replacement therapies for ESRD patients. However, during HD, blood remains exposed to the dialyzer membrane or dialysis solution. This non-selective solute removal process results in the loss of essential substances, including antioxidants (5, 6). Meanwhile, the complement factors, platelets, and polymorphonucleus are activated within minutes following HD treatment (7), which exacerbates OS in HD patient. As an alternative therapy for ESRD patients, PD, offers higher biocompatibility than HD. A recent meta-analysis found that diabetic renal failure patients treated with PD had a lower incidence of cardiovascular events than HD (8). Nonetheless, due to the composition of PD fluid, peritoneal cells are exposed to a high-glucose environment caused by glucose or its degradation products, leading to OS damage (9). Overall, dialysis patients experience elevated OS.

Some clinical studies have attempted to develop antioxidant interventions for dialysis patients. However, these studies employ varied antioxidant intervention methods, leading to inconsistent conclusions. For example, vitamin C, a universal antioxidant, has demonstrated efficacy against OS in multiple clinical studies (10-13). However, a clinical trial study by De Vriese et al. (14) suggested that vitamin C supplementation could aggravate OS in dialysis patients. Presently, there is no meta-analysis addressing vitamin E supplementation in HD patients. There was only one meta-analysis on vitamin E supplementation in hemodialysis patients (15). However, the included literature does not consist solely of high-quality RCTs, resulting in high heterogeneity and controversial conclusions. A double-blind controlled experiment by Ahmadi et al. (16) found that vitamin E alone did not significantly alleviate OS in dialysis patients. Yet, the combination of vitamin E and alpha-lipoic acid significantly reduced OS. The use of anti-inflammatory substances in dialysis patients has gained increasing attention. A recent meta-analysis suggests that curcumin-containing supplements may modulate inflammatory biomarkers in HD patients (17). Beyond conventional antioxidants, emerging evidence highlights the therapeutic potential of phytochemical-rich interventions. Notably, pomegranate has demonstrated significant antioxidant efficacy in clinical settings (18). A recent review suggested that pomegranate may exert antioxidant, anti-inflammatory effects and improve blood lipids in hemodialysis patients (19). Consequently, a comprehensive meta-analysis of all available research in this field is imperative.

Oxidative stress is primarily assessed based on oxidation end products, such as lipid peroxidation, DNA damage, and end products of protein and amino acid oxidation. Lipids, as essential components of cell membranes or lipoproteins, are susceptible to ROS attacks due to their active double bonds (20). Lipid peroxidation participates in the development of atherosclerosis, a major contributor to cardiovascular disease (21). Cardiovascular complications represent a significant cause of mortality in patients with ESRD (22). A cohort study utilizing the US Renal Data System revealed that cardiovascular disease accounted for nearly 40% of all deaths in ESRD patients, a rate 500 times higher than that observed in the general population (23). Oxidized low-density lipoprotein (Ox-LDL), an early OS marker of oxidative stress and modified form of LDL, has been extensively studied in HD patients as a potential indicator of atherosclerosis-associated diseases (24). Therefore, lipid peroxides were selected as markers of OS in this meta-analysis. This study aims to consolidate existing evidence regarding the effects of antioxidant intervention on lipid peroxidation in dialysis patients.

2 Methods

2.1 Protocol registration

The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations (25). The review protocol was registered on PROSPERO (CRD42023455399).

2.2 Information sources

A search was performed on June 30, 2024 on the PubMed, Embase, and the Cochrane Library to identify eligible studies, specifically focusing on population-based RCTs, without restriction to language preference.

2.3 Inclusion criteria

(1) Population-based studies. (2) The study type was RCT. (3) Study participants must be at least 18 years of age. (4) Receiving regular HD (3 times a week) as kidney replacement therapy for \geq 2 months. (5) The study reported blood biomarker levels of lipid peroxidation.

2.4 Exclusion criteria

(1) Reviews, *in vitro* studies, case reports, conference minutes, and other literature were excluded. (2) Studies involving participants with malignant or acute inflammatory diseases, cancer, or other major underlying diseases were excluded. (3) Articles lacking complete data were excluded. (4) Duplicate data and articles that could not be meta-analyzed were excluded.

2.5 Search strategy

Search keywords included terms such as "hemodialysis," "peritoneal dialysis," "lipid peroxidation," "malondialdehyde," "thiobarbituric acid reactive substances," "TBARs," "Ox-LDL," "8-iso-prostaglandin $F_{2\alpha}$ " and "4-hydroxynonenal." The search strategy involved all possible combinations of subject terms and free words.

2.6 Data collection process

The selection process was divided into two steps, each carried out independently by two reviewers. Discrepancies between reviewers were resolved with the assistance of a third researcher.

2.7 Study risk of bias assessment

Two reviewers independently assessed study quality using the Cochrane Collaboration's risk of bias assessment criteria. To minimize bias in evaluation, discrepancies were resolved through discussion and consensus between the two reviewers, ensuring evaluation consistency.

2.8 Data extraction

Two researchers independently used standardized tables to extract data including study design, study population, age, dialysis duration, country, biomarker level, sample source, and comparison results. Non-standard data types were transformed for extraction. Outcomes were measured with quantitative biomarkers levels (mean \pm standardized mean difference). The data were presented in tabular form.

2.9 Synthesis methods

A meta-analysis was performed using RevMan 5.3 and Stata17.0 software, quality assessment was conducted using the Cochrane risk of bias assessment tool. And I^2 statistics were used to assess heterogeneity in the literature (26). An $I^2 = 0$ indicated no heterogeneity among studies. When the $I^2 < 50\%$, it signified a lack of significant heterogeneity among the studies, and the fixed-effect model was applied. In cases where the $I^2 \ge 50\%$, indicating significant heterogeneity, the random effects model was applied. The source of heterogeneity was explored through meta-regression and subgroup analysis (27). Sensitivity analysis was conducted for outcome indicators with more than three studies. Egger regression test and funnel plots were employed to investigate the level of publication bias among the outcome indicators with more than two studies (28).

3 Result

3.1 Study selection

A total of 1,608 main articles were initially identified through data retrieval, and after removing duplicates, 1,519 articles remained. Upon careful review of titles and abstracts, 98 articles required detailed screening. Based on the inclusion and exclusion criteria, 70 publications were finally excluded from the meta-analysis. Of these, 42 studies did not conform to the RCT design, 15 studies were not relevant to the topic of our study, three studies were published by the same research team resulting in duplication of data, two studies did not provide original data and eight studies could not be accessed in full text. Finally, 25 studies were included in this meta-analysis, comprising a total of 1,256 participants. The interventions included

vitamin C supplementation, vitamin E supplementation, vitamin E-coated dialyzer, ω -fatty acid supplementation, curcumin supplementation, juice supplementation, exercise intervention, and multiple antioxidant interventions. The review focused on two lipid peroxide markers: MDA and Ox-LDL. Detailed information about the included studies is presented in Table 1. The literature screening flow chart is illustrated in Figure 1, and the bias assessment of the included studies is shown in Figure 2.

3.2 Therapeutic efficacy of various antioxidant Intervention strategies

3.2.1 The therapeutic effect of vitamin C supplementation

Regarding the vitamin C supplementation intervention, data from four experimental groups (n = 100 participants) were included in the final meta-analysis. The meta-analysis found no significant reduction in MDA levels among dialysis patients after vitamin C supplementation (SMD = -0.23, 95% CI -0.64 to 0.17, p = 0.26), $I^2 = 44\%$, with no significant heterogeneity observed (Figure 3A).

3.2.2 The therapeutic effect of vitamin E supplementation

For the vitamin E intervention arm, the six eligible trials (n = 214 participants) were pooled using fixed-effects models ($I^2 = 0\%$), yielding a standardized mean difference of -0.36 (95% CI: -0.63 to -0.08, p = 0.01) for MDA levels reduction (Figure 3B).

3.2.3 The therapeutic effect of vitamin E-coated dialyzer

Regarding the vitamin E-coated dialyzer intervention, data from six experimental groups (n = 156 participants) were included in the final meta-analysis. The meta-analysis showed a significant reduction in Ox-LDL levels in dialysis patients treated with a vitamin E-coated dialyzer (SMD = -0.70, 95% CI -1.32 to 0.09, p = 0.02). Notably, there was no heterogeneity between studies ($I^2 = 0\%$). Meanwhile, MDA levels also exhibited a significant decrease (SMD = -1.40, 95% CI -1.84 to -0.97, p < 0.0001), with no significant heterogeneity ($I^2 = 49\%$) (Figure 3C).

3.2.4 Therapeutic effect of ω -fatty acids supplementation

Regarding the ω -fatty acids supplementation intervention, data from two experimental groups (n = 94 participants) were included in the final meta-analysis. The meta-analysis revealed no significant reduction in MDA levels in dialysis patients receiving ω -fatty acids supplementation (SMD = -0.60, 95% CI -1.33 to 0.13, p = 0.11), $I^2 = 65\%$. Given the significant heterogeneity, a random effects model was employed (Figure 3D).

3.2.5 The therapeutic effect of curcumin supplementation

Regarding the curcumin supplementation intervention, data from four experimental groups (n = 167 participants) were included in the final meta-analysis. The meta-analysis revealed a significant reduction in MDA levels among dialysis patients following curcumin supplementation (SMD = -1.96, 95% CI

TABLE 1 Basic information of the included studies.

Study	Country	Additional intervention	Intervention time	Duration of dialysis	Age	Outcome indicator (source) (unit)		
				(month)		Mean <u>+</u> SD	Mean <u>+</u> SD	
						Control	Experimental	
Abdollahzad et al. (11)	Iran	Vitamin C (250 mg/ day)	12 weeks	2-12	60 ± 17.10	MDA(S)(nmol/ mL) 3.10 ± 1.70	MDA(S) (nmol/mL) 2.70 ± 2	
Ahmadi et al. (16)	Iran	Vitamin E (400 IU/ day)	2 months	16.5 ± 4.8	44.80 ± 12.70	MDA(P) (μmol/L) 6.20 ± 5.30	MDA(P) (μmol/L) 4.70 ± 1.20	
Ahmadi Aet al (16).	Iran	Vitamin E (400 IU/ day) + ALA (600 mg/day)	2 months	16.2 ± 5.2	53.20 ± 9.80	MDA(P) (µmol/L) 6.20 ± 5.30	MDA(P) (µmol/L) 4.50 ± 1.30	
Alvarenga et al. (55)	Brazil	Curcumin (2.5 g/ day)	3 months	≥3	54 ± 15	MDA (S) (µmol/L) 1.30 (0.10–2.50)	MDA (S) (μmol/L) 1.08 (0.25-4.41)	
Asemi et al. (51)	Iran	ω-fatty acids (1,250 mg/day)	12 weeks	>12	18-80	MDA(P) (μmol/L) 5.70 ± 2.90	MDA(P) (μmol/L) 3.40 ± 1.80	
Asemi et al. (51)	Iran	Vitamin E (400 IU/ day) + ω-fatty acids (1,250 mg/day)	12 weeks	>12	54.90 ± 14.30	MDA(P) (µmol/L) 5.70 ± 2.90	MDA(P) (µmol/L) 3.40 ± 1.40	
Barati Boldaji et al. (56)	Iran	Pomegranate juice (100 mL/day)	8 weeks	>3	47.80 ± 13.30	MDA (S) (µmol/L) 0.91 ± 0.01	MDA (S) (μmol/L) 0.77 ± 0.01	
Candan et al. (10)	Turkey	Vitamin C (250 mg/ day)	90 days	>3	45.60 (28-64)	MDA(P) (nm/g Hb) 4.16 ± 0.30	MDA(P) (nm/g Hb) 3.30 ± 1.08	
Chao et al. (12)	Taiwan	Vitamin C (400 mg/ day)	10 weeks	>3	57 ± 14	MDA(P) (μmol/L) 36.30 ± 24.60	MDA(P) (μmol/L) 52.90 ± 19.80	
Chao et al. (12)	Taiwan	Vitamin E (400 mg/ day)	10 week	>3	62 ± 8	MDA(P) (µmol/L) 36.30 ± 24.60	MDA(P) (μmol/L) 25.50 ± 19.10	
Chao et al. (12)	Taiwan	Vitamin C (400 mg/ day) + vitamin E (400 mg/day)	10 weeks	>3	58 ± 17	MDA(P) (µmol/L) 36.30 ± 24.60	MDA(P) (μmol/L) 32.30 ± 21.60	
Daud et al. (57)	America	Vitamin E (40 mg/ day)	16 weeks	>3	59 ± 12	MDA(P) (µmol/L) 4.68 ± 5.78	MDA(P) (µmol/L) 2.60 ± 2.28	
Deus et al. (58)	Spain	Resistance training	6 months	54.09 ± 11.05	67.27 ± 3.24	MDA(S) (µmol/L) 14.17 ± 2.39	MDA(S) (μmol/L) 11.06 ± 2.95	
Eiselt et al. (59)	Czech Republic	Vitamin C (504 mg TIW)	4 weeks	22 ± 15	61 (41-85)	MDA(P) (µmol/L) 4.28 ± 0.18	MDA(P) (μmol/L) 4.21 ± 0.16	
Eiselt et al. (59)	Czech Republic	Vitamin E-coated dialyzer	4 weeks	22 ± 15	61 (41-85)	MDA(P) (μmol/L) 4.28 ± 0.18	MDA (P) (μmol/L) 3.37 ± 0.34	
Eiselt et al. (59)	Czech Republic	Vitamin C (504 mg/ day) + vitamin E-coated dialyzer	4 weeks	22 ± 15	61 (41-85)	MDA(P) (µmol/L) 4.28 ± 0.18	MDA (P) (µmol/L) 3.76 ± 0.13	
Imani et al. (60)	France	Curcumin (1,000 mg/day)	10 weeks	46.8 ± 6	56 ± 2.50	MDA(S) (µmol/L) 4.60 ± 0.30	MDA(S) (µmol/L) 3.80 ± 0.30	
Kooshki et al. (61)	France	ω-fatty acids (600 mg/day)	10 weeks	3-108	50 ± 18	MDA(S) (µmol/L) 2.60 ± 0.5	MDA(S) (μmol/L) 2.50 ± 0.50	
Martins et al. (62)	Brazil	Vitamin E (250 mg/ day)	8 weeks	>2	54 (53–55)	MDA(P) (μmol/L) 0.40 (0.38–0.50)	MDA(P) (μmol/L) 0.35 (0.25–0.65)	

(Continued)

Study Country		Additional intervention	Intervention time	Duration of dialysis	Age	Outcome indicator (source) (unit)		
				(month)		Mean <u>+</u> SD	Mean <u>+</u> SD	
						Control	Experimental	
Morimoto et al. (63)	Japan	Vitamin E-coated dialyzer	6 months	≥7	69.40 ± 10.60	MDA(S) (nmol/ mg LDL protein) 4.64 ± 0.96	MDA(S) (nmol/mg LDL protein) 3.16 ± 0.99	
Murillo Ortiz et al. (64)	Mexico	Resveratrol + curcumin (500 mg/ day)	12 weeks	57.6 ± 28.8	38.52 ± 11.14	MDA (S) (µmol/L) 70.45 ± 69.21	MDA (S) (µmol/L) 50.19 ± 32.62	
Rodrigues et al. (53)	Brazil	Curcumin (1,000 mg/day)	12 weeks	50.5 (14.5–94)	48.50	MDA(P) (nmol/ mL) 1.08 (0.98–1.26)	MDA(P) (nmol/mL) 0.81 (0.80–0.89)	
Roozbeh et al. (65)	America	Vitamin E (400 IU/ day)	3 weeks	>12	43 ± 13.40	MDA(P) (nmol/ mL) 9.20 ± 2.74	MDA(P) (nmol/mL) 8.42 ± 2.63	
Rusu et al. (66)	Romania	Vitamin E (600 IU/ day)	8 weeks	≥3	54.80 ± 9.70	MDA(P) (nmol/ mL) 2.10 ± 0.80	MDA(P) (nmol/mL) 2 ± 0.80	
Sato et al. (67)	Japan	Vitamin E-coated dialyzer	Single dialysis	58.4 ± 7.2	65 ± 7.40	MDA(S) (nmol/ mL) 3.58 ± 0.24	MDA(S) (nmol/mL) 3.29 ± 0.19	
Shafabakhsh et al. (68)	Iran	Curcumin (80 mg/ day)	12 weeks	≥3	58.30 ± 9.40	MDA(P) (μmol/L) 2.90 ± 0.90	MDA(P) (μmol/L) 2.40 ± 0.40	
Shema-Didi et al. (69)	Israel	Pomegranate juice (1,000 mL TIW)	12 months	≥3	65.90 ± 11.20	MDA(S) (µmol/L) 6.90 ± 2.60	MDA(S) (μmol/L) 3.80 ± 1.30	
Shimazu et al. (70)	Japan	Vitamin E-coated dialyzer	9 months	163.5 ± 91.4	59.70 ± 12.20	MDA(P) (nmol/ mg LDL protein) 4.33 ± 0.96	MDA(P) (nmol/mg LDL protein) 3.46 ± 0.66	
Shimazu et al. (70)	Japan	Vitamin E-coated dialyzer	9 months	163.5 ± 91.4	59.70 ± 12.20	OX-LDL (ng/μg LDL protein) 1.65 ± 0.76	Ox-LDL (ng/µg LDL protein) 1.36 ± 0.85	
Sovatzidis et al. (71)	Germany	Intradialytic cardiovascular exercise	6 months	43.2 ± 13.2	52.80 ± 17.10	MDA(S) (µmol/L) 17.17 ± 4.89	MDA(S) (µmol/L) 10.52 ± 4.34	
Usberti et al. (72)	Italy	Vitamin E-coated dialyzer	3 months	≥12	63 ± 11	MDA(P) (μmol/L) 1.74 ± 0.41	MDA(P) (μmol/L) 1.31 ± 0.44	
Wilund et al. (73)	America	Intradialytic exercise	4 months	63.3 ± 8.7	60.80 ± 3.20	MDA(S) (µmol/L) 6.90 ± 1.31	MDA(S) (µmol/L) 5.90 ± 1.05	

TABLE 1 (Continued)

ALA, alpha-lipoic acid; S, serum; p, plasma; E, erythrocytes; MDA, malondialdehyde; 4-HNE, 4-hydroxynonenal; Ox-LDL: oxidized low-density lipoprotein.

