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One of the most prevalent human infections is Helicobacter pylori (H. pylori), 
which affects more than half of the global population. Although H. pylori infections 
are widespread, only a minority of individuals develop severe gastroduodenal 
disorders. The global resistance of H. pylori to antibiotics has reached concerning 
levels, significantly impacting the effectiveness of treatment. Consequently, the 
development of vaccines targeting virulence factors may present a viable alternative 
for the treatment and prevention of H. pylori infections. This review aims to 
provide a comprehensive overview of the current understanding of H. pylori 
infection, with a particular focus on its virulence factors, pathophysiology, and 
vaccination strategies. This review discusses various virulence factors associated 
with H. pylori, such as cytotoxin-associated gene A (cagA), vacuolating cytotoxin 
gene (vacA), outer membrane proteins (OMPs), neutrophil-activated protein (NAP), 
urease (ure), and catalase. The development of vaccines based on these virulence 
characteristics is essential for controlling infection and ensuring long-lasting 
protection. Various vaccination strategies and formulations have been tested in 
animal models; however, their effectiveness and reproducibility in humans remain 
uncertain. Different types of vaccines, including vector-based vaccines, inactivated 
whole cells, genetically modified protein-based subunits, and multiepitope nucleic 
acid (DNA) vaccines, have been explored. While some vaccines have demonstrated 
promising results in murine models, only a limited number have been successfully 
tested in humans. This article provides a thorough evaluation of recent research 
on H. pylori virulence genes and vaccination methods, offering valuable insights 
for future strategies to address this global health challenge.
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1 Introduction

Helicobacter pylori (H. pylori) is an ancient microbe that predates 
Columbus’s expeditions (1). It is a gram-negative, microaerophilic 
spiral bacterium first identified in the early 1980s by Australian 
physicians Barry Marshall and Robin Warren. In recognition of their 
discovery of H. pylori and its link to gastrointestinal disorders, 
including gastritis and peptic ulcers, they received the Nobel Prize 
in Physiology or Medicine from the Nobel Assembly at the 
Karolinska Institute in 2005 (2, 3). Research on H. pylori has 
advanced significantly, as scientists have strived to clarify the 
complexities of this infection. More than half of the global 
population is estimated to be chronically infected with H. pylori, a 
major public health concern because of its potential to contribute to 
severe health issues (4–7). The prevalence is 20 to 40% in high-
income countries and 70 to 90% in low-income countries (6, 8, 9). 
H. pylori is a formidable pathogen known for causing chronic 
stomach infections that can last a lifetime (10, 11). Its remarkable 
adaptability to the acidic environment of the stomach has resulted 
in various host responses and pathogenic outcomes (12, 13). Initially, 
linked to peptic ulcers, H. pylori is now associated with gastritis, 
duodenal ulcers, stomach cancer, and multiple extragastric 
conditions, including neurological, ophthalmic, hematological, 
cardiovascular, and dermatological disorders (14–17). Millions of 
people worldwide suffer from these conditions, leading to substantial 
financial and medical burdens (18). The World Health Organization 

classifies H. pylori as a class I  carcinogen, the primary cause of 
stomach cancer deaths globally (5, 19–21).

Virulence genes from related families, including flagella, ureases, 
membrane glycoproteins, and outer membrane proteins (OMPs), play 
a significant role in H. pylori pathogenicity (9, 22, 23). Four to six 
flagella per cell enhance mobility and gastric epithelium penetration 
(24). Urease secretion lowers the gastric pH and releases ammonia, 
creating a conducive environment for microbial colonization and 
potential ulceration (25). Lipopolysaccharide (LPS) improves the 
adherence of pathogens to the gastrointestinal mucosa, promoting 
infection (13, 26). OMPs are crucial for adhesion and pathogenicity, 
leading to inflammation (27). Sixty-four OMP gene family members, 
including iron-regulated OMPs and principal OMPs (Figure 1), such 
as Hop, Hor, Hof, and Hom, have been identified (28). Other OMPs, 
such as oipA, sabA, and babA, enhance gastric mucosa colonization 
(22, 29). Seo (30) reported that vaccines containing vacA, cagA, and 
NAP effectively prevented experimental infections in animal models.

Amoxicillin, clarithromycin, and metronidazole are commonly 
used to treat H. pylori-related gastric infections, often with proton 
pump inhibitors (29). Studies have shown that these antibiotics 
achieve an average eradication rate of approximately 80% (31); 
however, overuse may contribute to antimicrobial resistance. The 
resistance rates of H. pylori to various antibiotics were reported as 
follows: in the United States from 2011–2021, the rates were 42.1% for 
metronidazole, 31.5% for clarithromycin, 37.6% for levofloxacin, and 
2.6% for amoxicillin (32). In Europe, during the period from 

FIGURE 1

Overview of H. pylori OMPs. The Hop family includes 22 genes (hopA–hopQ, hopU, hopZ, babA, babB), the Hor family has 12 genes (horA–horL), the 
Hof family consists of 8 genes (hofA–hofH), and the Hom family contains 4 genes (homA–homD). The FecA-like and FrpB-like families each have 3 
genes (fecA-1, fecA-2, fecA-3, and frpB-1, frpB-2, frpB-3, respectively). The efflux pump family comprises 6 genes: hefA, hefD, hefG, flgH, palA, and 
lpp20.
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2008–2017, the resistance rates were 38.9% for metronidazole, 21.4% 
for clarithromycin, 15.8% for levofloxacin, and 0.2% for amoxicillin 
(33). In Africa, from 1986–2017, the resistance rates were 75.8% for 
metronidazole, 29.2% for clarithromycin, 17.4% for levofloxacin, and 
72.6% for amoxicillin (34). Researchers are investigating innovative 
strategies for treating and preventing H. pylori infections, particularly 
through vaccine development. Recent studies have identified virulence 
determinants that may protect against infection and help eradicate 
bacteria in murine models (35). The evidence supports the potential 
use of these factors in the development of an effective human vaccine 
(9, 36–38). A vaccination program targeting these virulence factors 
could effectively manage or eliminate pathogenic strains (39, 40). 
Various vaccination regimens tested in animal models have shown 
positive results. This review explores the pathogenesis and virulence 
factors of H. pylori infection, along with the current research status 
and limitations of H. pylori vaccines.

2 Methodology

A comprehensive literature search was conducted to review the 
virulence factors, pathogenesis, and vaccines associated with H. pylori. 
The inclusion criteria included original research articles, review 
articles, and clinical trials focused on pathogenicity, virulence factors, 
and vaccine development. The key topics addressed were mechanisms 
of pathogenesis; immune responses; and specific virulence factors, 
such as OMPs, cagA, vacA, NAP, ure, and catalase. Only English-
language publications from 1989–2024 were included, whereas 

nonresearched materials, non-English publications, and duplicate 
studies were excluded. Searches were performed in databases such as 
PubMed, Web of Science, Scopus, and Google Scholar, using terms 
such as “H. pylori,” “pathophysiology,” “antimicrobial resistance,” 
“virulence factors,” “vector vaccine,” “subunit vaccine,” and 
“DNA vaccine.”

3 Helicobacter pylori pathogenesis 
and the immune response

The interaction of the host immune system with bacterial 
components leads to an immunological response to H. pylori infection 
(41, 42). This triggers a complex local inflammatory response in the 
stomach, which is typical of H. pylori infections (7, 43, 44). During the 
innate immune response, H. pylori causes a persistent inflammatory 
reaction in the gastric mucosa (Figure 2). The relationship between 
LPS and peptidoglycan in the H. pylori cell wall is essential for this 
response, which is marked by the infiltration of immune cells such as 
neutrophils, macrophages, and lymphocytes and the release of 
proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α (45, 
46). Moreover, IL-17 plays a crucial role in the immune response to 
Helicobacter infections in both humans and mice (47, 48). In humans, 
IL-17 induces the secretion of IL-8 by activating the ERK 1/2 MAP 
kinase pathway, and the released IL-8 attracts neutrophils, promoting 
inflammation (49). IL-17 has two main roles: T regulatory cells 
modulate inflammation to support bacterial survival, and vaccination 
generates Helicobacter-specific memory T helper cells, increasing 