-3.77 to -0.15, p = 0.03). However, the high I^2 statistic (95%) indicated substantial heterogeneity between the included studies (Figure 3E).

3.2.6 The therapeutic effect of pomegranate juice supplementation

Regarding the pomegranate juice supplementation intervention, data from two experimental groups (n = 142 participants) were included in the final meta-analysis. The meta-analysis did not reveal a significant decrease in MDA levels following pomegranate juice supplementation (SMD = -7.59, 95% CI -19.41 to 4.24, p = 0.21).

Notably, there was high heterogeneity among studies ($I^2 = 98\%$) (Figure 3F).

3.2.7 The therapeutic effect of exercise intervention

Regarding the pomegranate exercise therapy intervention, data from three experimental groups (n = 199 participants) were included in the final meta-analysis. The meta-analysis revealed a significant decrease in MDA levels following exercise therapy intervention (SMD = -1.14, 95% CI -1.44 to -0.84, p < 0.0001). Importantly, there was no heterogeneity between studies ($I^2 = 0\%$), allowing for the use of a fixed-effects model (Figure 3G).

3.2.8 The therapeutic effect of multiple antioxidant interventions

Regarding the pomegranate multiple antioxidant interventions, data from five experimental groups (n = 184 participants) were included

in the final meta-analysis. The meta-analysis results demonstrated a significant decrease in MDA levels among dialysis patients following multiple antioxidant interventions (SMD = -0.85, 95% CI -1.15 to -0.19, p = 0.01), $l^2 = 75\%$, with heterogeneity (Figure 3H).