FIGURE 2

The pathogenesis of H. pylori is illustrated in the accompanying figure, which has been carefully edited and designed utilizing dynamic elements from 
BioRender. Created with BioRender.com
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IL-17-mediated inflammation and assisting in bacterial clearance (49). 
The enhanced proinflammatory effects of IL-17 by CD4+ cells can 
significantly help eradicate bacteria in murine models (50, 51). 
Compared with unvaccinated mice, vaccinated mice exhibit higher 
IL-17 mRNA levels in their stomachs (52). Innate immune responses 
are activated by pattern recognition receptors, such as Toll-like 
receptors, which detect bacterial components such as LPS and 
peptidoglycan, triggering inflammatory reactions (53). The adaptive 
immune response follows, with CD4+ T helper (Th) cells stimulating 
a Th1 response that secretes interferon-gamma (IFN-γ). B 
lymphocytes produce antibodies against H. pylori, and regulatory T 
cells help modulate infection (54–56).

Bacteria use various immune evasion strategies, including urease 
synthesis and molecular mimicry, to avoid detection by T and B cells 
(57, 58). Prolonged H. pylori infection causes chronic inflammation 
and damage to the gastric mucosa. Increased turnover of gastric 
epithelial cells contributes to ulceration and mucosal injury (59). This 
compromises mucosal barrier integrity due to tight junction 
disruption. H. pylori penetrates the mucosal layers, facilitating rapid 
spread. The continuous release of inflammatory mediators and 
genomic instability foster an environment conducive to cancer 
development (60). H. pylori disrupts local immune responses, which 
may lead to malignancies in the gastric epithelium (61).

4 Certain virulence factors associated 
with Helicobacter pylori infection

Certain virulence antigens are associated with the severity of 
symptoms and clinical outcomes in H. pylori infections. Antigens of 
H. pylori, such as cagA, vacA, NAP, OMPs (e.g., babA, sapA, oipA), 
urease, catalase, and Hsp60, are also considered potential candidates 
for vaccines. These antigens trigger both humoral and cellular immune 
responses during infection. This section provides an overview of their 
roles in invasion, survival, colonization, and inflammation in the 
gastric mucosa as well as their role in improving vaccine development.

4.1 cagA and vacA genes

The virulence factors cagA and vacA of H. pylori are crucial for 
cytotoxin production (62). These genes are part of the type IV 
secretion system (T4SS), which is vital for bacterial pathogenicity (63). 
T4SSs are complex structures that penetrate bacterial cell walls, aiding 
survival and protein or DNA translocation (64). Approximately 
60–70% of H. pylori strains express the cagA protein, which produces 
a specific cytotoxin (65). Phosphorylation of tyrosine motifs in cagA 
allows its translocation into gastric epithelial cells via T4SSs. Research 
by Yamaoka et al. (61), Selbach et al. (66), and Stein et al. (67) indicates 
that variations in these motifs are linked to gastric degeneration and 
increased gastric cancer risk. Phosphorylated cagA triggers 
pathological responses in host cells, enhancing motility, actin 
polymerization, and cell stretching and disrupting physiological 
signals (68). cagA influences Th17 cell differentiation by interacting 
with the STAT3 protein, which is crucial for T and B lymphocyte 
development. It also interacts with NF-κB, a key regulator of innate 
immune responses (69). cagA activates Th1 and Th17 cells to eliminate 
H. pylori and promotes proinflammatory cytokine expression in 

gastric epithelial cells (70). H. pylori strains with cagA enhance IL-8 
secretion (71). The high immunogenicity of cagA is linked to increased 
gastric inflammation (72), which negatively affects H. pylori survival 
(73). Furthermore, cagA promotes a Th1-polarized immune response 
that aids infection clearance (74). This dual role indicates that H. pylori 
must regulate cagA expression during gastric colonization. The cagA 
gene is vital for vaccine development beyond its pathogenic properties. 
Paydarnia et al. (75) studied the effects of mixed immunization with 
H. pylori LPS and recombinant cagA on immune responses in a 
murine model. The recombinant cagA protein, given with a cytosine 
phosphoguanine adjuvant, maintained its antigenic properties and 
triggered strong Th1-biased immune responses throughout the 
experiment. These findings suggest that cagA may be  key to an 
effective vaccine for H. pylori infection.

Most H. pylori isolates contain the vacA gene, which targets 
epithelial and immune cells in the digestive tract (76, 77). Like the 
cagA gene, vacA is unique to type I H. pylori. The vacA protein not 
only facilitates intracellular vacuole formation but also has toxic 
effects on various cells (78, 79) and survives the acidity of the stomach 
via multiple exit routes (79). Although the exact mechanisms by which 
vacA induces autophagy are not fully understood, it has been shown 
that the autophagy triggered by vacA is dependent on its interaction 
with low-density lipoprotein receptor-related protein 1 (80). The vacA 
protein affects apoptotic signaling in host cells, limiting apoptosis. Its 
influence can be proapoptotic or antiapoptotic, depending on the cell 
type and environment. The vacA toxin also alters host cell morphology 
and function by inducing vacuole formation (78). Additionally, toxins 
hinder T cells and other immune cells, impacting the overall immune 
response (81, 82). In most H. pylori-infected patients, anti-vacA 
antibodies are found in their blood and gastric juice (83). The growth 
of CD4+ lymphocytes from the gastric epithelium is antigen dependent 
when vacA is present (84, 85). While vacA-induced T and B-cell 
responses are detectable, they do not eliminate H. pylori infection. 
However, these immune responses indicate that vacA is immunogenic 
in humans and may be a candidate for vaccines. Therefore, the vacA 
gene also plays a role as a protective factor against H. pylori infection 
(86). Moyat and Velin (85) reported that a vacA-based vaccine showed 
significant protective effects on infected mice that received therapeutic 
intragastric immunization with a nontoxic recombinant version of 
vacA and the LT mutant LTK63. For the majority of vaccinated 
individuals, it effectively eliminates H. pylori infection and reduces the 
risk of reinfection (87). Preventive vaccination in animal models has 
also shown promise, with recombinant vacA and mucosal adjuvants 
providing protection (88).

The interaction between the cagA and vacA proteins significantly 
contributes to H. pylori-associated gastric cancer. Abdullah et al. (89) 
reported that the absence of vacA allows the host immune system to 
degrade cagA, preventing its accumulation in gastric epithelial cells. 
H. pylori infection increases the risk of gastric cancer, posing a major 
public health challenge. There is a strong link between cancer 
progression and the growth of other gastric malignancies, driven by 
inflammation, genotoxic factors, and genomic instability (90). This 
relationship is influenced by host genetics, environmental conditions, 
and H. pylori virulence genes such as oipA, vacA, and cagA (62). 
Understanding these pathways is crucial for developing effective 
treatments and preventing future infections. Recent advancements are 
improving our knowledge of H. pylori-related diseases and aiding the 
development of innovative therapies, including potential vaccines.
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4.2 Neutrophil-activating protein

In all strains of H. pylori, a 150 kDa multimeric protein, referred 
to as neutrophil-activating protein (HP-NAP), has been identified (5, 
91, 92). Research indicates that HP-NAP enhances the penetration and 
generation of oxygen radicals and the adhesion of neutrophils and 
monocytes to gastric endothelial cells while also increasing their 
motility (93). This activity contributes to long-term inflammatory 
conditions in the gastrointestinal epithelium. HP-NAP activation leads 
to increased interleukin-12 (IL-12) production, triggering a T helper 
1 (Th1) immune response (94). Immunodominant antigens associated 
with the H. pylori G27 strain were identified through two-dimensional 
gel electrophoresis in a patient suffering from various gastric diseases, 
with this protein being significantly recognized in the serum of 
infected individuals (95). Furthermore, animals immunized with 
HP-NAP have demonstrated immunity against subsequent infections, 
indicating that this virulent gene may serve as a promising candidate 
for vaccine development. Owing to its high antigenicity, HP-NAP is 
frequently incorporated into vaccines aimed at preventing H. pylori 
infection (94). In addition to its application in vaccines, HP-NAP may 
also hold potential as an immunotherapeutic agent in cancer 
treatment, as its immunomodulatory properties enable dendritic cells 
to promote Th1 responses and enhance the immune responses of 
recipients (94).

4.3 Outer membrane proteins

OMPs of H. pylori are essential for physiological processes, 
assisting in material transport and host interactions (96, 97). They are 
promising targets for vaccines and medications (9, 98, 99). H. pylori 
has diverse OMPs, such as lipoproteins, porins, and adhesins, which 
are vital for survival and pathogenicity (27). OMP expression varies 
among strains, contributing to pathogenicity through adherence, 
invasion, and immune evasion (26, 96). Genome sequencing revealed 
that approximately 4% of H. pylori genetic material encodes OMPs, 
which are categorized into five gene families: Hop, Hor, Hom, Hof, and 
iron-regulated proteins (27, 100, 101). This section summarizes recent 
advancements in understanding well-characterized OMPs.