ch may district	tamin C	supplementat	IOII	CO	ntroi	10120-005	and the second strength of the	Std. Mean Difference	and the second
tudy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
.1.1 MDA	0.7				4.7	-	11.00		
buollanzau 2009	2.7	4 00	21	3.1	1.7	21	44.9%	-0.21 [-0.82, 0.40]	
andan 2002	3.3	1.08	15	4.16	0.3	1	18.5%	-0.90 [-1.84, 0.04]	
nao 2002	52.9	19.8	9	36.3	24.6	10	15.6%	0.71 [-0.31, 1.74]	
ISEIT 2001	4.21	0.16	10	4.28	0.18	10	21.0%	-0.39 [-1.28, 0.49]	
ublotal (95% CI)	16 0 0	0.40.12	55			45	100.0%	-0.23 [-0.64, 0.17]	
est for overall effect: Z = 1	1.12 (P =	0.26)	44%						
otal (95% CI)			55			45	100.0%	-0.23 [-0.64, 0.17]	•
leterogeneity: Chi² = 5.31 est for overall effect: Z = 1 est for subgroup differen	l, df = 3 (l 1.12 (P = ices: Not	P = 0.15); I ² = 4 0.26) applicable	44%					Favours	-4 -2 0 2 4 [Vitamin C supplementation] Favours [Control]
Vi	itamin E	cumlomontat	ion	Co	ntrol			Std. Mean Difference	Std Mean Difference
tudy or Subaroun	Mean	SD	Total	Mean	SD	Total	Weight	IV. Fixed 95% CI	W. Fixed. 95% Cl
.2.1 MDA		50	. stur	moun	00		2. Signit	101111001007001	
hmadi 2013	17	12	17	62	53	24	18.9%	-0.36 [-0.08 0.27]	
than 2002	25.5	191	a	36.3	24.6	24	7 204	-0.47 [-1.48 0.62]	
aud 2002	20.0	2.28	11	4 69	5 79	40	37 904	-0.47 [-1.40, 0.33]	
aud 2013 Iartine 2021	2.0	2.20	41	9.00	0.05	40	5 70	-0.47 [-0.91,-0.03]	
2021 2007heb 2011	9.42	2.62	20	0.42	274	20	10.00	-0.10[11.28, 0.88]	
2011	0.42	2.03	20	3.2	0.9	10	11.404	-0.20 [*0.91, 0.34] _0 12 [.0 02 0 60]	
ubtotal (95% CI)	2	0.0	104	2.1	0.0	110	100 0%	-0.12 [-0.92, 0.08]	•
leterogeneity: Chi ² = 0.81	l, df = 5 (l	P = 0.98); I ² = 1	0%			110	100.070	-0.50 [-0.05, -0.00]	
otal (95% CI)	2.01 (1 -	0.017				110	100.0%	0 36 1 0 63 0 001	
0101 (00/001)			104					-11 30 1-0 0 3 -0 000	
lataraganaity: Chiz - 0.91	df - 5 (D = 0.00\· IZ = 1	104			110	100.076	-0.30 [-0.03, -0.08]	
leterogeneity: Chi ² = 0.81	l, df = 5 (i 2 57 (P =	P = 0.98); I ² = (104 0%			110	100.076	-0.50 [-0.05, -0.06]	$- \frac{1}{-4} \frac{1}{-2} 0 2 4$
leterogeneity: Chi² = 0.81 est for overall effect: Z = 3 est for subαroup differen	l, df = 5 () 2.57 (P =)ces: Not	P = 0.98); I² = 1 0.01) applicable	104)%			110	100.0%	-0.30 [-0.03, -0.08] Favours	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control]
leterogeneity: Chi² = 0.81 est for overall effect: Ζ = : est for subαroup differen	l , df = 5 () 2.57 (P = lices: Not	P = 0.98); I² = I 0.01) applicable	104)%			110	100.070	-0.30 [-0.03, -0.06] Favours	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control]
leterogeneity: Chi² = 0.81 est for overall effect: Z = : est for subαroup differen	l, df = 5 (l 2.57 (P = nces: Not	P = 0.98); ² = 1 0.01) applicable Vitamin E-c	104)%	lialyzer		Contr	ol	Std. Mean Differe	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control]
leterogeneity: Chi ² = 0.81 est for overall effect: Z = : est for subαroup differen tudy or Subgroup 3 1 ΜDA	l, df = 5 (i 2.57 (P = ices: Not	P = 0.98); ² = (0.01) applicable Vîtamin E-c Mean	104)% oated d SD	lialyzer Tota	al Mea	Contr n S	ol D Total	-0.30 [-0.03, -0.03] Favours Std. Mean Differe <u>Weight IV, Fixed, 9</u>	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence Std. Mean Difference 5% Cl IV. Fixed, 95% Cl
leterogeneity: Chi ² = 0.81 est for overall effect: Z = est for subαroup differen tudy or Subgroup .3.1 MDA iselt 2001-4weeks	l, df = 5 () 2.57 (P = nces: Not	P = 0.98); ² = 1 0.01) applicable Vitamin E-c <u>Mean</u> 3.37	104 0% ooated d SD	lialyzer Tota	<u>al Mea</u> ∩ 4.2	Contr n S	ol <u>D Total</u> 8 10	-0.30 [-0.03, -0.03] Favours Std. Mean Differe <u>Weight IV. Fixed, 99</u> 6.4% -3.20 [-4.62 -	-4 -2 0 2 4 (Vitamin E supplementation) Favours [Control] ence Std. Mean Difference 5% Cl IV, Fixed, 95% Cl -1 791
leterogeneity: Chi ² = 0.81 est for overall effect: Z = ; est for subαroup differen tudy or Subgroup .3.1 MDA iselt 2001-4weeks lorimoto 2005	l, df = 5 () 2.57 (P = nces: Not	P = 0.98); I ² = 1 0.01) applicable Vitamin E-c <u>Mean</u> 3.37 3.16	104 0% oated d SD 0.34 0.99	lialyzer Tota 1	<u>nl Mea</u> 0 4.2 6 4.6	Contr n S 8 0.1 4 0.9	ol <u>D Total</u> 8 10 16 15	-0.30 [-0.03, -0.03] Favours Std. Mean Differe Weight IV. Fixed, 9 6.4% -3.20 [-4.62, - 19.5% -1.48 [-2,28-	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence Std. Mean Difference <u>5% Cl IV. Fixed. 95% Cl</u> -1.79]
leterogeneity: Chi ² = 0.81 est for overall effect: Z = : est for subαroup differen tudy or Subgroup .3.1 MDA iselt 2001-4weeks orimoto 2005 ato 2006	l, df = 5 (l 2.57 (P = nces: Not	P = 0.98); ² = 1 0.01) applicable Vitamin E-c <u>Mean</u> 3.37 3.16 3.29	104 0% oated d SD 0.34 0.99 0.19	lialyzer Tota 1 1 1	il Mea 0 4.2 6 4.6 1 3.5	Contr n S 8 0.1 4 0.9 8 0.2	ol D Total 8 10 16 15 24 11	Std. Mean Differe Weight IV. Fixed, 9! 6.4% -3.20 [-4.62, -1.48 [-2.28, -1.48 [-2.28, -1.49 [-2.22, -1.45 [-2.22], -1.45 [-2.22, -1.45 [-2.22],	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence Std. Mean Difference 5% Cl IV, Fixed, 95% Cl -1.79]
leterogeneity: Chi ² = 0.81 est for overall effect: Z = : est for subαroup differen 3.1 MDA iselt 2001-4weeks orimoto 2005 ato 2006 himazu 2001	I, df = 5 () 2.57 (P = ices: Not	P = 0.98); ² = 1 0.01) applicable Vitamin E-c <u>Mean</u> 3.37 3.16 3.29 3.46	104 0% oated d <u>SD</u> 0.34 0.99 0.19 0.66	lialyzer Tota 1 1 1	<u>1 Mea</u> 0 4.2 6 4.6 1 3.5 6 4.3	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9	ol <u>D Total</u> 8 10 6 15 4 11 6 6	Std. Mean Differe Weight IV. Fixed. 9! 6.4% -3.20 [-4.62, - 19.5% -1.48 [-2.28, - 14.5% -0.97 [-2.20, -	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence Std. Mean Difference [5% Cl IV. Fixed, 95% Cl -1.79]
leterogeneity: Chi ² = 0.81 est for overall effect: Z = : est for subαroup differen 3.1 MDA iselt 2001-4weeks orimoto 2005 ato 2006 himazu 2001 sbett 2002- synthetic mer	l, df = 5 () 2.57 (P = ices: Not	P = 0.98); ² = 1 0.01) applicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31	104 0% oated d SD 0.34 0.99 0.19 0.66 0.44	lialyzer Tota 1 1 1 1	al Mea 0 4.2 6 4.6 1 3.5 6 4.3 8 1.7	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4	ol D Total 8 10 6 15 4 11 6 6 1 9	Std. Mean Differe Weight IV. Fixed. 99 6.4% -3.20 [-4.62, - 19.5% -1.48 [-2.28, - 14.5% -1.29 [-2.22, - 8.4% -0.97 [-2.20, - 7.6% -0.97 [-1.82, -	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence Std. Mean Difference [5% Cl IV. Fixed, 95% Cl -1.79] -0.67] -0.35] -0.25] -0.12]
leterogeneity: Chi ² = 0.81 est for overall effect: Z = ; est for subαroup differen 3.1 MDA iselt 2001-4weeks orimoto 2005 ato 2006 himazu 2001 sberti 2002- synthetic mer ubtotal (95% CI)	l, df = 5 () 2.57 (P = ices: Not	P = 0.98); ² = 1 0.01) applicable Vitamin E-c <u>Mean</u> 3.37 3.16 3.29 3.46 1.31	104 0% oated d SD 0.34 0.99 0.19 0.66 0.44	lialyzer Tota 1 1 1 1 1 5	al Mea 0 4.2 6 4.6 1 3.5 6 4.3 8 1.7 1	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4	ol <u>D Total</u> 8 10 16 15 14 11 16 6 1 9 51	Std. Mean Differe Favours Std. Mean Differe Weight N. Fixed, 91 6.4% -3.20 [-4.62, - 19.5% -1.48 [-2.28, - 14.5% -1.29 [-2.22, - 8.4% -0.97 [-1.82, - 66.4% -0.97 [-1.82, - 66.4% -1.40 [-1.84, -	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence Std. Mean Difference 5% CI IV. Fixed. 95% CI -1.79]
leterogeneity: Chi ² = 0.81 est for overall effect: Z = 2 est for subgroup .3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 lsberti 2002- synthetic mer ubtotal (95% Cl) leterogeneity: Chi ² = 7.81, c est for overall effect: Z = 6.2	n, df = 5 () 2.57 (P = ices: Not mbranes df = 4 (P = 29 (P < 0.1	P = 0.98); ² = 1 0.01) applicable Vitamin E-c <u>Mean</u> 3.37 3.16 3.29 3.46 1.31 0.10); ² = 49% 00001)	104 0% 003ted d 0.34 0.99 0.19 0.66 0.44	lialyzer Tota 1 1 1 1 1 6	al Mea 0 4.2 6 4.6 1 3.5 6 4.3 8 1.7 1	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4	ol <u>D Total</u> 8 10 16 15 14 11 16 6 1 9 51	Std. Mean Differe Weight IV. Fixed. 9! 6.4% -3.20 [-4.62, -1.48 [-2.28, -1.29 [-2.22, -1.29] 14.5% -1.29 [-2.22, -1.29] 8.4% -0.97 [-2.20, -1.29] 17.6% -0.97 [-1.82, -66.4%]	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence Std. Mean Difference [5% Cl IV. Fixed, 95% Cl -1.79]
leterogeneity: Chi ² = 0.81 est for overall effect: Z = : est for subαroup differen 3.1 MDA iselt 2001-4weeks lorimoto 2005 himazu 2001 himazu 2001 himazu 2001 isbett 2002- synthetic mer ubtotal (95% Cl) leterogeneity: Chi ² = 7.81, c est for overall effect: Z = 6.2 .3.2 ox-1 DL	l, df = 5 (l 2.57 (P = nces: Not mbranes df = 4 (P = 29 (P < 0.1	P = 0.98); ² = 1 0.01) applicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 0.10); ² = 49% 00001)	104 0% oated d SD 0.34 0.99 0.19 0.66 0.44	lialyzer Tota 1 1 1 1 5	ul Mea 0 4.2 6 4.6 1 3.5 6 4.3 8 1.7 1	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4	ol <u>D Total</u> 8 10 6 15 4 11 6 6 1 9 51	Std. Mean Differe Weight IV. Fixed, 99 6.4% -3.20 [-4.62, -1.48 [-2.82, -1.29 [-2.22, -1.45% -1.29 [-2.22, -1.45% -0.97 [-2.20, 17.6% -0.97 [-1.82, -66.4% -1.40 [-1.84, -1.40 [-1.84	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence Std. Mean Difference 5% Cl IV. Fixed. 95% Cl -1.79]
leterogeneity: Chi ² = 0.81 est for overall effect: Z = : est for subgroup 3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 isberti 2002- synthetic mer ubtotal (95% Cl) leterogeneity: Chi ² = 7.81, c est for overall effect: Z = 6.2 .3.2 ox-LDL lorimoto 2005	l, df = 5 (l 2.57 (P = nces: Not mbranes df = 4 (P = 29 (P < 0.1	P = 0.98); ² = 1 0.01) applicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 : 0.10); ² = 49% 00001) 1.31	104 0% 0 ated d SD 0.34 0.99 0.66 0.44	lialyzer Tota 1 1 1 1 6	<u>I Mea</u> 0 4.2 6 4.6 1 3.5 6 4.3 8 1.7 1 1 6 1 7	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4 3 0.4	ol <u>D Total</u> 8 10 16 15 4 11 16 6 1 9 51 7 16	Std. Mean Differe Weight IV. Fixed. 9! 6.4% -3.20 [-4.62, -19.5% 14.5% -1.48 [-2.28, -12.9] 14.5% -0.97 [-2.20, -17.6% 0.97 [-1.82, -66.4% -0.97 [-1.84, -20.9] 23.9% -0.85 [-1.58 -20.9]	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence Std. Mean Difference [5% Cl IV. Fixed, 95% Cl -1.79] -0.67] -0.35] -0.25] -0.12] -0.97]
leterogeneity: Chi ² = 0.81 est for overall effect: Z = ; est for subgroup differen 3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 leterogeneity: Chi ² = 7.81, c est for overall effect: Z = 6.2 .3.2 ox-LDL lorimoto 2005 himazu 2001	n, df = 5 ((2.57 (P = nces: Not mbranes df = 4 (P = 29 (P < 0.1	P = 0.98); ² = 1 0.01) applicable Vitamin E-c <u>Mean</u> 3.37 3.16 3.29 3.46 1.31 0.10); ² = 49% 00001) 1.31 1.36	104 0% 000000000000000000000000000000000	lialyzer Tota 1 1 1 1 6	I Mean 0 4.2 1 3.6 1 3.6 8 1.7 1 6 6 1.7 1 6	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4 3 0.4 5 0.7	ol <u>D</u> Total 8 10 16 15 14 11 16 6 1 9 51 7 16 6 6	Std. Mean Differe Weight N. Fixed, 97 6.4% -3.20 [-4.62, - 19.5% -1.48 [-2.28, - 14.5% -1.29 [-2.22, - 8.4% -0.97 [-2.20, - 17.6% -0.97 [-1.82, - 66.4% -1.40 [-1.84, - 23.9% -0.85 [-1.58, - 9.7% -0.33 [-1.48]	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence Std. Mean Difference 5% Cl IV. Fixed. 95% Cl -1.79] -0.67] -0.35] -0.12] -0.12] -0.81]
leterogeneity: Chi ² = 0.81 est for overall effect: Z = ; iest for subαroup differen 3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 leterogeneity: Chi ² = 7.81, c est for overall effect: Z = 6.2 3.2 ox-LDL lorimoto 2005 himazu 2001 ubtotal (95% Cl)	n, df = 5 (l 2.57 (P = icces: Not mbranes df = 4 (P = 29 (P < 0.1	P = 0.98); ² = 1 0.01) applicable <u>Vitamin E-c</u> <u>Mean</u> 3.37 3.16 3.29 3.46 1.31 0.10); ² = 49% 00001) 1.31 1.36	104 0% 0.34 0.39 0.19 0.66 0.44	lialyzer Tota 1 1 1 1 6 1 2	I Mea 0 4.2 6 4.6 1 3.5 6 4.3 8 1.7 1 1 6 1.7 6 1.7 6 1.7 2 2	Contr n S 8 0.1 4 0.9 3 0.9 4 0.4 3 0.4 3 0.4	ol <u>D Total</u> 8 10 16 15 14 11 16 6 1 9 51 7 16 6 6 22	Std. Mean Differe Weight IV. Fixed, 92 6.4% -3.20 [-4.62, 19.5% -1.48 [-2.28, 14.5% -1.29 [-2.22, 8.4% -0.97 [-2.20, 17.6% -0.97 [-1.82, 66.4% -1.40 [-1.84, -	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence 5% Cl IV. Fixed. 95% Cl IV. Fi
leterogeneity: Chi ² = 0.81 lest for overall effect: Z = 2 lest for subgroup 3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 leterogeneity: Chi ² = 7.81, c let for overall effect: Z = 6.2 3.2 ox-LDL lorimoto 2005 himazu 2001 ubtotal (95% Cl) leterogeneity: Chi ² = 0.57, c est for overall effect: Z = 2.2 himazu 2001 ubtotal (95% Cl)	n, df = 5 (() 2.57 (P = ices: Not mbranes df = 4 (P = 29 (P < 0.) df = 1 (P = 24 (P = 0.)	P = 0.98); ² = 1 0.01) applicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 0.10); ² = 49% 00001) 1.31 1.36 0.45); ² = 0% 02)	104 00% 00% 0.34 0.99 0.19 0.66 0.44	lialyzer Tota 1 1 1 1 6 1 2	I Mea 0 4.2 6 4.6 1 3.5 6 4.3 8 1.7 1 6 6 1.7 6 1.7 6 1.7 2 1	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4 3 0.4 5 0.7	ol <u>D Total</u> 8 10 16 15 1 9 51 7 16 6 6 22	Std. Mean Differe Weight IV. Fixed, 91 6.4% -3.20 [-4.62, - 19.5% -1.48 [-2.28, - 14.5% -1.29 [-2.22, - 8.4% -0.97 [-2.20, - 7.6% -0.97 [-1.82, - 66.4% -1.40 [-1.84, - 23.9% -0.85 [-1.58, - 9.7% -0.33 [-1.48, 33.6%	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence Std. Mean Difference 5% Cl IV. Fixed, 95% Cl -1.79] -0.67] -0.35] -0.12] -0.12] -0.12] -0.97] -0.12] -0.99]
leterogeneity: Chi ² = 0.81 est for overall effect: Z = ; iest for subαroup differen 3.1 MDA iselt 2001-4weeks torimoto 2005 ato 2006 himazu 2001 isberti 2002- synthetic mer ubtotal (95% Cl) leterogeneity: Chi ² = 7.81, c est for overall effect: Z = 6.2 3.2 ox-LDL lorimoto 2005 himazu 2001 ubtotal (95% Cl) leterogeneity: Chi ² = 0.57, c est for overall effect: Z = 2.2 otal (95% Cl)	n, df = 5 (l 2.57 (P = aces: Not mbranes df = 4 (P = 29 (P < 0.) df = 1 (P = 24 (P = 0.)	P = 0.98); ² = (0.01) applicable <u>Vitamin E-c</u> <u>Mean</u> 3.37 3.16 3.29 3.46 1.31 1.31 1.36 0.001) 1.31 1.36 0.045); ² = 0% 02)	104 03% 034 0.34 0.99 0.19 0.66 0.44 0.49 0.85	iialyzer Tota 1 1 1 1 1 6 1 2 8	I Mea 0 4.2 0 4.6 1 3.5 6 4.3 8 1.7 6 1.7 6 1.7 6 1.7 3 3	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4 3 0.4 5 0.7	ol <u>D Total</u> 8 10 15 14 11 16 6 1 9 51 7 16 6 6 22 73	Std. Mean Differe Weight IV. Fixed, 92 6.4% -3.20 [-4.62, -1.9.5% 14.5% -1.29 [-2.22, -1.48 [-2.28, -0.97 [-2.20, -1.48 [-2.28, -0.97 [-2.20, -1.40 [-1.84, -0.97 [-1.82, -66.4% 23.9% -0.85 [-1.58, -9.7% 9.7% -0.33 [-1.48, -0.70 [-1.32, -0.33 [-1.48, -0.30 [-1.38 [-0.38	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence 5% Cl IV. Fixed. 95% Cl -1.79] -0.67] -0.67] -0.35] -0.25] -0.12] -0.81]
leterogeneity: Chi ² = 0.81 lest for overall effect: Z = 3 lest for subgroup 3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 isberti 2002- synthetic mer ubtotal (95% Cl) leterogeneity: Chi ² = 7.81, c est for overall effect: Z = 6.2 3.2 ox-LDL lorimoto 2005 himazu 2001 ubtotal (95% Cl) leterogeneity: Chi ² = 0.57, c est for overall effect: Z = 2.2 otal (95% Cl) leterogeneity: Chi ² = 11.69,	n, df = 5 (l 2.57 (P = ices: Not mbranes df = 4 (P = 29 (P < 0.) df = 1 (P = 24 (P = 0.) , df = 6 (P	P = 0.98); ² = 1 0.01) abblicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 0.10); ² = 49% 00001) 1.31 1.36 0.45); ² = 0% 02) = 0.07); ² = 49 ⁴	104 00% 00% 000 0000 0000 0000 00000 00000 00000 0000	iialyzer Tota 1 1 1 1 1 6 1 2 8	I Mea 0 4.2 6 4.6 1 3.6 6 4.3 6 1.7 6 1.6 2 3	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4 3 0.4 5 0.7	ol <u>D Total</u> 8 10 15 4 11 16 6 1 9 51 7 16 6 6 22 73	Std. Mean Differe Favours Std. Mean Differe Weight IV. Fixed, 99 6.4% -3.20 [-4.62, -1.48 [-2.82, -1.45%] 1.4.5% -1.48 [-2.22, -1.29 [-2.22, -1.29] 8.4% -0.97 [-2.20, 17.6%] 1.7.6% -0.97 [-1.82, -66.4%] 23.9% -0.85 [-1.58, -9.7%] 9.7% -0.33 [-1.48, 33.6%] -0.70 [-1.32, -1.48] -0.70 [-1.32, -1.48] 100.0% -1.17 [-1.52, -1.58]	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence Std. Mean Difference 5% Cl IV. Fixed. 95% Cl -1.79] -0.67] -0.35] 0.25] -0.12] -0.97] -0.81] -0.81] -0.81]
leterogeneity: Chi ² = 0.81 est for overall effect: Z = 3 est for subgroup 3.1 MDA iselt 2001-4weeks orimoto 2005 ato 2006 himazu 2001 sberti 2002- synthetic mer ubtotal (95% CI) elerogeneity: Chi ² = 7.81, c est for overall effect: Z = 6.3 3.2 ox-LDL orimoto 2005 himazu 2001 ubtotal (95% CI) eterogeneity: Chi ² = 0.57, c est for overall effect: Z = 6.4 set for overall effect: Z = 6.4	n, df = 5 (l 2.57 (P = ices: Not mbranes df = 4 (P = 29 (P < 0.) df = 6 (P 42 (P < 0.) off = 6 (P < 0.)	P = 0.98); ² = 1 0.01) abblicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 0.10); ² = 49% 00001) 1.31 1.36 0.45); ² = 0% 02) = 0.07); ² = 49° 0001	104 006 50 0.34 0.39 0.19 0.66 0.66 0.44	ialyzer Tota 1 1 1 1 1 6 1 2 8 8 8 8	I Mea 0 4.2 6 4.8 1 3.5 6 4.3 8 1.7 6 1.7 6 1.7 3 3	Contr n <u>S</u> 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4 3 0.4 5 0.7	ol <u>D Total</u> 8 10 6 15 4 11 16 6 1 9 51 7 16 6 6 22 73	Std. Mean Differe Favours Std. Mean Differe Weight IV. Fixed, 9! 6.4% -3.20 [-4.62, -1.48 [-2.82, -1.45%] 14.5% -1.29 [-2.22, -1.29] 8.4% -0.97 [-2.20, -0.97 [-1.82, -66.4%] 23.9% -0.85 [-1.58, -9.7%] 9.7% -0.33 [-1.48, -3.36%] 9.7% -0.33 [-1.48, -3.36%] 100.0% -1.17 [-1.52, -1.48]	-4 -2 0 2 4 (Vitamin E supplementation] Favours [Control] ence 5% Cl IV. Fixed. 95% Cl -1.79] -0.67] 0.35] -0.12] 0.07] -0.72] -0.12] -0.81] -4 -2 -0.81] -4 -2 Favours [Vitamin E-coated dialyzer] Favours [Vitamin E-coated dialyzer]