4.3.1 Blood group antigen-binding adhesin
Blood group antigen-binding adhesin (babA) is part of the 

Helicobacter Hop family and plays a crucial role in H. pylori adhesion 
(102, 103). Currently, three genetic variants of the bab gene have been 
identified: babA1, babA2, and babB (104). Three genetic variants of 
the bab gene exist: babA1, babA2, and babB (27, 62, 102). The babA2 
gene encodes a significant adhesin that binds to Lewis b (Le-b) blood 
group antigens, aiding colonization and bacterial density. Strains with 
babA1 do not express babA, whereas those with babA2 can be poor or 
significant producers of babA, affecting adhesion to Le-b antigens. 
Genomic analysis revealed that babA and babB are unrelated, with 
their expression levels varying geographically (62). The prevalence of 
the babA2 gene ranges from 44.0% in Portugal to 79.7% in Iran, with 
only 9.8% of Western strains lacking babA (105). Studies have linked 
H. pylori to diseases such as gastric cancer, resulting in increased babA 
expression in affected patients, suggesting its role in disease severity 
(27, 106, 107). These observations suggest that babA may play a role 
in the severity of disease outcomes associated with H. pylori infection 

(108). Additionally, the T4SS may facilitate cagA penetration through 
the gastrointestinal epithelium via the interaction between babA and 
Le-b (109). babA is a crucial factor in H. pylori infections and could 
be  further investigated as a potential preventative treatment and 
vaccine candidate (102, 110, 111). Bai et al. (112) successfully isolated 
recombinant babA2 from the serum of patients infected with babA2-
positive H. pylori, as well as from BALB/c mice infected with 
recombinant babA. This discovery suggests that babA2 could be a 
promising vaccine antigen because of its immunogenic properties.

4.3.2 Sialic acid-binding adhesin
The sialic acid-binding adhesin (sabA) gene in H. pylori is the 

second most prevalent OMP (27) and has two alleles: sabA (HopP or 
OMP17) and sabB (HopO or OMP16), both of which are part of the 
Hop protein family (113). sabA, which is smaller than babA at 
approximately 70 kDa (102), detects and binds to sialylated glycans, 
particularly sialyl Le-x antigens (114). As a sialic acid-binding adhesin, 
sabA interacts with host cell receptors. H. pylori strains often carry 
both sabA and sabB, indicating preferential expression of sabA during 
colonization (115, 116). sabA is increasingly recognized as crucial in 
gastrointestinal disease pathogenesis (117). H. pylori infection likely 
begins with babA binding to fucosylated antigens related to the ABO 
blood group and the Le-b antigen (102). Furthermore, sialyl-Le-X 
expression increases during the host inflammatory response, 
enhancing H. pylori adhesion to the gastric mucosa alongside sabA 
activity (102, 118, 119). Research in developed and developing nations 
has linked sabA generation to severe gastrointestinal diseases, gastric 
atrophy, and gastric cancer (120). Further investigations into sabA are 
urgently needed, particularly in developing countries. sabA also 
mimics selectin, activating neutrophils and producing reactive oxygen 
species (ROS), which prolong inflammation (121).

H. pylori colonizes the gastric mucosa more readily in the presence 
of gamma-glutamyl transpeptidase (GGT), which induces programmed 
cell death in gastric epithelial cells (5, 122, 123). GGT also impairs 
dendritic cell development and T-cell-mediated immunity, enhancing 
resistance to infection. Additionally, H. pylori transports GGT in outer 
membrane vesicles, increasing hydrogen peroxide and interleukin-8 
(IL-8) production in gastric epithelial cells (26, 93, 124). Multiepitope 
vaccines contain antigenic epitopes from the virulence factors of 
H. pylori, such as the sabA and babA genes (102). Urrutia-Baca et al. 
(111) developed an oral vaccine with 11 epitopes linked to pathogenicity 
and colonization, including babA and sabA. Modeling studies suggest 
that this vaccine candidate will show antigenicity, nonallergenicity, and 
solubility, with an appropriate molecular weight. A study by AlEraky 
et al. (125) identified antigenic peptides from H. pylori for vaccine 
development via an in silico proteomic method. Four peptides—cagA1, 
cagA2, vacA, and sabA—were further investigated through reverse 
vaccinology. After immunization with these peptides and Freund’s 
adjuvant, BALB/C mice were orally challenged with H. pylori. sabA-
vaccinated mice presented significantly higher IgG and IL-4 levels than 
did the adjuvant-only group. Histopathological evaluations revealed a 
protective immune response in the vaccinated groups, particularly with 
the sabA antigen. However, further in vitro and in vivo studies are 
needed to assess its efficacy before its use in humans (111).

4.3.3 Outer inflammatory protein A
Gastric cancer development is linked to the outer membrane 

proteins of H. pylori, particularly outer inflammatory protein A 
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(oipA), which includes HopB, HopQ, and HopH (27, 126, 127). oipA, 
encoded by the HopH gene, is associated with gastric mucosa 
inflammation. Compared with oipA-negative strains, H. pylori strains 
that are oipA positive provoke a stronger inflammatory response 
(124), which is correlated with a greater risk of gastric ulcers and 
cancer (128). oipA is more prevalent in gastric biopsies from cancer 
patients than in those from uncomplicated gastroenteritis patients 
(124). It also induces B-cell lymphoma-2 (Bcl-2) family proteins, 
contributing to apoptosis (93, 129), and upregulates inflammatory 
cytokines such as IL-6, IL-8, and IL-1. Additionally, Sukri et al. (130) 
reported that gastric cancer influences T cell, B cell, and dendritic cell 
development and IL-10 release, increasing cancer risk. A meta-
analysis by Liu et al. (131) revealed a strong link between the presence 
of oipA and the risk of peptic ulcer disease, especially in Western 
countries. Several studies have evaluated oipA as a potential vaccine 
against H. pylori infection (3, 132). Soudi et  al. (133) tested 
recombinant oipA with propolis as an adjuvant in a mouse model at 
doses of 10 μg/mL and 40 μg/mL. They reported that oipA effectively 
induces IFN-γ production and enhances the cellular immune 
response, with propolis acting as a beneficial adjuvant. Another study 
reported the production of anti-oipA IgA antibodies in C57BL/6 
mice (134).

4.4 Urease

H. pylori urease (ure), comprising 10 to 15% of a bacterium’s total 
protein, consists of 12 heterodimers formed by the ureA and ureB 
enzymes (135). This catalytic enzyme hydrolyzes urea into carbon 
dioxide and ammonia, which neutralizes excess stomach acid, inhibits 
neutrophil activity (136–138), promotes the production of toxic 
ammonia-derived compounds (139), and disrupts stomach epithelial 
cell interactions (140), fostering bacterial colonization. The 
peroxynitrite anion can harm bacteria, but carbon dioxide mitigates 
this effect, aiding colonization (93, 141). The unique surface structure 
of the urease complex allows H. pylori to interact with host immune 
elements, ensuring its indefinite colonization. Inhibiting urease 
function prevents H. pylori from thriving, providing therapeutic and 
preventive strategies against infection (135). In numerous studies, 
urease has been identified as a potential antigen candidate for vaccine 
production. In a laboratory model of H. pylori infection, Nasr-
Esfahani et  al. (142) demonstrated that the recombinant plasmid 
pcDNA3.1 (+)-ureA could induce an immune response in murine 
models. Furthermore, the vaccination of mice with a recombinant 
ureB vaccine, which incorporates plant polysaccharides as adjuvants, 
was found to confer immunity against H. pylori infection. This 
protective effect may be attributed to the enhancement of Th1/Th17 
CD4+ T-cell activation and the promotion of gastrointestinal-specific 
secretory immunoglobulin A (143). Most vaccines that have advanced 
to the clinical trial phase include the urease antigen (37, 135, 144–146).