leterogeneity: Chi ² = 0.81 lest for overall effect: $Z = 5$ lest for subgroup 3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 isberti 2002- synthetic mer ubtotal (95% CI) eterogeneity: Chi ² = 7.81, o est for overall effect: $Z = 6.2$ orimoto 2005 himazu 2001 ubtotal (95% CI) leterogeneity: Chi ² = 0.57, o est for overall effect: $Z = 2.2$ otal (95% CI) leterogeneity: Chi ² = 11.69, est for subgroup difference	h, df = 5 (l 2.57 (P = icces: Not mbranes df = 4 (P = 29 (P < 0.1 df = 6 (P 42 (P < 0.1 as: Chi ² =	P = 0.98); P = 1 0.01) abblicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 0.10); P = 49% 00001) 1.31 1.36 0.45); P = 0% 02) = 0.07); P = 49° 0001) 3.31. df = 1 (P =	104 03% 0.34 0.39 0.19 0.66 0.44 0.49 0.85 8%	iałyzer Tota 1 1 1 1 1 1 1 1 2 8 8 8 8	1 Mea 0 4.2 1 3.5 6 4.3 8 1.7 1 6 1.7 6 1.6 2 3 3	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4 3 0.4 5 0.7	ol D Total 8 10 16 15 4 11 16 6 1 9 51 7 16 6 6 6 6 22 73	Std. Mean Differe Weight IV. Fixed, 97 6.4% -3.20 [-4.62, - 19.5% -1.29 [-2.22, - 8.4% -0.97 [-2.20, 17.6% 17.6% -0.97 [-1.82, - 66.4% -1.40 [-1.84, - 23.9% -0.85 [-1.58, - 9.7% -0.33 [-1.48, 33.6% 0.70 [-1.32, - 100.0% -1.17 [-1.52, -	ence Std. Mean Difference 5% Cl IV. Fixed. 95% Cl -1.79] -0.67] -0.35] -0.12] -0.97] -0.81] -0.81] -4 -2 0 2 4 Favours [Control]
leterogeneity: Chi ² = 0.81 lest for overall effect: Z = 3 lest for subgroup 3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 leterogeneity: Chi ² = 7.81, c leterogeneity: Chi ² = 7.81, c leterogeneity: Chi ² = 0.57, c est for overall effect: Z = 6.2 otal (95% CI) leterogeneity: Chi ² = 0.57, c est for overall effect: Z = 6.4 leterogeneity: Chi ² = 0.57, c est for overall effect: Z = 6.4 leterogeneity: Chi ² = 11.69, est for subgroup difference	nbranes df = 1 (P = 29 (P < 0.) df = 1 (P = 24 (P = 0.) df = 6 (P 42 (P < 0.) es: Chi ² =	P = 0.98); ² = 1 0.01) abblicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 1.36 0.001) 1.31 1.36 0.45); ² = 0% 02) = 0.07); ² = 49% 00001) 3.31, df = 1 (P = 1)	104 03% 034 0.34 0.39 0.39 0.49 0.85 0.44 0.85	iialyzer 1 1 1 1 1 6 1 2 8 8 8	1 Mea 0 4.2 6 4.6 6 4.3 8 1.7 6 1.7 6 1.6 3 3 %	Contr n S 8 0.1 4 0.4 3 0.9 4 0.4 3 0.4 5 0.7	ol <u>D Total</u> 8 10 6 15 4 11 16 6 1 9 51 7 16 6 6 22 73	Std. Mean Differe Weight IV. Fixed, 91 6.4% -3.20 [-4.62, -1.29 [-2.22, -1.48 [-2.28, -0.97 [-2.20, 17.5% -0.97 [-2.20, 17.5% -0.97 [-1.82, -66.4% -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.33, -0.70 [-1.32, -1.33, -0.70 [-1.32, -1.40, 33.6% -0.70 [-1.32, -1.40, 33.6\% -0.70]	A constraint of the second sec
tudy or Subgroup (attern overall effect: Z = 3 (attern overall effect: Z = 6 (attern over	nbranes mbranes df = 1 (P = 29 (P < 0.) df = 6 (P 42 (P = 0.) df = 6 (P 42 (P < 0.) as: Chi ² = fatty acid	P = 0.98); ² = 1 0.01) abblicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 1.31 1.36 0.05); ² = 49% 00001) 1.31 1.36 0.45); ² = 0% 02) = 0.07); ² = 49% 00001) 3.31, df = 1 (P = 1) Is supplement	104 006 007 0034 009 0034 004 004 004 004 004 004 00	iialyzer 1 1 1 1 1 6 1 2 8 8 8 8 8 8 0.8°	I Mea 0 4.2 6 4.6 6 4.3 8 1.7 6 1.6 7 6 8 1.7 7 3 % control	Contr n S 8 0.1 4 0.4 3 0.9 4 0.4 3 0.4 5 0.7	ol <u>D Total</u> 8 10 15 14 11 16 6 1 9 51 7 7 16 6 6 22 73	Std. Mean Differe Favours Std. Mean Differe Weight IV. Fixed, 9! 6.4% -3.20 [-4.62, -1.48 [-2.82, -1.48 [-2.22, -1.48 [-2.22, -1.48, -0.97 [-2.20, 17.6% -0.97 [-2.20, 17.6% -0.97 [-1.82, -66.4% -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.32, -1.36 [-1.58, -9.7% -0.33 [-1.48, 33.6% -0.70 [-1.32, -1.40 [-1.52, -1.40 [-4 -2 0 2 4 (vitamin E supplementation] Favours [Control] ence Std. Mean Difference 5% Cl IV. Fixed. 95% Cl -1.79] -0.67] -0.67] -0.35] 0.25] -0.12] -0.12] -0.97] -0.81] -4 -2 0 2 -4 -2 0 -5avours [Vitamin E-coated dialyzer] Favours [Control]
leterogeneity: Chi ² = 0.81 lest for overall effect: Z = 3 lest for subgroup .3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 leberti 2002- synthetic mer ubtotal (95% CI) leterogeneity: Chi ² = 7.81, (ast for overall effect: Z = 6.3 .3.2 ox-LDL lorimoto 2005 himazu 2001 ubtotal (95% CI) leterogeneity: Chi ² = 0.57, (est for overall effect: Z = 6.3 otal (95% CI) leterogeneity: Chi ² = 11.69, est for overall effect: Z = 6.4 st for subgroup difference ubtotal 3.2 ox-LDL leterogeneity: Chi ² = 11.69, est for overall effect: Z = 6.4 est for subgroup difference .3.1 MDA	h, df = 5 (l 2.57 (P = icces: Not inces: Not aff = 4 (P = 29 (P < 0,1) aff = 6 (P 42 (P = 0,1) , df = 6 (P 42 (P < 0,1) = 5: Chi ² = fatty acid Mean	P = 0.98); ² = (0.01) abblicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 1.36 0.001) 1.31 1.36 0.045); ² = 0% 02) = 0.07); ² = 49% 00001) 3.31. df = 1 (P = SD	104 03% 0.34 0.39 0.39 0.39 0.49 0.49 0.85 % € 0.07). xation Tota	iialyzer 1 1 1 1 1 1 1 2 8 8 8 8 8 8 8 0 1 1 2 1 1 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8	I Mea 0 4.2 1 3.5 6 4.3 8 1.7 6 1.7 3 3 % Somtrol 1 SD	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4 3 0.4 5 0.7 5 0.7	ol D Total 8 10 16 15 14 11 16 6 1 9 51 7 16 6 6 22 73 Weight	Std. Mean Differe Weight IV. Fixed, 99 6.4% -3.20 [-4.62, -1.9.5% 14.5% -1.48 [-2.28, -1.48 [-2.22, -1.48] 14.5% -0.97 [-2.20, 17.6% 17.6% -0.97 [-1.82, -66.4% 23.9% -0.85 [-1.58, -9.7% 9.7% -0.33 [-1.48, 33.6% 100.0% -1.17 [-1.52, -1.58] F Std. Mean Difference V, Random, 95% Cl -0.5% Cl	ence Std. Mean Difference (5% Cl N. Fixed. 95% Cl -1.79) -0.67) -0.35) -0.25) -0.12) -0.12) -0.97] -0.81] -0.81] -0.81] -0.81] -0.63] -0.25] -0.12] -1.12] -1
leterogeneity: Chi ² = 0.81 lest for overall effect: Z = 3 lest for subgroup 3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 lsberti 2002- synthetic mer ubtotal (95% Cl) leterogeneity: Chi ² = 7.81, c est for overall effect: Z = 6.3 3.2 ox-LDL lorimoto 2005 himazu 2001 ubtotal (95% Cl) leterogeneity: Chi ² = 0.57, c est for overall effect: Z = 6.4 st for overall effect: Z = 6.4 leterogeneity: Chi ² = 0.57, c est for overall effect: Z = 6.4 st for overall effect: Z = 6.4 leterogeneity: Chi ² = 11.69, est for subgroup difference ubtotal 95% Cl) leterogeneity: Chi ² = 11.69, est for subgroup difference ubtotal 95% Cl) leterogeneity: Chi ² = 11.69, est for subgroup difference	nbranes mbranes df = 1 (P = 29 (P < 0.) df = 6 (P 42 (P = 0.) df = 6 (P 42 (P < 0.) as: Chi ² = fatty acit Mean	P = 0.98); ² = 1 0.01) abblicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 1.31 1.36 0.045); ² = 0% 00001) 1.31 1.36 0.45(); ² = 0% 02) = 0.07); ² = 49% 00001) 3.31. df = 1 (P = 1) Is supplement SD 4.0	104 006 0034 0.34 0.39 0.39 0.49 0.49 0.85 % = 0.07). ************************************	iialyzer 1 1 1 1 1 1 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8	I Mea 0 4.2 6 4.6 6 4.3 8 1.7 6 1.7 6 1.7 3 3 % Control 1 SD	Contr n S 8 0.1 4 0.9 3 0.9 4 0.4 3 0.4 5 0.7 7 5 0.7	ol <u>D</u> Total 8 10 15 4 11 16 6 1 9 51 7 16 6 8 22 73 <u>Weight</u>	Std. Mean Differe Weight IV. Fixed, 92 6.4% -3.20 [-4.62, -1.9.5% 14.5% -1.29 [-2.22, -1.48, -2.38, -0.97 [-2.20, -1.48, -0.97 [-2.20, -1.40 [-1.84, -0.97 [-1.82, -66.4% 23.9% -0.85 [-1.58, -9.7%, -0.33 [-1.48, -0.33 [-1.48, 33.6% 23.9% -0.85 [-1.52, -66.4% 100.0% -1.17 [-1.52, -1.58, -9.7%, -0.33 [-1.48, -1.48, -1.40, -1.17 [-1.52, -1.48, -1.48, -1.40, -1.17 [-1.52, -1.48, -1.48, -1.40, -1.48	
leterogeneity: Chi ² = 0.81 lest for overall effect: Z = 3 lest for subgroup .3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 lesteriu 2002- synthetic mer utotal (95% CI) leterogeneity: Chi ² = 7.81, of est for overall effect: Z = 6.3 .3.2 ox-LDL lorimoto 2005 himazu 2001 ubtotal (95% CI) leterogeneity: Chi ² = 0.57, of est for overall effect: Z = 6.4 otal (95% CI) leterogeneity: Chi ² = 11.69, est for overall effect: Z = 6.4 otal (95% CI) leterogeneity: Chi ² = 11.69, est for overall effect: Z = 6.4 .2.1 MDA semi 2016 (ooshki 2011)	h, df = 5 (i) 2.57 (P = inces: Not mbranes df = 4 (P = 29 (P < 0.1) df = 6 (P 42 (P = 0.1) , df = 6 (P 42 (P < 0.2) ; Chi ² = fatty acid <u>Mean</u> 3.4 2.5	P = 0.98); ² = 1 0.01) abblicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 1.36 0.010); ² = 49% 00001) 1.31 1.36 0.45); ² = 0% 02) = 0.07); ² = 49% 00001) 3.31. df = 1 (P = 1) 1.8 0.5	104 00% 0.34 0.39 0.39 0.39 0.49 0.49 0.85 % = 0.07). * * * * * * * * * * * * *	iialyzer <u>Tota</u> 1 1 1 1 1 1 2 8 8 8 8 8 8 8 8 1 2 8 8 8 8 8 0 0 5.7 2.6	I Mea 0 4.2 1 3.5 6 4.3 8 1.7 6 1.7 6 1.6 3 3 % Somtrol I SD • 2.9 • 0.5	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4 3 0.4 5 0.7 7 5 0.7 7 Total 30 17	ol <u>D Total</u> 8 10 6 15 4 11 6 6 1 9 51 7 16 6 6 22 73 <u>Weight</u> 53.9% 46.1%	Std. Mean Differe Weight IV. Fixed, 9? 6.4% -3.20 [-4.62, -1.9.5% 1.48 [-2.83, -1.29 [-2.22, -1.48] -0.97 [-2.20, -1.29 [-2.22, -1.48] 7.6% -0.97 [-1.82, -6.4% 6.4% -0.97 [-1.82, -6.4% 7.6% -0.97 [-1.82, -6.4% 9.7% -0.33 [-1.48, -0.33 [-1.48, 33.6% 9.7% -0.33 [-1.48, 33.6% 100.0% -1.17 [-1.52, -1.97] F Std. Mean Difference IV, Random, 95% CI -0.94 [-1.48, -0.41] -0.20 [-0.87, 0.48] -0.44]	ence Std. Mean Difference (5% Cl N, Fixed. 95% Cl N, Fixed. 95\% Cl N, Fix
leterogeneity: Chi ² = 0.81 est for overall effect: $Z = \frac{1}{2}$ est for subgroup 3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 isberti 2002- synthetic mer ubtotal (95% CI) leterogeneity: Chi ² = 7.81, o est for overall effect: $Z = 6.2$ 3.2 ox-LDL lorimoto 2005 himazu 2001 ubtotal (95% CI) leterogeneity: Chi ² = 0.57, o est for overall effect: $Z = 6.4$ est for subgroup difference tudy or Subgroup 2.1 MDA semi 2016 iooshki 2011 ubtotal (95% CI) leterogeneity: Tau ² = 0.18	h, df = 5 (i) 2.57 (P = icces: Not mbranes df = 4 (P = 229 (P < 0.1) df = 6 (P 42 (P = 0.1) as: Chi ² = fatty acid Mean 3.4 2.5 ; Chi ² = 2	P = 0.98); ² = (0.01) applicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 0.10); ² = 49% 00001) 1.31 1.36 0.45); ² = 0% 02) = 0.07); ² = 49% 00001) 3.31. df = 1 (P = SD 1.8 0.5 .88, df = 1 (P =	104 00% 0.34 0.39 0.34 0.49 0.49 0.49 0.85 % = 0.07). tation Tota 31 4: 0.09:1	iialyzer <u>Tota</u> 1 1 1 1 1 1 1 2 8 8 8 8 1 2 69.8' C C 1 Mean 0 5.7.7 2.6.5 7 ≈ 65.8'	I Mea 0 4.2 1 3.5 6 4.8 1 3.8 6 1.7 6 1.7 7 3 3 5 • SD • 2.9 • 0.5	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4 5 0.7 3 0.4 5 0.7 Total 30 17 47	ol D Total 8 10 16 15 4 11 16 6 1 9 51 7 16 6 6 22 73 Weight 53.9% 46.1% 100.0%	Std. Mean Differe Weight IV. Fixed, 97 6.4% -3.20 [-4.62, -1.9.5% 19.5% -1.48 [-2.2, -1.9.5% 14.5% -1.29 [-2.2, -8.4% 1.4.5% -1.9.7 [-2.20, -9.7 [-1.82, -9.7% 66.4% -0.97 [-1.82, -9.7% 66.4% -0.85 [-1.58, -9.7% 9.7% -0.33 [-1.48, -9.7%] 33.6% -0.70 [-1.32, -9.7%] 100.0% -1.17 [-1.52, -1.7%] F Std. Mean Difference W. Random, 95% CI -0.94 [-1.48, -0.41] -0.20 [-0.87, 0.48] -0.60 [-1.33, 0.13]	ence Std. Mean Difference 5% Cl IV. Fixed. 95% Cl -1.79] -0.67] -0.35] -0.35] -0.12] -0.97] -0.12] -0.97] -0.81] -4 -2 -2 -2 -2 -2 -2 -2 -2 -4 -2 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -4 -2 -2 -4 -2 -4 -2 -2 -4 -2 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -4 -2 -4 -2 -4 -4 -2 -4 -4 -2 -4 -4 -2 -4 -4 -2 -4 -4 -2 -4 -4 -2 -4 -4 -4 -2 -4 -4 -4 -4 -2 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4
leterogeneity: Chi ² = 0.81 est for overall effect: Z = 1 est for subgroup .3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 Isberti 2002- synthetic mer ubtotal (95% CI) leterogeneity: Chi ² = 7.81, c est for overall effect: Z = 6.2 .3.2 ox-LDL loterogeneity: Chi ² = 0.57, c est for overall effect: Z = 6.2 otal (95% CI) leterogeneity: Chi ² = 11.69, est for overall effect: Z = 6.4 est for subgroup .2.1 MDA semi 2016 iooshki 2011 ubtotal (95% CI) leterogeneity: Chi ² = 11.69, est for subgroup .2.1 MDA semi 2016 iooshki 2011 ubtotal (95% CI) leterogeneity: Tau ² = 0.18 est for overall effect: Z = 1	nbranes df = 1 (P = 29 (P < 0.) df = 1 (P = 29 (P < 0.) df = 6 (P 42 (P < 0.) s: Chi ² = fatty acid Mean 3.4 2.5 ; Chi ² = 2 .61 (P = 1	P = 0.98); ² = 1 0.01) abblicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 0.10); ² = 49% 00001) 1.31 1.36 0.45); ² = 0% 02) = 0.07); ² = 49% 00001) 3.31. df = 1 (P = 1.8 0.5 .88, df = 1 (P = 0.11)	104 00% 0.34 0.99 0.66 0.44 0.49 0.85 % = 0.07). xation Tota 31 1 4 0.09); 1	ialyzer 1 1 1 1 1 1 1 1 2 8 8 1 2 8 8 1 2 8 8 1 2 8 8 1 2 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	I Measurement 0 4.2 1 3.5 6 4.3 8 1.7 6 1.7 6 1.7 6 1.7 7 3 % 50 i SD i SD i 0.5	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4 5 0.7 3 0.4 5 0.7 7 5 0.7 7 7 7 7 7 4 7 7 4 7	ol D Total 8 10 16 15 4 11 16 6 1 9 51 7 16 6 6 6 6 22 73 Weight 53.9% 46.1% 100.0%	Std. Mean Differe Weight N. Fixed, 97 6.4% -3.20 [-4.62, -1.48 [-2.28, -1.48 [-2.28, -1.48 [-2.28, -1.45% -1.29 [-2.22, -8.4% -0.97 [-1.82, -0.97 [-1.82, -0.97 [-1.82, -0.97 [-1.82, -0.97 [-1.52, -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.84, -1.40 [-1.84, -0.33 [-1.48, 33.6% -0.70 [-1.32, -1.48, 33.6% -0.70 [-1.32, -1.48, 33.6% -0.70 [-1.32, -1.48, 33.6% -0.70 [-1.32, -1.48, 33.6% -0.70 [-1.32, -1.48, 33.6% -0.70 [-1.32, -1.48, 33.6% -0.70 [-1.32, -1.48, 33.6% -0.70 [-1.32, -1.48, -1.40 [-1.84, -1.41] -0.20 [-0.94 [-1.48, -0.41] -0.20 [-0.87, 0.48] -0.60 [-1.33, 0.13]	-4 -2 0 2 4 [Vitamin E supplementation] Favours [Control] ence Std. Mean Difference 65% Cl IV. Fixed. 95% Cl -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.67] -0.12] -0.7 -0.81] -0.81] -4 -2 0 2 4 Favours [Vitamin E-coated dialyzer] Favours [Control] Std. Mean Difference IV. Random, 95% Cl -1 -1 -1
leterogeneity: Chi ² = 0.81 est for overall effect: Z = 2 est for subαroup different tudy or Subgroup .3.1 MDA iselt 2001-4weeks lorimoto 2005 ato 2006 himazu 2001 isberti 2002- synthetic mer ubtotal (95% CI) leterogeneity: Chi ² = 7.81, c est for overall effect: Z = 6.2 .3.2 ox-LDL lorimoto 2005 himazu 2001 ubtotal (95% CI) leterogeneity: Chi ² = 0.57, c est for overall effect: Z = 6.2 otal (95% CI) leterogeneity: Chi ² = 11.69, est for subaroup difference tudy or Subgroup .2.1 MDA semi 2016 isoshki 2011 ubtotal (95% CI) leterogeneity: Tau ² = 0.18 est for overall effect: Z = 1 otal (95% CI)	h, df = 5 (l 2.57 (P = loces: Not mbranes df = 4 (P = 29 (P < 0.) df = 6 (P 42 (P < 0.) es: Chi ² = fatty acid Mean 3.4 2.5 ; Chi ² = 2 .61 (P = 1)	P = 0.98); ² = (0.01) applicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 0.10); ² = 49% 00001) 1.31 1.36 0.45); ² = 0% 02) = 0.07); ² = 49% 00001) 3.31. df = 1 (P = 1.8 0.5 8.8, df = 1 (P = 0.11)	104 00% 00% 0.34 0.99 0.66 0.44 0.49 0.85 % = 0.07). * * * * * * 0.07). * * * * * * * * * * * * *	iałyzer 1 1 1 1 1 1 1 2 8 8 1 2 8 8 1 1 2 8 1 1 2 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	1 Mea 0 4.2 1 3.5 6 4.3 1 3.5 6 4.3 8 1.7 6 1.7 6 1.7 6 1.6 3 % * * * * * * * * * * * * *	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4 5 0.7 3 0.4 5 0.7 5 0.7 Total 30 17 47 47	ol D Total 8 10 16 15 4 11 16 6 1 9 51 7 16 6 6 22 73 Weight 53.9% 46.1% 100.0%	Std. Mean Differe Weight IV. Fixed, 97 6.4% -3.20 [+4.62, -19.5% 19.5% -1.29 [-2.22, -8.4% 14.5% -1.29 [-2.20, -17.6% 17.6% -0.97 [-1.82, -66.4% -0.85 [-1.58, -9.7% -0.33 [-1.48, -3.33.6% -0.70 [-1.32, -1.40] -0.70 [-1.32, -1.40] 100.0% -1.17 [-1.52, -1.40] Std. Mean Difference IV. Random, 95% CI -0.94 [-1.48, -0.41] -0.20 [-0.87, 0.48] -0.60 [-1.33, 0.13] -0.60 [-1.33, 0.13]	-4 -2 0 2 4 (vitamin E supplementation] Favours [Control] ence Std. Mean Difference 5% Cl IV. Fixed. 95% Cl -1.79] -4 -0.67] -4 -0.35] -4 -0.12] -4 -0.97] -4 -0.81] -4 -4 -2 -2 0 2 4 Favours (Vitamin E-coated dialyzer) Favours (Vitamin E-coated dialyzer) Std. Mean Difference IV. Random, 95% Cl
tudy or Subgroup at the store of the store	h, df = 5 (i) 2.57 (P = icces: Not mbranes df = 4 (P = 29 (P < 0.1) df = 6 (P 24 (P = 0.1) , df = 6 (P 42 (P < 0.1) ; Chi ² = 2 ; Chi ² = 2 ; Chi ² = 2 ; Chi ² = 2	P = 0.98); ² = (0.01) applicable Vitamin E-c Mean 3.37 3.16 3.29 3.46 1.31 0.10); ² = 49% 00001) 1.31 1.36 0.45); ² = 0% 02) = 0.07); ² = 49% 00001) 3.31. df = 1 (P = 0.11) .88, df = 1 (P =	104 03% 034 0.34 0.99 0.66 0.44 0.49 0.85 % = 0.07). tation Tota 31 1 4 0.09); I 4 (0.09); I	iialyzer <u>Tota</u> 1 1 1 1 1 1 2 8 8 8 1 2 8 8 1 2 8 8 1 2 8 8 7 7 2 65% 7 7 5 65%	1 Mea 0 4.2 1 3.5 6 4.8 8 1.7 1 6 1.7 6 1.7 6 1.7 3 3 ≫ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞	Contr n S 8 0.1 4 0.9 8 0.2 3 0.9 4 0.4 5 0.7 3 0.4 5 0.7 5 0.7 Total 30 17 47 47	ol <u>D Total</u> 8 10 16 15 4 11 16 6 1 9 51 7 16 6 6 22 73 <u>Weight</u> 53.9% 46.1% 100.0%	Std. Mean Differe Weight IV. Fixed, 92 6.4% -3.20 [-4.62, -19.5% 14.5% -1.29 [-2.22, -18.4% 14.5% -1.29 [-2.22, -18.4% 76.6% -0.97 [-1.82, -66.4% 23.9% -0.85 [-1.58, -9.7% 9.7% -0.33 [-1.48, -0.33 [-1.48, -0.33 [-1.48, -0.70 [-1.32, -0.70 [-1.32, -0.33 [-1.48, -0.70 [-1.32, -0.33 [-1.48, -0.70 [-1.32, -0.33 [-1.48, -0.70 [-1.32, -0.33 [-1.48, -0.70 [-1.32, -0.70 [-1.32, -0.70 [-1.32, -0.70 [-1.32, -0.70 [-1.32, -0.70 [-1.32, -0.70 [-1.32, -0.70 [-1.32, -0.70 [-1.32, -0.70 [-1.32, -0.70 [-1.33, 0.13] 100.0% -1.17 [-1.52, -1.58, -0.70 [-1.32, -0.70 [-1.32, -0.70 [-1.32, -0.70 [-1.32, -0.70 [-1.32, -0.70 [-1.33, 0.13] 5td. Mean Difference M. Random, 95% C1 -0.94 [-1.48, -0.41] -0.20 [-0.87, 0.48] -0.60 [-1.33, 0.13] -0.60 [-1.33, 0.13]	ence Std. Mean Difference 5% Cl V. Fixed. 95% Cl -1.79] -0.67] -0.35] -0.25] -0.12] -0.97] -0.12] -0.97] -0.81] -4 -2 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -2 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4

3.3 Subgroup analysis

The results of the meta-analysis indicated high heterogeneity in interventions involving curcumin supplementation and multiple

antioxidant interventions. To identify the source of this heterogeneity, MDA levels were stratified by study source, sample source, sample size, intervention time, male proportion, age, dialysis duration and whether diabetes is excluded.

Suture statuture Marken Sub Oral Mean Sub	E Church and Curl	Curcumin s	upplementa	tion	C	ontrol	Tata	10/	Std. Mean Difference	Std. Mean Difference	
$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000000000000000000000000000000000$	Study or Subgroup	Wean	SD	lotal	wean	SD	lotal	vveight	IV, Random, 95% Cl	IV, Kandom, 95% Cl	
$ \frac{1}{12} $	1.4.1 MDA	1.50	1 22	1.4	1 0	07	1.4	25 50	0.04 [0.50, 0.06]		
$\frac{1}{12} \frac{1}{12} \frac$	Awarenya 2022 Imoni 2015	1.52	0.2	14	1.3	0.7	14	23.3%	0.21 [-0.53, 0.96]	_ _	
$ \begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	Podriguos 2021	3.0	0.3	20	4.0	0.3	22	24.970	-2.01 [-3.52, -1.09]		
Subject (25%, C) Heterogenet): Tark = 210; Ch = 61.42; df = 3 (P + 0.00001); P = 95% Test for overall effect Z = 2.13 (P = 0.03) Total (95%, C) Heterogenetic Tark = 3.00; Ch = 61.42; df = 3 (P + 0.00001); P = 95% Test for overall effect Z = 2.13 (P = 0.03) Test for suborous differences: Not acceleable Fruct jacks subpresentation Factors and test Z = 2.13 (P = 0.03) Test for suborous differences: Not acceleable Fruct jacks subpresentation Stat Mean Difference Stat Mea	Roungues 2021	0.02	0.02	20	1.091	0.07	20	23.0%	-3.01 [-0.26, -3.73]	-	
The transmission of transmission	Subtotal (95% CI)	2.4	0.4	82	2.5	0.5	85	100.0%	-196[-377_015]	•	
The strip overall effect $Z = 2.13 \ (P = 0.05)$ Total (65% C) Factor overall effect $Z = 2.13 \ (P = 0.05)$ Test for overall effect $Z = 2.13 \ (P = 0.03)$ Test for overall effect $Z = 2.13 \ (P = 0.03)$ Test for overall effect $Z = 2.13 \ (P = 0.03)$ Test for overall effect $Z = 2.13 \ (P = 0.03)$ Test for overall effect $Z = 2.13 \ (P = 0.03)$ Test for overall effect $Z = 2.13 \ (P = 0.03)$ Test for overall effect $Z = 2.13 \ (P = 0.03)$ Test for overall effect $Z = 2.13 \ (P = 0.03)$ Test for overall effect $Z = 2.13 \ (P = 0.03)$ Test for overall effect $Z = 2.13 \ (P = 0.03)$ Test for overall effect $Z = 1.23 \ (P = 0.03)$ Test for overall effect $Z = 1.23 \ (P = 0.03)$ Test for overall effect $Z = 1.23 \ (P = 0.23)$ Test for overall effect $Z = 2.23 \ (P = 0.23)$ Test for overall effect $Z = 2.23 \ (P = 0.23)$ Test for overall effect $Z = 2.23 \ (P = 0.23)$ Test for overall effect $Z = 2.23 \ (P = 0.23)$ Test for overall effect $Z = 2.23 \ (P = 0.23)$ Test for overall effect $Z = 2.23 \ (P = 0.23)$ Test for overall effec	Heterogeneity Tau ² -	3 20: Chiž – 6:	1.12 df = 3.0		001) 8	- 95%		100.070	- 1.00 [-0.11, -0.10]	•	
$ \begin{array}{c} \text{Total (95% C)} \\ \text{Hetrogeneity: Tau" = 3.20; Ch" = 61.42, df = 3 \ (< 0.0001); P = 95\% \\ \text{Test for subarous differences. Not acolicable} \end{array} \\ \hline \\ \hline \\ F \\ \text{Favours (Currum supplementation)} \\ \hline \\ \hline \\ \text{Favours (Currum supplementation)} \\ \hline \\ \text{Favours (Currum supplementation)} \\ \hline \\ \hline \\ \text{Favours (Currum supplementation)} \\ \hline \\ \hline \\ \text{Favours (Currum supplementation)} \\ \hline \\ \hline \\ \ \\ \text{Favours (Currum supplementation)} \\ \hline \\ \hline \\ \hline \\ \ \\ \ \ \ \ \ \ \ \ \ \ \$	Test for overall effect: 7	Z = 2.13 (P = 0	1.03)	0.00	001), 1	- 55 %	,				
$ \begin{aligned} & \text{Total} (95\% C) & \text{Total} (95\% C) & \text{Total} (95\% C) & \text{Total} (96\% C) & Tota$											
$\frac{1}{12} \text{ training length}}_{\text{rest for overall effect } Z = 21.9 \pm 0.0001}_{\text{rest for subgroup}} = 0.033}_{\text{rest for subgroup}} = 0.033_{\text{rest for subgroup}} = 0.033_{rest for $	Total (95% CI)	2 20. 01.3	1 1 2 16 2 (82	0041-17	0.5.00	85	100.0%	-1.96 [-3.77, -0.15]		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Test for overall effect: 2 Test for subgroup diffe	Z = 2.13 (P = 0 rences: Not a	1.42, df = 3 (1 1.03) Ipplicable	P < 0.00	001); I*	= 95%)		Favours	-10 -5 0 5 10 [Curcumin supplementation] Favours [control]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
Site wear During Function	F	Fruit inice of		41.e.m	6	tral			Ctd Maan Difference	Ctd Mean Difference	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Woight	M Random 95% Cl	N Random 95% Cl	
$H = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{100000} = \frac{1}{100000} = \frac{1}{1000000} = \frac{1}{1000000} = \frac{1}{10000000} = \frac{1}{100000000} = \frac{1}{1000000000} = \frac{1}{10000000000000000000000000000000000$	131 MDA	Wear	30	TUTAL	Wean	30	TULAI	weight	IV, Kalluolli, 95% Cl	IV, Kandolii, 95% Ci	
$ \frac{1}{134} \frac{1}{102} 1$	Poroti 2020	0.77	0.01	22	0.01	0.01	10	40.1%	12 72 [16 01 10 64]		
$H = \frac{1}{100} $	Shema-Didi 2012	20	1.2	66	0.91	2 8	19	40.1% 50.004	-1.66[212-140]		
Heterogeneity. Tate = 71.47; Ch2 = 53.96, df = 1 (P < 0.00001); P = 98% Test for overall effect Z = 1.26 (P = 0.21) Total (95% C) Exercise intervention Control Std. Mean Difference Std. Std. Std. Std. Std. Std. Std. Std.	Subtotal (95% Cl)	3.0	1.5	88	0.9	2.0	50	100.9%	-7.59 [-19 41 4 24]		
Test for verail effect $Z = 1.26$ ($F = 0.21$) Total (95% C) Heterogeneity: Tau ² = 71.47; Ch ² = 53.98; df = 1 ($P < 0.00001$); $P = 98\%$ Test for verail effect $Z = 1.26$ ($P = 0.21$) Test for subaroup differences: Not applicable G Study or Subgroup Mean SD Total Mean SD Total Weight N. Fixed, 95% Cl 1.1 MDA Deus 2021 11.06 2.95 81 14.17 2.39 81 81.8% -1.15 [+1.49.0.82] Sovatzidis 2020 10.52 4.34 10 17.17 4.89 10 81.8% -0.79 [+1.79, 0.21] Subtotal (95% Cl) 5.9 1.05 8 6.9 1.31 9 9.1% -0.79 [+1.79, 0.21] Willund 2010 5.9 1.05 8 6.9 1.31 9 9.1% -0.79 [+1.79, 0.21] Test for verail effect $Z = 7.42$ ($P < 0.0001$) Test for subaroup differences: Not applicable H H N H N Total Mean SD Total Mean SD Total Mean SD Total Mean SD Total Meight M. Random, 95% Cl 1.14 [-1.44, -0.84] H H Total (95% Cl) 99 100 100.0% -1.14 [-1.44, -0.84] H H Total (95% Cl) 99 100 100.0% -1.14 [-1.44, -0.84] H H H H H H H H	Heteronenoity Tour-	71 47· Chiž - 4	53 96 df - 1	(P < ∩ ∩	00013	2 = 0.9	96	100.0%	-1.55 [-15.41, 4.24]		
Total (95% CI) Heterogeneity, Tau ² = 71.47; Chi ² = 53.86, df = 1 (P < 0.00001); P = 98% Test for verail effect $Z = 1.26$ (P = 0.21) Test for verail effect $Z = 1.26$ (P = 0.21) Test for subaroup differences: Not apolicable G Exercise intervention Control Std. Mean Difference Std. Mean Differen	Test for overall effect:	Z = 1.26 (P = 0)	1.21)	v → 0.0	5001),	- 30					
Total (95% Cl) 88 54 100.% -7.59 [-19.41, 4.24] Heterogeneity: Tau" 7 14 7; Chi"= 53.86, dir = 1 (P < 0.0001); IF = 98% Test for subarous differences: Not applicable Study or Subgroup Mean SD Total Mean SD Total Weight N. Fixed, 95% Cl Study or Subgroup Mean SD Total Mean SD Total Weight N. Fixed, 95% Cl N. Fixed, 95% Cl Study or Subgroup Mean SD Total Weight N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl N. Fixed, 95% Cl <th c<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td>										
Heterogeneity: Tay = 71.47; Ch ² = 5.38; df = 1 ($P < 0.0001$); $P = 98\%$ Test for overall effect Z = 1.26 ($P = 0.21$) Test for subaroup differences: Not applicable 3.1 Control Std. Mean Difference Std. Mean Differen	Total (95% CI)			88			54	100.0%	-7.59 [-19.41, 4.24]		
Test for overall effect Z = 1.26 (P = 0.21) Test for subaroup differences: Not applicable $G = \frac{5404 \text{ or } 540 \text{ for } 50 \text{ for } 10 \text{ for } $	Heterogeneity: Tau² =	71.47; Chi ² = 9	53.96, df = 1	(P < 0.0	0001);	² = 98	%			-20 -10 0 10 20	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Test for overall effect: 2	Z = 1.26 (P = 0	1.21)						Favours	[Fruit juice supplementation] Eavours [control]	
G Exercise intervention Control Std. Mean Difference Std. Mean Difference Std. Mean Difference 1.2.1 MDA 0 10.6 2.95 81 14.17 2.39 81 81.8% -1.15 [+1.49, -0.82] Sovatzidis 2020 10.52 4.34 10 17.7 4.89 10 91.% -3.38 [-2.38, -0.38] Wilund 2010 5.9 1.05 8 6.9 1.31 9 91.% -0.79 [-1.79, 0.21] Subtotal (95% CI) 99 100 100.0% -1.14 [-1.44, -0.84] -4 -2 -4 Heterogeneity: ChiP = 0.68, df = 2 (P = 0.71); P = 0% Test for overall effect Z = 7.42 (P < 0.00001)	Test for subaroup diffe	erences: Not a	pplicable						, arouro	[ranjaro cappionionanon] ranoaro [connon]	
$ \frac{3}{13.1} \\ \frac{5}{13.1} \\ $											
Exercise intervention Control Std. Mean Difference Std. Mean Difference Std. Mean Difference 12.1 MDA Deus 2021 11.06 2.95 81 14.17 2.38 81 81.8% -1.15 [-1.49, -0.82] Sovatzidis 2020 10.52 4.34 10 17.17 4.89 10 9.1% -0.36 [-2.38, -0.38] Willund 2010 5.9 1.05 8 6.9 1.31 9 9.1% -0.79 [-7.9, 0.21] Subtotal (95% CI) 99 100 100.0% -1.14 [-1.44, -0.84]	2										
Study or Subgroup Mean SD Total Mean SD Total Weight N. Fixed, 95% CI N. Fixed, 95% CI 1.2.1 MDA Deus 2021 11.06 2.95 81 14.17 2.39 81 81.8% -1.15 [-1.49, -0.82] Sovatzidis 2020 10.52 4.34 10 17.17 4.99 100 91.% -1.38 [-2.38, -0.38] Wilund 2010 5.9 1.05 8 6.9 1.31 9 9.1% -0.79 [-7.79, 0.21] Subtotal (95% CI) 99 100 100.0% -1.14 [-1.44, -0.84] - Heterogeneity: Chi?= 0.68, df = 2 (P = 0.71); P = 0% Test for overall effect: Z = 7.42 (P < 0.00001)		Exercise	interventio	n	Co	ntrol			Std. Mean Difference	Std. Mean Difference	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Study or Subgroup	Mean	SD T	otal N	lean	SD	Total	Weight	IV, Fixed, 95% C	IV, Fixed, 95% Cl	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2.1 MDA										
Sovatzidis 2020 10.52 4.34 10 17.17 4.89 10 9.1% -1.38 [-2.38 , -0.38] Willund 2010 5.9 1.05 8 6.9 1.31 9 9.1% -0.79 [-1.79 , 0.21] Subtotal (95% CI) 99 100 100.0% -1.14 [-1.44 , -0.84] Heterogeneity: Chi ² = 0.68, df = 2 (P = 0.71); P = 0% Test for overall effect Z = 7.42 (P < 0.00001) Total (95% CI) 99 100 100.0% -1.14 [-1.44 , -0.84] Heterogeneity: Chi ² = 0.68, df = 2 (P = 0.71); P = 0% Test for subaroup differences: Not applicable H Multiple antioxidant interventions Control Std. Mean Difference Std. Mean Difference Std. Mean Difference (C = 1.14, 1.44, -0.84)] Anmad 2013 4.5 1.3 24 6.2 5.3 24 23.5% -0.43 [-1.01 , 1.01 , 1.01 , 1.01 Anmad 2013 4.5 1.3 24 6.2 5.3 24 23.5% -0.43 [-1.01 , 1.01 , 1.01 , 1.01 , 1.01 , 1.01 , 1.01 , 1.01 , 1.01 , 1.02 , 1.05 , 1.05 , 1.03 , 1.05 , 1.03 , 1.05 , 1.05 , 1.03 , 1.05 , 1.05 , 1.03 , 1.05 , 1.05 , 1.03 , 1.00 , 1.01 , 1.01 , 1.01 , 1.01 , 1.01 , 1.01 , 1.01 , 1.01 , 1.01 , 1.01 , 1.01 , 1.01 , 1.02 , 1.02 , 1.03 , 1.03 , 1.03 , 1.03 , 1.03 , 1.03 , 1.03 , 1.04 , 2.8 , 1.03 , 1.03 , 1.04 , 2.8 , 1.03 , 1.03 , 1.03 , 1.03 , 1.03 , 1.03 , 1.03 , 1.03 , 1.03 , 1.03 , 1.04 , 2.8 , 1.03 ,	Deus 2021	11.06	2.95	81 1	4.17	2.39	81	81.8%	-1.15 [-1.49, -0.82	2] 📕	
Willund 2010 5.9 1.05 8 6.9 1.31 9 9.1% $-0.79 \begin{bmatrix} 1.79, 0.21 \end{bmatrix}$ Subtotal (95% CI) 99 100 100.0% $-1.14 \begin{bmatrix} -1.44, -0.84 \end{bmatrix}$ Heterogeneity: Chi ² = 0.68, df = 2 (P = 0.71); P = 0% 99 100 100.0% $-1.14 \begin{bmatrix} -1.44, -0.84 \end{bmatrix}$ Total (95% CI) 99 100 100.0% $-1.14 \begin{bmatrix} -1.44, -0.84 \end{bmatrix}$ Heterogeneity: Chi ² = 0.68, df = 2 (P = 0.71); P = 0% 78 78 (D = 0.0001) 78 (D = 0.0001) Test for overall effect: Z = 7.42 (P < 0.00001) 99 100 100.0% $-1.14 \begin{bmatrix} -1.44, -0.84 \end{bmatrix}$ Heterogeneity: Chi ² = 0.68, df = 2 (P = 0.71); P = 0% 78 (D = 0.0001) Favours [Exercise intervention] Favours [Control] Test for overall effect: Z = 7.42 (P < 0.00001) 70 (D = 0.00001) Favours [Control] Std. Mean Difference V. Random, 95% CI H Multiple antioxidant interventions Control Std. Mean Difference V. Random, 95% CI 1.3.1 MDA Ahmadi 2013 4.5 1.3 24 6.2 5.3 24 23.5% $-0.43 \begin{bmatrix} 1.10, 0.14 \end{bmatrix}$ Assent 2016 3.4 1.4 30 57 29 30	Sovatzidis 2020	10.52	4.34	10 1	7.17	4.89	10	9.1%	-1.38 (-2.38, -0.38	ai ————————————————————————————————————	
Subtotal (95% CI) 99 100 100.0% -1.14 [-1.44, -0.84] Heterogeneity: Chi ² = 0.68, df = 2 (P = 0.71); P = 0% Test for overall effect: Z = 7.42 (P < 0.00001) Total (95% CI) 99 100 100.0% -1.14 [-1.44, -0.84] Heterogeneity: Chi ² = 0.68, df = 2 (P = 0.71); P = 0% Test for overall effect: Z = 7.42 (P < 0.00001) Test for subaroup differences: Not applicable H Multiple antioxidant interventions Control Study or Subgroup Mean SD Total Mean SD Total Weight N. Random, 95% CI 1.3.1 MDA Anmadi 2013 4.5 1.3 24 6.2 5.3 24 23.5% -0.43 [-1.01, 0.14] Asemi 2016 3.4 1.4 3 24.6.2 7.29 30 23.9% -1.06 [-1.15, 0.68] Eiselt 2001-4weeks 32.3 21.6 7 36.3 24.6 9 17.4% -0.16 [-1.15, 0.83] Eiselt 2001-4weeks 3.76 0.13 10 4.28 0.18 10 12.5% -3.17 [-4.58, -1.77] Murtilo 2019 50.19 32.62 20 70.45 69.21 20 70.45 69.21 20 70.45 69.21 6.20 Subtotal (95% CI) 91 93 100.0% -0.85 [-1.51, 0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); P = 75% Test for overall effect Z = 2.51 (P = 0.01) Total (95% CI) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); P = 75% Test for overall effect Z = 2.51 (P = 0.01) Total (95% CI) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); P = 75% Test for overall effect Z = 2.51 (P = 0.01) Total (95% CI) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); P = 75% Test for overall effect Z = 2.51 (P = 0.01) Total (95% CI) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); P = 75% Test for overall effect Z = 2.51 (P = 0.01) Total (95% CI) Factor and Effect Z = 2.51 (P = 0.01) Total (95% CI) Factor and Effect Z = 2.51 (P = 0.01) Test for overall effect Z = 2.51 (P = 0.01) Test for overall effect Z = 2.51 (P = 0.01) Test for overall effect Z = 2.51 (P = 0.01) Factor Bircher Z = 2.51 (P = 0.01) Factor Factor Correll effect Z = 2.51 (P = 0.01) Factor Factor Correll effec	Wilund 2010	5.9	1.05	8	6.9	1.31	9	9.1%	-0.79 [-1.79.0.21	i	