4.5 Catalase

Catalase is a key enzyme that protects bacteria from hydrogen 
peroxide. In H. pylori, this tetrameric protein makes up approximately 
1% of the total protein and has an isoelectric point of 9.0–9.3 (135, 
147). It shields H. pylori from host-produced reactive oxygen species 

and helps bacteria evade macrophages (148, 149). Its role in various 
pathological processes contributes to inflammation, apoptosis, and 
tumor formation, with mutagenesis occurring in the cytoplasm, 
periplasm, and occasionally on the surface (150). H. pylori catalase is 
one of its most highly expressed proteins and shows greater resistance 
to cyanide and amino triazole suppression than do catalases from 
other bacteria (124). Recent studies have provided detailed 
characterizations of immunodominant Th1 epitopes associated with 
catalase (151). Through the production of IFN-γ, seven novel catalase 
epitopes have been identified as potent inducers of a robust Th1 
immune response (152). The LHUC vaccine is a multivalent epitope 
vaccine that incorporates the adjuvant heat-labile enterotoxin B 
subunit, along with five B-cell epitopes and three Th-cell epitopes 
(HpaA, ureB, and catalase), designed to create an effective multivalent 
epitope vaccine against H. pylori (135). Following the administration 
of the LHUC vaccine to mice, serum analysis revealed the presence of 
antibodies specific to the antigen, accompanied by a significant 
increase in the production of IFN-γ, IL-4, and IL-17 by lymphocytes. 
Studies have demonstrated that LHUC is highly effective in preventing 
H. pylori infections in murine models (153).

5 Helicobacter pylori vaccine types

The increase in antibiotic resistance underscores the need to 
explore virulence factors as alternative vaccine targets for H. pylori 
infections. Understanding these factors is crucial for advancing 
vaccine development and effective therapies. While various vaccine 
types, such as vector-based, whole-cell, and subunit vaccines, have 
shown efficacy in animal models, few have reached human clinical 
trials. This section reviews recent H. pylori vaccine developments and 
the role of virulence genes in potential vaccine formulations.

5.1 Inactivated whole-cell vaccines

Inactivated whole-cell vaccines for H. pylori are created by 
disrupting the bacteria with ultrasonic waves and inactivating them 
with formalin (29). These vaccines reduce H. pylori proliferation and 
elicit strong immune responses in the gastric mucosa. Kotloff et al. 
(154) suggested that the administration of an oral H. pylori whole-cell 
vaccine can effectively stimulate both mucosal and systemic immune 
responses in humans. Murine experiments performed with whole-cell 
vaccines demonstrated that these vaccines can elicit a dose-dependent 
response, including the production of cross-reactive IgG, against 
H. pylori. The high-dose Hp 26695 whole-cell vaccine group presented 
reduced bacterial colonization in challenge experiments with SS1 
(155). Oral vaccination is preferred for its ease of use and high 
adherence rates (156–159). However, it requires higher antigen 
dosages than intramuscular injections do, which may cause 
immunological tolerance. Researchers often use lower antigen doses 
with mucosal adjuvants to improve efficacy (160, 161), especially 
against H. pylori (29).

Aluminum adjuvants are essential in vaccine formulations, 
enhancing systemic immunity and promoting a Th2-type response 
(162, 163). Cholera toxin is a potent mucosal adjuvant (164) that 
activates a Th2 response (165) but poses toxicity risks (35). Cholera 
toxin B is a safer alternative (157, 166). Oral immunization with 

https://doi.org/10.3389/fmed.2024.1523991
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Elbehiry et al. 10.3389/fmed.2024.1523991

Frontiers in Medicine 07 frontiersin.org

cholera toxin and bacterial antigens increased antibody levels in a 
germ-free mouse model of H. felis infection (167), and Lee et al. (168) 
reported that this combination was more effective than the H. felis 
antigen or adjuvant alone. Holmgren’s et al. (164) developed a novel 
adjuvant with mutant cholera toxins for H. pylori infections. A 
formalin-inactivated whole-cell Helicobacter vaccine increased serum 
IgG, mucosal IgA, IFN-γ, and IL-17 levels while reducing H. pylori 
colonization (169, 170). Improving vaccine delivery methods is vital 
for effective mucosal vaccination (171). Techniques such as liposomes, 
viral vectors, and attenuated bacterial vectors offer unique benefits. 
However, no commercially available vaccine exists for inactivated 
whole-cell H. pylori, and enhancing the immune response while 
ensuring safe delivery is challenging.