Heterogeneity: $Ch^{\mu} = 0.68$, $df = 2$ ($P = 0.71$); $P = 0\%$ Test for overall effect: $Z = 7.42$ ($P < 0.00001$) Total (95% CI) 99 100 100.0% -1.14 [-1.44, -0.84] Heterogeneity: $Ch^{\mu} = 0.68$, $df = 2$ ($P = 0.71$); $P = 0\%$ Test for overall effect: $Z = 7.42$ ($P < 0.00001$) Test for subaroup differences: Not applicable H Multiple antioxidant interventions Control Std. Mean Difference Std. Mean Difference N. Random, 95% CI 1.3.1 MDA Anmadi 2013 4.5 1.3 24 6.2 5.3 24 23.5% -0.43 [-101, 0.14] Asemi 2016 3.4 1.4 30 5.7 2.9 30 23.9% -1.00 [-1.54, -0.46] Chao 2002-10weeks 3.2.3 21.6 7 36.3 24.6 9 17.4% -0.16 [-1.15, 0.83] Elset 2001-4weeks 3.7.6 0.13 10 4.28 0.18 10 12.27% -0.37 [-0.98, 0.26] Subtotal (95% CI) 91 32.62 20 70.45 69.21 20 2.7.5% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Ch ² = 16.13, df = 4 ($P = 0.003$); $P = 75\%$ Test for overall effect $Z = 2.51$ ($P = 0.01$) Total (95% CI) 91 32.62 91 30 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Ch ² = 16.13, df = 4 ($P = 0.003$); $P = 75\%$ Test for overall effect $Z = 2.51$ ($P = 0.01$) Total (95% CI) 91 S0.19 S0.19 S0.10	Subtotal (95% CI)	0.0		99	0.0		100	100.0%	-1.14 [-1.440.84]	i 🔶	
Test for overall effect $Z = 7.42$ (P < 0.0001) Total (95% Cl) 99 Heterogeneity: Chi ² = 0.68, df = 2 (P = 0.71); P = 0% Test for overall effect $Z = 7.42$ (P < 0.00001) Test for subaroup differences: Not applicable H Multiple antioxidant interventions Study or Subgroup Mean SD Total Mean SD Total Mean SD Total Weight V. Random, 95% Cl V. Ran	Heterogeneity: Chi ² -	-068 df-2	(P = 0.71)·1	2 - 0%							
Total (95% Cl) 99 100 100.0% -1.14 [-1.44, -0.84] Heterogeneity: Chi ² = 0.68, df = 2 (P = 0.71); I ² = 0% Favours [Exercise intervention] Favours [Control] Test for subgroup Mathing antioxidant interventions Control Std. Mean Difference Nt. Andom, 95% Cl H Multiple antioxidant interventions Control Std. Mean Difference Nt. Andom, 95% Cl Nt. Andom, 95% Cl 13.1 MDA Ahmadi 2013 4.5 1.3 24 6.2 5.3 24 23.5% -0.43 [+1.01, 0.14] Asemi 2016 3.4 1.4 30 5.7 2.9 30 23.9% -1.00 [+1.54, -0.46] Chao 2002-10weeks 3.2.3 21.6 7 36.3 24.6 91 7.03 [+0.51, -0.18] Eiselt 201-4weeks 3.76 0.13 10 4.28 0.18 10 12.5% -3.37 [+0.99, 0.26] Subtotal (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19] -4 -2 0 2 4 Heterogeneity: Tau ² = 0.40; Chi ² = 16.13; df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) 93 100.0%	Test for overall effect	: Z = 7.42 (P	< 0.00001)	- 0.0							
Total (95% Cl) 99 100 100.0% -1.14 [-1.44, -0.84] Heterogeneity: Chi ² = 0.68, df = 2 (P = 0.71); P = 0% Test for overall effect: Z = 7.42 (P < 0.00001)	10 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1			100			0.000				
Heterogeneity: Tau ² = 0.40; Chi ² = 16.13; df = 4 (P = 0.003); P = 75% Test for overall effect: $Z = 7.42$ (P < 0.00001) Test for subaroup differences: Not applicable H Multiple antioxidant interventions Control Std. Mean Difference M. Random, 95% Cl V. Random,	Total (95% CI)			99			100	100.0%	-1.14 [-1.44, -0.84]		
Test for overall effect: $Z = 7.42$ ($P < 0.00001$) Test for subaroup differences: Not applicable H Multiple antioxidant interventions Control Std. Mean Difference Std. Mean Difference Std. Mean Difference Mean Difference Std. Mean Difference Mean Difference Std. Mean Difference Mean Difference Mean Difference Std. Mean Difference Mean Difference Mean Difference Std. Mean Difference Mean Difference Mean Difference Differe	Heterogeneity: Chi ² =	= 0.68, df = 2	(P = 0.71); I	²=0%						-4 -2 0 2 4	
Test for subaroup differences: Not applicable Multiple antioxidant interventions Control Study of Subgroup Mean SD Total Mean SD Total Mean Stid. Mean Difference Study of Subgroup Mean SD Total Mean SD Total Mean SU N. Random, 95% CI N. Random, 95% CI	Test for overall effect	t: Z = 7.42 (P	< 0.00001)						Fav	vours [Exercise intervention] Favours [Control]	
Study or Subgroup Mean SD Total Mean SD Total Weight V. Random, 95% Cl Std. Mean Difference 1.3.1 MDA Anmadi 2013 4.5 1.3 24 6.2 5.3 24 23.5% -0.43 [1.01, 0.14] Asemi 2016 3.4 1.4 30 5.7 2.9 30 23.9% -1.00 [-1.54, -0.46] Chao 2002-10weeks 3.23 21.6 7 36.3 24.6 9 17.4% -0.16 [-1.15, 0.83] Eiselt 2001-4weeks 3.76 0.13 10 4.28 0.18 10 12.5% -3.17 [-4.58, -1.77] Murilio 2019 50.19 32.62 20 70.45 69.21 20 22.7% -0.37 [-0.98, 0.26] Subtotal (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19]	Test for subaroup di	fferences: No	ot applicable	9							
H Multiple antioxidant interventions Control Std. Mean Difference Std. Mean Difference Std. Mean Difference 1.3.1 MDA Ahmadi 2013 4.5 1.3 24 6.2 5.3 24 23.5% -0.43 [-1.01, 0.14] Asemi 2016 3.4 1.4 30 5.7 2.9 30 23.3% -0.10 [-1.54, -0.46] Chao 2002-10weeks 32.3 21.6 7 36.3 24.6 9 17.4% -0.016 [-1.15, 0.36] Eiselt 2001-4weeks 3.76 0.13 10 4.28 0.18 10 12.5% -3.37 [-0.99, 0.26] Subtotal (95% CI) 91 91 93 100.0% -0.85 [-1.51, -0.19] -4 -2 0 2 4 Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% 75% Test for overall effect Z = 2.51 (P = 0.01) 91 93 100.0% -0.85 [-1.51, -0.19] -4 -2 0 2 4 Test for overall effect Z = 2.51 (P = 0.01) Test for overall effect Z = 2.51 (P = 0.01) Favours [Multiple antioxidant interventions] Favours [Control] Test for subaroup differences: Not applicable<											
Study or Subgroup Mean SD Total Mean SD Total Weight IX, Random, 95% Cl IX, Random, 95% Cl <t< td=""><td>н</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	н										
1.3.1 MDA Ahmadi 2013 4.5 1.3 24 6.2 5.3 24 23.5% $-0.43 [1.01, 0.14]$ Asemi 2016 3.4 1.4 30 5.7 2.9 30 23.9% $-1.00 [1.54, -0.46]$ Chao 2002-10weeks 32.3 21.6 7 36.3 24.6 9 17.4% $-0.01 [1.15, 0.33]$ Eiselt 2001-4weeks 3.76 0.13 10 4.28 0.18 10 12.5% $-3.17 [4.58, -1.77]$ Murillo 2019 50.19 32.62 20 70.45 69.21 20 22.7% $-0.37 [-0.99, 0.26]$ Subtotal (05% CI) 91 93 100.0% $-0.85 [-1.51, -0.19]$ -4 -2 0 2 4 Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) -4 -2 0 2 4 Test for overall effect: Z = 2.51 (P = 0.01) Test for subaroup differences: Not applicable Favours [Multiple antioxidant interventions] Favours [Control]	Study or Subgroup	Multiple antio Mean	sD SD	entions Tot	al Mea	n S	ol SD Tot	al Weigh	std. Mean Difference	Std. Mean Difference IV. Random, 95% Cl	
Ahmadi 2013 4.5 1.3 24 6.2 5.3 24 23.5% -0.43 [-1.01, 0.14] Asemi 2016 3.4 1.4 30 5.7 2.9 30 23.9% -1.00 [-1.54, -0.46] Chao 2002-10weeks 3.2.3 21.6 7 36.3 24.6 9 17.4% -0.16 [-1.15, 0.46] Eiselt 2001-4weeks 3.76 0.13 10 4.28 0.18 10 12.5% -3.17 [-4.58, -1.77] Murillo 2019 50.19 32.62 20 70.45 69.21 20 22.7% -0.37 [-0.99, 0.26] Subtotal (95% C) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Total (95% CI) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Total (95% CI) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Total (95% CI) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Total (95% CI) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Total (95% CI) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Test for subtoroup differences: Not applicable	1.3.1 MDA										
Asemi 2016 3.4 1.4 30 5.7 2.9 30 23.9% -1.00 [-1.54, -0.46] Chao 2002-10weeks 32.3 21.6 7 36.3 24.6 9 17.4% -0.16 [-1.15, 0.83] Eiselt 2001-4weeks 3.76 0.13 10 4.28 0.18 10 12.5% -3.17 [-4.58, -1.77] Murillo 2019 50.19 32.62 20 70.45 69.21 20 22.7% -0.37 [-0.99, 0.26] Subtotal (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Total (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Total (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Total (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for subaroup differences: Not applicable EFE 7	Ahmadi 2013	4.5	1.3	1	24 6.	.2 5	i.3 :	24 23.59	% -0.43 [-1.01, 0.14]		
Chao 2002-10weeks 32.3 21.6 7 36.3 24.6 9 17.4% -0.16 [+1.5, 0.83] Eiselt 2001-4weeks 3.76 0.13 10 4.28 0.18 10 12.5% -3.17 [+4.58, -1.77] Murillo 2019 50.19 32.62 20 70.45 69.21 20 22.7% -0.37 [-0.99, 0.26] Subtotal (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Total (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Total (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Total (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Total (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Test for subaroup differences: Not applicable Favours [Multiple antioxidant interventions] Favours [Control]	Asemi 2016	3.4	1.4	3	30 5.	7 2	2.9 :	30 23.99	% -1.00 [-1.54, -0.46]		
Eiselt 2001-4weeks 3.76 0.13 10 4.28 0.18 10 12.5% -3.17 [4.58, -1.77] Murillo 2019 50.19 32.62 20 70.45 69.21 20 22.7% -0.37 [-0.99, 0.26] Subtotal (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect Z = 2.51 (P = 0.01) Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect Z = 2.51 (P = 0.01) Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect Z = 2.51 (P = 0.01) Test for subaroup differences: Not applicable Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for subaroup differences: Not applicable Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for subaroup differences: Not applicable Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for subaroup differences: Not applicable Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for subaroup differences: Not applicable Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for subaroup differences: Not applicable Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for subaroup differences: Not applicable Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for subaroup differences: Not applicable Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for subaroup differences: Not applicable Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for subaroup differences: Not applicable Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for subaroup differences: Not applicable Test for subaroup differences: Not applicable	Chao 2002-10weeks	32.3	21.6	38	7 36	3 24	.6	9 17.49	% -0.16 [-1.15, 0.83]		
Multinic ZU19 50.19 32.62 20 70.45 69.21 20 22.7% -0.37 [-0.99, 0.26] Subtotal (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% -0.85 [-1.51, -0.19] Total (95% Cl) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% -0.85 [-1.51, -0.19] -4 Test for overall effect: Z = 2.51 (P = 0.01) 91 93 100.0% -0.85 [-1.51, -0.19] Test for overall effect: Z = 2.51 (P = 0.01) Favours [Multiple antioxidant interventions] Favours [Control]	Eiselt 2001-4weeks	3.76	0.13	1	4.2	8 0.1	18	10 12.59	8 -3.17 [-4.58, -1.77]		
Status	Subtotal (95% CI)	50.19	32.62		20 70.4	5 69.	21 2	20 22.79	x -0.37 [-0.99, 0.26]	•	
Total (95% CI) Total (95% CI) Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.51 (P = 0.01) Test for overall effect: Z = 2.51 (P = 0.01) Test for subaroup differences: Not applicable Favours [Multiple antioxidant interventions] Favours [Control]	Heterogeneity Tau ² - 0	40: Chi ² = 16 11	3 df = A (P - f)	צו יונצחח ר ≈	= 75%				-0.03 [-1.31, -0.19]	-	
Total (95% CI) 91 93 100.0% -0.85 [-1.51, -0.19] Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect Z = 2.61 (P = 0.01) Test for subaroup differences: Not applicable Favours [Multiple antioxidant interventions] Fast or subaroup differences: Not applicable	Test for overall effect: Z =	= 2.51 (P = 0.01)		- 1070						
Heterogeneity: Tau ² = 0.40; Chi ² = 16.13, df = 4 (P = 0.003); I ² = 75% Test for overall effect: Z = 2.61 (P = 0.01) Test for subaroup differences: Not applicable Favours [Multiple antioxidant interventions] Favours [Control]	Total (05% Ch				1			100 0	0 05 1 4 54 0 401		
Test for overall effect 2 = 2.51 (P = 0.01) Test for subαroup differences: Not applicable IPE 7	Heteroneneity: Tou2 - 0	40: Chiž – 16 11	3 df = A/P - C	1 UU 3/- 18	= 75%		5	92 100.0	⁷⁰ -0.65 [-1.51, -0.19]	~	
Test for subaroup differences: Not applicable Favours [Multiple antioxidant interventions] Favours [Control]	Test for overall effect: 7 -	= 2.51 (P = 0.01)	J, ui – 4 (F = l)	5.003), F	- 7:370					-à -à à à	
	Test for subaroup differe	ences: Not appl	icable						Favours (Mu	ultiple antioxidant interventions] Favours [Control]	
	105.7										
ines Grant plat divitamin C supplementation on linid paravida lavala (0) Farat plat afritamin F supplementation an linid constitution (0) F	IRE 5	Courselant	optation -	n linia	DOVO	dole		D) [t plot of vitamin E	undementation on linid nervoide levels (C) Forme	
orest plot or vitamin C supplementation on lipid peroxide levels. (B) Forest plot of vitamin E supplementation on lipid peroxide levels. (C) F	orest plot of vitamin	C supplem	entation o	n lipid	peroxi	de lev	vels. (b) Fores	t plot of vitamin E su	ipplementation on lipid peroxide levels. (C) Fores	
or vitamin E-coated dialyzer on lipid peroxide levels. (D) Forest plot of ω -fatty acids supplementation on lipid peroxide levels. (E) Forest plot	of vitamin E-coated	dialyzer on	lipid pero	kide lev	els. (C) Fore	est plo	ot of ω-f	atty acids supplemei	ntation on lipid peroxide levels. (E) Forest plot of	
cumin supplementation on lipid peroxide levels. (F) Forest plot of pomegranate juice supplementation on lipid peroxide levels. (G) Forest pl	cumin supplementati	on on lipid _l	peroxide le	evels. (I	F) Fore	est plo	ot of p	omegra	anate juice suppleme	entation on lipid peroxide levels. (G) Forest plot of	

In addition, we performed the subgroup analyses for various antioxidant supplementation doses to investigate the possible effects of supplementation dose.

3.3.1 Subgroup analysis of high heterogeneity

Subgroup analysis of MDA levels after curcumin supplementation found no significant change in heterogeneity and *p*-value, demonstrating that the obtained results were stable (Table 2).

Subgroup analysis stratified by study source indicated no significant decline in MDA levels among dialysis patients in Asia (SMD = -0.62, 95% CI -1.09 to -0.15, p = 0.22) (SMD = -0.57, 95% CI -0.90 to -0.24, p = 0.35), with an inter-study heterogeneity of 35%. Meanwhile, it indicated significant decline in MDA levels among dialysis patients in America (SMD = -1.7, 95% CI -1.51 to -0.19, p < 0.0001), with an inter-study heterogeneity of 0%. This suggests that race might contributing

TABLE 2 Results of subgroup analysis of curcumin supplementation on MDA levels.

Subgroup		n (cases)	Sample size	SMD (95% CI)	Value	Heterogeneity	
						l² (%)	<i>p</i> -value
nl.	America	2	68	-1.62 (-3.48 to 0.24)	12.51	92	<0.0001
Research source	Asian	2	88	-2.37 (-7.50 to 2.75)	48.90	98	< 0.0001
Complete second	Plasma	3	120	-1.76 (-4.02 to 0.50)	49.90	96	<0.0001
Sample source	Serum	1	36	-2.61 (-3.52 to -1.69)	0		
	≥20	2	92	-2.82 (-7.04 to 1.40)	38.11	97	<0.0001
Sample size	<20	2	64	-1.18 (-3.95 to 1.58)	22.07	96	<0.0001
Intervention time	\geq 3 months	3	120	-1.76 (-4.02 to 0.50)	49.90	96	<0.0001
	>3 months	1	36	-1.96 (-3.77 to -1.69)	0		
Malananation	>50%	3	128	-2.72 (-5.05 to -0.38)	43.9	95	<0.0001
Male proportion	50%	1	28	-1.96 (-3.77 to -0.15)	0		
	\geq 3 years	2	76	-3.77 (-6.13 to -1.41)	9.16	89	0.002
Dialysis duration	<3 years	2	80	-0.29 (-1.19 to 0.62)	3.97	75	0.046

TABLE 3 Results of subgroup analysis of multiple antioxidant interventions on MDA levels.

Subgroup		n (cases)	Sample size	SMD (95% CI)	Value	alue Heterogeneity	
						l² (%)	<i>p</i> -value
Describer	Asian	3	188	-0.62 (-1.09 to -0.15)	3.08	35	0.22
Research source	America	2	80	-1.70 (-1.51 to -0.19)	12.79	0	<0.0001
C	Plasma	4	228	-1.03 (-1.89 to -0.16)	14.64	79.5	0.002
Sample source	Serum	1	40	-0.37 (-0.99 to 0.26)	0		
Sample size	≥40	3	148	-0.62 (-1.02 to -0.22)	2.91	31	0.23
	<40	2	120	-1.62 (-1.51 to -0.19)	18.0	72	0.003
T	\geq 2 months	2	80	-0.70 (-1.32 to -0.09)	2.24	55.3	0.13
Intervention time	<2 months	3	188	-3.17 (-4.57 to -1.77)	13.86	86	0.001
D:1.4	Control	2	120	-0.62 (-1.02 to -0.22)	2.91	31	0.23
Diabetes	Uncontrolled	3	148	-1.62 (-4.57 to 1.33)	11.79	92	0.001
	≥60 years	1	40	-3.17 (-4.58 to -1.77)	0		
Age	<60 years	4	228	-0.57 (-0.92 to -0.21)	3.68	18	0.298
Distantia la setta s	\geq 3 years	2	80	-1.70 (-4.44 to 1.05)	12.8	92.2	<0.001
Dialysis duration	<3 years	3	188	-0.62 (-1.09 to -0.15)	3.1	35	0.347

to the observed heterogeneity. Sample size stratified subgroup analysis indicated that MDA levels in dialysis patients with a sample size ≥ 40 (SMD = -0.62, 95% CI -1.02 to -0.22, P = 0.23) did not show a significant reduction. Heterogeneity remained moderate ($I^2 = 31\%$). Conversely, patients in studies with a sample size less than 40 exhibited a significant decline in MDA levels following intervention (SMD = -0.93, 95% CI -1.74 to -0.13, p = 0.003). Furthermore, MDA levels in dialysis patients significantly reduced when diabetes was uncontrolled (SMD = -1.62, 95% CI -4.57 to -1.33, p = 0.001). In contrast, there was no significant reduction in MDA levels in dialysis patients with controlled diabetes (SMD = -0.62, 95% CI -1.02 to -0.22, p = 0.23), and the heterogeneity among the studies including controlled diabetes was 31%. Subgroup analyses revealed that patients with extended dialysis duration (>3 years) demonstrated markedly greater MDA level reductions (SMD = -1.70, 95% CI -4.44 to 1.05) compared to those with shorter dialysis duration (SMD = -0.62, 95% CI -1.09 to -0.15) (Table 3).

3.3.2 Meta-regression analysis of supplemental dose

Meta-regression analyses were conducted to evaluate potential dose-response relationships between antioxidant supplementation (vitamin C, vitamin E, and curcumin) and observed heterogeneity. Pre-specified covariates included daily dosage (mg/day), with all models adjusted for baseline oxidative status. The results revealed no significant dose-response relationships between antioxidant

supplementation (vitamin C: p = 0.68, 95% CI -0.0130 to 0.0163; vitamin E: p = 0.56, 95% CI -0.0021 to 0.0034; curcumin: p = 0.692, 95% CI -0.0059 to 0.0073).

3.4 Sensitivity analysis

To assess the robustness of the meta-analysis results, sensitivity analyses were performed for studies that included more than two articles. The outcomes revealed that no individual studies significantly influenced the combined results, indicating the statistical robustness of the findings (Figure 4).

3.5 Publication bias

To assess publication bias, we incorporated funnel plot analyses, which revealed no significant asymmetry. Given the limited number of studies (n < 10) and the associated low statistical power for detecting asymmetry, we complemented the funnel plot analysis with Egger's regression test (Table 4). The combined results from both methods consistently indicated the absence of significant publication bias. While our comprehensive bias assessment framework suggested minimal publication bias, the limited statistical power inherent in small meta-analyses necessitates cautious interpretation. Future updates with additional trials are warranted to confirm these observations.

TABLE 4 Egger test for each intervention.

Additional intervention	t	p > t	95% CI
Vitamin C	0.11	0.922	-16.404 to 17.271
Vitamin E	-0.91	0.398	-4.406 to 2.017
Vitamin E-coated dialyzer	-1.00	0.362	-8.822 to 3.872
Curcumin	-1.87	0.159	-26.458 to 6.903
Pomegranate juice	-2.59	0.234	-38.133 to 25.199
Exercise intervention	0.8	0.473	-5.912 to 8.940
Multiple interventions	-1.76	0.153	-9.293 to 2.085

4 Discussion

In this study, we conducted a comprehensive meta-analysis of existing RCT studies focusing on antioxidant intervention in dialysis patients. Our findings highlight several significant conclusions: supplementation with vitamin E, vitamin E-coated dialyzer treatment, curcumin supplementation, exercise intervention, and multiple antioxidant interventions were all found to effectively improve the lipid peroxidation status of dialysis patients. However, Supplementation with vitamin C, supplementation with ω -fatty acids and pomegranate juice did not significantly improve the lipid peroxidation status of dialysis patients.

Vitamin C and vitamin E are key antioxidants known for their role in protecting LDL cholesterol from free radical damage (29, 30). However, the use of vitamin C in clinical practice is currently controversial. Our results showed that vitamin C supplementation did not significantly reduce MDA levels in dialysis patients. Meanwhile, our findings indicate that the dose of vitamin C did not significantly impact the outcomes of this study. Interestingly, one study indicated a potential increase in cardiovascular mortality with high-dose vitamin C supplementation (\geq 300 mg/day) (31). In addition, Chao et al. (12), found that plasma lipid peroxidation levels were significantly reduced in the vitamin C supplement group at week 6. Further studies are needed to generate cumulative time-dependent and dose- dependent data to confirm the effect of vitamin C on lipid peroxidation. In addition, micronutrients can induce synergistic effects. For instance, vitamin C enhances the lipid antioxidant effects of vitamin E (32). Chao et al. (12) uncovered that vitamin C and vitamin E supplementation significantly reduced lipid peroxidation levels in dialysis patients. As such, vitamin E may exert synergistic antioxidant effects on vitamin C. In addition, this study demonstrates that vitamin E supplementation can improve lipid peroxidation damage in dialysis patients. Lipid peroxidation occurs in three distinct stages: initiation, propagation, and termination (20). Vitamin E acts as a chain-breaking antioxidant by scavenging alkylperoxyl radicals, interrupting the chain reaction and preventing further damage (33). Moreover, it disrupts the reproductive step by forming vitamin E free radicals, scavenging lipid peroxy free radicals, which are further scavenged by other antioxidants (34). Currently, there is a meta-analysis investigating the therapeutic effect of vitamin E supplementation on OS in hemodialysis patients (15). However, not all the studies included in that meta-analysis met the rigorous criteria of RCTs, leading to high heterogeneity and subsequently, controversy regarding the validity of the results. In our study, we carefully curated relevant RCT studies, ensuring a higher standard of quality. We found that vitamin E supplementation significantly reduced in MDA levels among dialysis patients, with no significant heterogeneity. Although a review of the literature suggests that oral vitamin E is generally well-tolerated, the safety of high-dose vitamin E remains a subject of ongoing debate (35). In the subgroup analysis of doses, we found that low dose vitamin E supplementation significantly improved lipid peroxidation while higher doses of vitamin E did not. The effective dose range of clinical vitamin E supplementation awaits the results of long-term, large controlled clinical trials.

During HD, blood contact with bioincompatible dialyzer membranes and dialysate triggers the activation of complement factors, platelets, and polymorphonuclear cells, leading to the production of ROS and exacerbating OS (36, 37). Vitamin E might inhibit platelet activation, thereby limiting platelet adhesion (38, 39). Clermont et al. (40) found a significantly lower rate of neutrophil activation induced by novel vitamin E-coated dialyzer compared to highly biocompatible synthetic dialysis membranes. This suggests that vitamin E coating on dialyzer may reduce OS exacerbation by inhibiting neutrophil and platelet activation. This study revealed that vitamin E-coated dialyzer effectively reduced Ox-LDL levels in dialysis patients, aligning with the findings of Yang et al. (41). Our findings regarding the effectiveness of vitamin E-coated dialyzers in reducing MDA levels in dialysis patients align with the conclusions of Sosa et al. (42) and D'Arrigo et al. (43). However, we note that their studies may have included a wider range of research designs, not just RCTs. In contrast, our meta-analysis exclusively focused on RCTs, which are considered the gold standard for establishing causal relationships. This methodological rigor strengthens the credibility of our conclusion: vitamin E-coated dialyzers likely offer a significant benefit in reducing lipid peroxidation in dialysis patients. Although vitamin E-coated dialyzers have shown potential benefits for dialysis patients, their broad clinical adoption may be limited by their higher cost compared to uncoated dialyzers. To fully realize the potential benefits of this technology, collaborative efforts between biomaterial scientists, entrepreneurs, and nephrologists are essential.

Curcumin is a potent inhibitor of ROS production by providing hydrogen, thereby reducing lipid peroxidation damage (44). In addition, curcumin can activate Nrf2, a key antioxidant stress protein (45). Curcumin has been shown to improve outcomes in numerous diseases, such as autoimmune diseases (46), diabetes mellitus (47), and fatty liver diseases (48). This study reveals that targeting anti-lipid peroxidation may improve the outcomes of dialysis patients. In addition, we uncovered that high doses of curcumin have stronger anti-lipid peroxidation effects. Curcumin is a nontoxic, non-mutagenic, non-carcinogenic, non-photo toxic agent. Studied investigating the safety of turmeric, showed that standardized powder of turmeric and curcumin are safe for human use. However, whether the antioxidant effect of curcumin is dose-dependent needs to be investigated in larger studies.

Furthermore, this study also found that exercise intervention significantly declined MDA levels in dialysis patients. This exercise-mediated effect can be explained by the excitation theory, which posits that regular exercise leads to intermittent and transient ROS production and OS, stimulating redox-sensitive signaling pathways. This stimulation promotes protective adaptation, preparing the body to cope with subsequent higher ROS levels and molecular damage (49). However, acute exercise induces more OS (50). Therefore, under the premise of safety, dialysis patients should be encouraged to engage in long-term, low-to-moderate-intensity exercise training whenever possible. Clinicians should be encouraged to develop personalized exercise programs tailored to the specific needs of their patients.

The multiple antioxidant interventions in this study involved the simultaneous application of two antioxidant measures. In four out of the five studies, vitamin E was co-supplemented with another antioxidant. The study of Asemi et al. (51) revealed that supplementation of ω -fatty acids alone did not improve the lipid peroxidation status of dialysis patients. However, when combined with vitamin E, ω-fatty acids significantly reduced lipid peroxidation levels in patients. Given that ω -fatty acids are sensitive to oxidation, they may exhibit more efficacy when used with vitamin E rather than independently. Chao et al. (12) demonstrated that the combination of vitamin C and vitamin E effectively improved the antioxidant status of dialysis patients, with the effects persisting for an extended period even after supplement termination. Consequently, in cases where single antioxidant intervention proves ineffective, exploring combinations of multiple antioxidants could be considered to enhance the lipid peroxidation status of dialysis patients.

Multidimensional subgroup analyses were performed in the curcumin and multi-antioxidant intervention groups, both exhibiting substantial heterogeneity ($I^2 > 50\%$). Notwithstanding the absence of significant moderators in subgroup analyses of curcumin, the stratified evaluation of MDA levels revealed persistent homogeneity following curcumin intervention. At the same time, we found race might contributing to the observed heterogeneity. This methodological triangulation confirmed the stability of anti-peroxidation effects across population subsets.

Sensitivity analysis indicated minimal fluctuations in heterogeneity and results across the included studies for each intervention, suggesting that the conclusions of this study were statistically robust. In addition, for each intervention, the Egger test revealed that there was no publication bias, which indicated strong robustness of the conclusions of our study. However, there are several limitations in this study. Bias risk assessment identified some potential selection bias. However, according to the Cochrane Handbook, a high risk of bias does not necessarily equate to low-quality evidence. Subsequent sensitivity analyses, excluding studies with high-bias risk, did not alter our conclusions. The RCTs included in the study had small sample sizes, including only 1,256 subjects across 25 articles. Consequently, larger clinical trials are imperative to validate these findings. Furthermore, most assays to determine MDA have been developed on the basis of its derivatization with thiobarbituric acid (TBA), which is insufficiently sensitive and disturbed by too much interference coming from MDA related species or overestimation derived from stressing analysis conditions. Although there has been significant improvement of methods for MDA detection, they have been fully validated (52). Unfortunately, among the studies included in this study, only Rodrigues et al. (53) used the detection method that utilizes non-thiobarbituric acid (TBA) derivatization to overcome the biases associated with derivatization of MDA with TBA. Meanwhile, due to the backwardness of MDA determination methods in the literatures included in this review, all of which indicated that blood samples taken were centrifuged and stored until assay. This leads to limitations in the results of our study. A recent study has shown that plasmonic optical fiber biosensor for point-of-care detection of MDA has been developed (54), and the application of this technology is expected to solve this important issue. Given its importance as a marker of lipid peroxidation and its potential harmful effects on health, the use of new and reliable assays to measure MDA should be encouraged in future medical trials.

5 Conclusion

Supplementation of vitamin E, vitamin E-coated dialyzer treatment, curcumin supplementation, exercise intervention, and multiple antioxidant interventions can effectively reduce the level of lipid peroxidation biomarkers in dialysis patients. However, due to the limitations of the assays included in our study, it is hoped that designers of future clinical trials will take this into account and actively apply improved assays.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

MY: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Writing – original draft, Writing – review & editing. SL: Data curation, Investigation, Project administration, Software, Writing – original draft. JL: Data curation, Investigation, Methodology, Writing – review & editing. CN: Formal analysis, Investigation, Methodology, Writing – review & editing. XL: Data curation, Investigation, Software, Writing – review & editing. WC: Conceptualization, Funding acquisition, Project administration, Resources, Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported by the Science and Technology Department of Jilin Province (Project No. YDZJ202201ZYTS110).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated

References

1. Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. *Pediatr Nephrol.* (2019) 34:975–91. doi: 10.1007/s00467-018-4005-4

2. Popolo A, Autore G, Pinto A, Marzocco S. Oxidative stress in patients with cardiovascular disease and chronic renal failure. *Free Radic Res.* (2013) 47:346–56. doi: 10.3109/10715762.2013.779373

3. Dounousi E, Papavasiliou E, Makedou A, Ioannou K, Katopodis KP, Tselepis A, et al. Oxidative stress is progressively enhanced with advancing stages of CKD. *Am J Kidney Dis.* (2006) 48:752–60. doi: 10.1053/j.ajkd.2006.08.015

4. Thurlow JS, Joshi M, Yan G, Norris KC, Agodoa LY, Yuan CM, et al. Global epidemiology of end-stage kidney disease and disparities in kidney replacement therapy. *Am J Nephrol.* (2021) 52:98–107. doi: 10.1159/000514550

5. Montazerifar F, Hashemi M, Karajibani M, Dikshit M. Hemodialysis alters lipid profiles, total antioxidant capacity, and vitamins A, E, and C concentrations in humans. *J Med Food*. (2010) 13:1490–3. doi: 10.1089/jmf.2010.1074

6. Liakopoulos V, Roumeliotis S, Zarogiannis S, Eleftheriadis T, Mertens PR. Oxidative stress in hemodialysis: causative mechanisms, clinical implications, and possible therapeutic interventions. *Semin Dial.* (2019) 32:58–71. doi: 10.1111/sdi.12745

7. Westphalen H, Saadati S, Eduok U, Abdelrasoul A, Shoker A, Choi P, et al. Case studies of clinical hemodialysis membranes: influences of membrane morphology and biocompatibility on uremic blood-membrane interactions and inflammatory biomarkers. *Sci Rep.* (2020) 10:14808. doi: 10.1038/s41598-020-71755-8

8. Wei Z, Jin Y, Cheng J, Han X, Liu J, Liu S. Chinese experience on comparison of clinical efficacy and safety of hemodialysis and peritoneal dialysis in the treatment of diabetic kidney failure: a systematic review and meta-analysis. *Front Med.* (2023) 10:1116103. doi: 10.3389/fmed.2023.1116103

9. Gotloib L. Mechanisms of cell death during peritoneal dialysis. A role for osmotic and oxidative stress. *Contrib Nephrol.* (2009) 163:35–44. doi: 10.1159/000223778

10. Candan F, Gültekin F, Candan F. Effect of vitamin C and zinc on osmotic fragility and lipid peroxidation in zinc-deficient haemodialysis patients. *Cell Biochem Funct.* (2002) 20:95–8. doi: 10.1002/cbf.947

11. Abdollahzad H, Eghtesadi S, Nourmohammadi I, Khadem-Ansari M, Nejad-Gashti H, Esmaillzadeh A. Effect of vitamin C supplementation on oxidative stress and lipid profiles in hemodialysis patients. *Int J Vitam Nutr.* (2009) 79:281–7. doi: 10.1024/0300-9831.79.56.281

12. Chao JC, Yuan MD, Chen PY, Chien SW. Vitamin C and E supplements improve the impaired antioxidant status and decrease plasma lipid peroxides in hemodialysis patients small star, filled. *J Nutr Biochem.* (2002) 13:653–63. doi: 10.1016/s0955-2863(02)00209-7

13. Omar S, El Borolossy RM, Elsaid T, Sabri NA. Evaluation of the combination effect of rutin and vitamin C supplementation on the oxidative stress and inflammation in hemodialysis patients. *Front Pharmacol.* (2022) 13:961590. doi: 10.3389/fphar.2022.961590

14. De Vriese AS, Borrey D, Mahieu E, Claeys I, Stevens L, Vanhaeverbeke A, et al. Oral vitamin C administration increases lipid peroxidation in hemodialysis patients. *Nephron Clin Pract.* (2008) 108:c28–34. doi: 10.1159/000112526

15. Bergin P, Leggett A, Cardwell CR, Woodside JV, Thakkinstian A, Maxwell AP, et al. The effects of vitamin E supplementation on malondialdehyde as a biomarker of oxidative stress in haemodialysis patients: a systematic review and meta-analysis. *BMC Nephrol.* (2021) 22:126. doi: 10.1186/s12882-021-02328-8

16. Ahmadi A, Mazooji N, Roozbeh J, Mazloom Z, Hasanzade J. Effect of alpha-lipoic acid and vitamin E supplementation on oxidative stress, inflammation, and malnutrition in hemodialysis patients. *Iran J Kidney Dis.* (2013) 7:461–7.

17. Arabi SM, Bahari H, Hamidipor S, Bahrami LS, Feizy Z, Nematy M, et al. The effects of curcumin-containing supplements on inflammatory biomarkers in

organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2025.1473818/ full#supplementary-material

hemodialysis patients: a systematic review and meta-analysis. *Phytother Res.* (2022) 36:4361–70. doi: 10.1002/ptr.7642

18. Mokgalaboni K, Dlamini S, Phoswa WN, Modjadji P, Lebelo SL. The impact of *Punica granatum* Linn and its derivatives on oxidative stress, inflammation, and endothelial function in diabetes mellitus: evidence from preclinical and clinical studies. *Antioxidants*. (2023) 12:1566. doi: 10.3390/antiox12081566

19. Baghdadi G, Shidfar F, Dehnad A. The effect of pomegranate consumption on cardiovascular risk factors in hemodialysis patients: a systematic review of clinical trials. *Phytother Res.* (2023) 37:4963–75. doi: 10.1002/ptr.7961

20. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. *Oxid Med Cell Longev*. (2019) 2019:5080843–13. doi: 10.1155/2019/5080843

21. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. *Cell.* (2011) 145:341–55. doi: 10.1016/j.cell.2011.04.005

22. Wang Y, Gao L. Inflammation and cardiovascular disease associated with hemodialysis for end-stage renal disease. *Front Pharmacol.* (2022) 13:800950. doi: 10.3389/fphar.2022.800950

23. Modi ZJ, Lu Y, Ji N, Kapke A, Selewski DT, Dietrich X, et al. Risk of cardiovascular disease and mortality in young adults with end-stage renal disease: an analysis of the US renal data system. *JAMA Cardiol.* (2019) 4:353–62. doi: 10.1001/jamacardio.2019.0375

24. Papadea P, Skipitari M, Kalaitzopoulou E, Varemmenou A, Spiliopoulou M, Papasotiriou M, et al. Methods on LDL particle isolation, characterization, and component fractionation for the development of novel specific oxidized LDL status markers for atherosclerotic disease risk assessment. *Front Med.* (2022) 9:1078492. doi: 10.3389/fmed.2022.1078492

25. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. (2021) 372:n71. doi: 10.1136/bmj.n71

26. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ*. (2003) 327:557–60. doi: 10.1136/bmj.327.7414.557

27. Spineli LM, Pandis N. Exploring heterogeneity in meta-analysis: subgroup analysis. Part 1. Am J Orthod Dentofacial Orthop. (2020) 158:302-304.e1. doi: 10.1016/j.ajodo.2020.04.002

28. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in metaanalyses of randomised controlled trials. *BMJ*. (2011) 343:d4002. doi: 10.1136/ bmj.d4002

29. Wratten ML, Tetta C, Ursini F, Sevanian A. Oxidant stress in hemodialysis: prevention and treatment strategies. *Kidney Int Suppl.* (2000) 58:S126–32. doi: 10.1046/j.1523-1755.2000.07616.x

30. Deicher R, Hörl WH. Vitamin C in chronic kidney disease and hemodialysis patients. *Kidney Blood Press Res.* (2003) 26:100–6. doi: 10.1159/000070991

31. Zheng H, Xu Y, Liehn EA, Rusu M. Vitamin C as scavenger of reactive oxygen species during healing after myocardial infarction. *Int J Mol Sci.* (2024) 25:25. doi: 10.3390/ijms25063114

32. Vlasiuk E, Zawari M, Whitehead R, Williman J, Carr AC. A high vitamin C micronutrient supplement is unable to attenuate inflammation in people with metabolic syndrome but may improve metabolic health indices: a randomised controlled trial. *Antioxidants (Basel)*. (2024) 13:404. doi: 10.3390/antiox13040404

33. Valgimigli L. Lipid peroxidation and antioxidant protection. *Biomol Ther.* (2023) 13:13. doi: 10.3390/biom13091291

34. Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. *Free Radic Biol Med.* (2014) 66:3–12. doi: 10.1016/j.freeradbiomed.2013.03.022

35. Thabet MA, Chan JC. Vitamin E in renal therapeutic regiments. *Pediatr Nephrol.* (2006) 21:1790–801. doi: 10.1007/s00467-006-0211-6

36. Himmelfarb J, Ault KA, Holbrook D, Leeber DA, Hakim RM. Intradialytic granulocyte reactive oxygen species production: a prospective, crossover trial. *J Am Soc Nephrol.* (1993) 4:178–86. doi: 10.1681/asn.V42178

37. Wiswedel I, Hirsch D, Carluccio F, Hampl H, Siems W. F₂-isoprostanes as biomarkers of lipid peroxidation in patients with chronic renal failure. *BioFactors*. (2005) 24:201–8. doi: 10.1002/biof.5520240124

38. Szuwart T, Brzoska T, Luger TA, Filler T, Peuker E, Dierichs R. Vitamin E reduces platelet adhesion to human endothelial cells in vitro. *Am J Hematol.* (2000) 65:1–4. doi: 10.1002/1096-8652(200009)65:1<1::aid-ajh1>3.0.co;2-8

39. Murohara T, Ikeda H, Katoh A, Takajo Y, Otsuka Y, Haramaki N, et al. Vitamin E inhibits lysophosphatidylcholine-induced endothelial dysfunction and platelet activation. *Antioxid Redox Signal.* (2002) 4:791–8. doi: 10.1089/152308602760598945

40. Clermont G, Lecour S, Cabanne J-F, Motte G, Guilland J-C, Chevet D, et al. Vitamin E-coated dialyzer reduces oxidative stress in hemodialysis patients. *Free Radic Biol Med.* (2001) 31:233–41. doi: 10.1016/S0891-5849(01)00577-9

41. Yang SK, Xiao L, Xu B, Xu XX, Liu FY, Sun L. Effects of vitamin E-coated dialyzer on oxidative stress and inflammation status in hemodialysis patients: a systematic review and meta-analysis. *Ren Fail.* (2014) 36:722–31. doi: 10.3109/0886022x.2014.890858

42. Sosa MA, Balk EM, Lau J, Liangos O, Balakrishnan VS, Madias NE, et al. A systematic review of the effect of the excebrane dialyser on biomarkers of lipid peroxidation. *Nephrol Dial Transplant*. (2006) 21:2825–33. doi: 10.1093/ndt/gfl376

43. D'Arrigo G, Baggetta R, Tripepi G, Galli F, Bolignano D. Effects of vitamin E-coated versus conventional membranes in chronic hemodialysis patients: a systematic review and meta-analysis. *Blood Purif.* (2017) 43:101–22. doi: 10.1159/000453444

44. Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The role of curcumin in aging and senescence: molecular mechanisms. *Biomed Pharmacother*. (2021) 134:111119. doi: 10.1016/j.biopha.2020.111119

45. Zhang X, Cui Y, Song X, Jin X, Sheng X, Xu X, et al. Curcumin alleviates ketamineinduced oxidative stress and apoptosis via Nrf2 signaling pathway in rats' cerebral cortex and hippocampus. *Environ Toxicol.* (2023) 38:300–11. doi: 10.1002/tox.23697

46. Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the antiinflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. *Int J Biochem Cell Biol.* (2009) 41:40–59. doi: 10.1016/j.biocel.2008.06.010

47. Pivari F, Mingione A, Brasacchio C, Soldati L. Curcumin and type 2 diabetes mellitus: prevention and treatment. *Nutrients*. (2019) 11:11. doi: 10.3390/nu11081837

48. Jalali M, Mahmoodi M, Mosallanezhad Z, Jalali R, Imanieh MH, Moosavian SP. The effects of curcumin supplementation on liver function, metabolic profile and body composition in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. *Complement Ther Med.* (2020) 48:102283. doi: 10.1016/j.ctim.2019.102283

49. Radak Z, Chung HY, Goto S. Exercise and hormesis: oxidative stress-related adaptation for successful aging. *Biogerontology*. (2005) 6:71–5. doi: 10.1007/s10522-004-7386-7

50. Böhm J, Monteiro MB, Andrade FP, Veronese FV, Thomé FS. Acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease. *J Bras Nefrol.* (2017) 39:172–80. doi: 10.5935/0101-2800.20170022

51. Asemi Z, Soleimani A, Shakeri H, Mazroii N, Esmaillzadeh A. Effects of omega-3 fatty acid plus alpha-tocopherol supplementation on malnutrition-inflammation score, biomarkers of inflammation and oxidative stress in chronic hemodialysis patients. *Int Urol Nephrol.* (2016) 48:1887–95. doi: 10.1007/s11255-016-1399-4

52. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. *Nutr Metab Cardiovasc Dis.* (2005) 15:316–28. doi: 10.1016/j.numecd.2005.05.003

53. Rodrigues HCN, Martins TFP, Santana NCFES, Braga CC, Silva MAC, Cunha LCD, et al. Antioxidant and anti-inflammatory response to curcumin supplementation in hemodialysis patients: a randomized, double-blind, placebo-controlled clinical trial. *Clin Nutr ESPEN*. (2021) 44:136–42. doi: 10.1016/j.clnesp.2021.06.006

54. Bencivenga D, Arcadio F, Piccirillo A, Annunziata M, Della RF, Cennamo N, et al. Plasmonic optical fiber biosensor development for point-of-care detection of malondialdehyde as a biomarker of oxidative stress. *Free Radic Biol Med.* (2023) 199:177–88. doi: 10.1016/j.freeradbiomed.2023.02.020

55. Alvarenga L, Cardozo L, Da Cruz BO, Paiva BR, Fouque D, Mafra D. Curcumin supplementation improves oxidative stress and inflammation biomarkers in patients undergoing hemodialysis: a secondary analysis of a randomized controlled trial. *Int Urol Nephrol.* (2022) 54:2645–52. doi: 10.1007/s11255-022-03182-9

56. Barati BR, Akhlaghi M, Sagheb MM, Esmaeilinezhad Z. Pomegranate juice improves cardiometabolic risk factors, biomarkers of oxidative stress and inflammation in hemodialysis patients: a randomized crossover trial. *J Sci Food Agric*. (2020) 100:846–54. doi: 10.1002/jsfa.10096

57. Daud ZA, Tubie B, Sheyman M, Osia R, Adams J, Tubie S, et al. Vitamin E tocotrienol supplementation improves lipid profiles in chronic hemodialysis patients. *Vasc Health Risk Manag.* (2013) 9:747–61. doi: 10.2147/vhrm.S51710

58. Deus LA, Corrêa HL, Neves RVP, Reis AL, Honorato FS, Silva VL, et al. Are resistance training-induced BDNF in hemodialysis patients associated with depressive symptoms, quality of life, antioxidant capacity, and muscle strength? An insight for the muscle-brain-renal axis. *Int J Environ Res Public Health*. (2021) 18:11299. doi: 10.3390/ijerph182111299

59. Eiselt J, Racek J, Trefil L, Opatrný K Jr. Effects of a vitamin E-modified dialysis membrane and vitamin C infusion on oxidative stress in hemodialysis patients. *Artif Organs*. (2001) 25:430–6. doi: 10.1046/j.1525-1594.2001.025006430.x

60. Imani H, Tabibi H, Najafi I, Atabak S, Hedayati M, Rahmani L. Effects of ginger on serum glucose, advanced glycation end products, and inflammation in peritoneal dialysis patients. *Nutrition*. (2015) 31:703:707. doi: 10.1016/j.nut.2014.11.020

61.Kooshki A, Taleban FA, Tabibi H, Hedayati M. Effects of marine omega-3 fatty acids on serum systemic and vascular inflammation markers and oxidative stress in hemodialysis patients. *Ann Nutr Metab.* (2011) 58:197–202. doi: 10.1159/000329727

62. Martins ML, da Silva AT, Machado RP, Ramos HP, Martinelli C, Silveira TT, et al. Vitamin C decreases reduced glutathione in chronic haemodialysis patients: a pilot, randomised, double-blind trial. *Int Urol Nephrol.* (2021) 53:1695–704. doi: 10.1007/s11255-021-02797-8

63. Morimoto H, Nakao K, Fukuoka K, Sarai A, Yano A, Kihara T, et al. Long-term use of vitamin E-coated polysulfone membrane reduces oxidative stress markers in haemodialysis patients. *Nephrol Dial Transplant*. (2005) 20:2775–82. doi: 10.1093/ndt/gfi121

64. Murillo Ortiz BO, Fuentes Preciado AR, Ramírez EJ, Martínez GS, Ramos RE, de Alba Macías LA. Recovery of bone and muscle mass in patients with chronic kidney disease and Iron overload on hemodialysis and taking combined supplementation with curcumin and resveratrol. *Clin Interv Aging*. (2019) 14:2055–62. doi: 10.2147/cia.S223805

65. Roozbeh J, Shahriyari B, Akmali M, Vessal G, Pakfetrat M, Raees Jalali GA, et al. Comparative effects of silymarin and vitamin E supplementation on oxidative stress markers, and hemoglobin levels among patients on hemodialysis. *Ren Fail*. (2011) 33:118–23. doi: 10.3109/0886022x.2010.541579

66. Rusu A, Rusu F, Zalutchi D, Muresan A, Gherman CM, Kacso I. The influence of vitamin e supplementation on erythropoietin responsiveness in chronic hemodialysis patients with low levels of erythrocyte superoxide dismutase. *Int Urol Nephrol.* (2013) 45:495–501. doi: 10.1007/s11255-012-0175-3

67. Sato M, Morita H, Ema H, Yamaguchi S, Amano I. Effect of different dialyzer membranes on cutaneous microcirculation during hemodialysis. *Clin Nephrol.* (2006) 66:426–32. doi: 10.5414/cnp66426

68. Shafabakhsh R, Asemi Z, Reiner Ž, Soleimani A, Aghadavod E, Bahmani F. The effects of nano-curcumin on metabolic status in patients with diabetes on hemodialysis, a randomized, double blind, placebo-controlled trial. *Iran J Kidney Dis.* (2020) 14:290–9.

69. Shema-Didi L, Sela S, Ore L, Shapiro G, Geron R, Moshe G, et al. One year of pomegranate juice intake decreases oxidative stress, inflammation, and incidence of infections in hemodialysis patients: a randomized placebo-controlled trial. *Free Radic Biol Med.* (2012) 53:297–304. doi: 10.1016/j.freeradbiomed.2012.05.013

70. Shimazu T, Ominato M, Toyama K, Yasuda T, Sato T, Maeba T, et al. Effects of a vitamin E-modified dialysis membrane on neutrophil superoxide anion radical production. *Kidney Int Suppl.* (2001) 59:S137–43. doi: 10.1046/j.1523-1755.2001.59780137.x

71. Sovatzidis A, Chatzinikolaou A, Fatouros IG, Panagoutsos S, Draganidis D, Nikolaidou E, et al. Intradialytic cardiovascular exercise training alters redox status, reduces inflammation and improves physical performance in patients with chronic kidney disease. *Antioxidants.* (2020) 9:868. doi: 10.3390/antiox9090868

72. Usberti M, Gerardi G, Bufano G, Tira P, Micheli A, Albertini A, et al. Effects of erythropoietin and vitamin E-modified membrane on plasma oxidative stress markers and anemia of hemodialyzed patients. *Am J Kidney Dis.* (2002) 40:590–9. doi: 10.1053/ajkd.2002.34919

73. Wilund KR, Tomayko EJ, Wu PT, Ryong CH, Vallurupalli S, Lakshminarayanan B, et al. Intradialytic exercise training reduces oxidative stress and epicardial fat: a pilot study. *Nephrol Dial Transplant*. (2010) 25:2695–701. doi: 10.1093/ndt/gfq106