5.2 Genetically modified protein-based 
subunit vaccines

Antigenic subunit vaccines use purified pathogen components to 
trigger a strong immune response (172). They contain only antigenic 
elements, enhancing safety by removing live components (173). These 
vaccines are suitable for individuals with compromised immune 
systems (174) and have a complex manufacturing process that often 
requires booster doses, adjuvants, and significant time to determine 
optimal antigen combinations (175). The development of a subunit 
vaccine for H. pylori is particularly challenging and costly (29). 
Genetic engineering improves the purification and large-scale 
production of specific antigens, enhancing vaccine efficacy (176, 177). 
Key antigens for an H. pylori vaccine include urease, catalase, cagA, 
babA, vacA, and fliD (110, 178, 179). Urease was one of the first 
antigens recognized as beneficial for vaccine development (145, 180). 
Urease subunits A and B (ureA and ureB) are vital for colonization and 
are therapeutic targets (110, 181). While ureB is well studied as a 
vaccine candidate (145, 182, 183), research on ureA is limited. ureA 
activates urease via interactions with HSP60, which is crucial for 
protein balance (184). Murine studies suggest that ureA-specific CD4+ 
T cells provide protective immunity (185), and oral immunization 
with Bacillus subtilis spores expressing ureA has shown protective 
effects in trials (186).

Michetti et al. (180) demonstrated that an oral H. pylori urease 
vaccine, along with Escherichia coli heat-labile enterotoxin as an 
adjuvant, elevated anti-urease serum immunoglobulin A titers in 
twenty-six H. pylori-infected participants. Zhong et  al. (187) 
developed a recombinant fusion protein, ureA-ureB-NAP, as a 
preventive vaccine, showing improved protection in mice compared 
with a bacterial lysate vaccine. Skakic et al. (179) examined protein 
nanocapsules with the A subunit of H. pylori-ureA and reported that 
TiterMax with SC/MS nanocapsules significantly reduced gastric 
H. pylori infections in murine models, indicating effective immune 
response stimulation. The role of H. pylori oipA in promoting the 
proinflammatory cytokine IL-8 and its effect on inflammation has 
been studied (188). While oipA is vital for host protection against 
H. pylori (134), selecting an effective adjuvant is crucial for a strong 
immune response. Many vaccines still use oil emulsions or aluminum 
salts, but research into alternatives continues due to the adverse effects 
of oil-based adjuvants (189). Natural adjuvants such as propolis have 
shown promise in animal models (190) and may enhance vaccination 
strategies. A 2021 study revealed that propolis combined with 

recombinant oipA increased IFN-γ production and strengthened the 
immune response (133).

5.3 Helicobacter pylori-NAP in vaccination

The H. pylori-NAP gene is a key virulence factor and a potential 
target for gastrointestinal disorder treatments (5, 191). Its 
immunological properties also suggest potential for cancer treatment 
and H. pylori infections (94). Guo et al. (192) studied multivalent 
epitope-based vaccines in Mongolian gerbils in 2017 and 2019 (193). 
The first vaccine combines H. pylori-NAP with various antigens, while 
the second includes epitopes from cagA, vacA, and urease, both of 
which effectively reduce bacterial colonization and gastritis. Liu et al. 
(194) developed a multivalent vaccine with H. pylori-NAP, a mucosal 
adjuvant, and ureA and ureB, which stimulate mucosal IgA and 
specific humoral immune responses. Chen et al. (195) reported that 
cyclic guanosine monophosphate-adenosine monophosphate 
provided protection against H. pylori at lower dosages via intranasal 
immunization. The immunogenic properties of H. pylori-NAP are 
promising for vaccine development (94), but mixed results indicate 
that more research is needed to understand H. pylori evasion of host 
antibody responses.

5.4 cagA antigen as a vaccine candidate

cagA is a potential antigen that triggers immune responses in 
clinical trials (196, 197). Like other H. pylori proteins, such as ureA, 
babA, sabA, and oipA, cagA is an effective vaccine antigen that inhibits 
H. pylori proliferation when combined with suitable adjuvants (198, 
199). In animal models, vaccination with recombinant antigens such 
as cagA, vacA, and NAP has shown protective effects, enhancing T-cell 
memory and cell-mediated immune responses. A study of healthy 
volunteers vaccinated with a cagA-positive strain revealed limited 
protection after exposure (197). Paydarnia et al. (75) revealed that 
recombinant cagA and H. pylori LPS stimulate host immunity in 
murine models. The recombinant cagA protein with the CpG adjuvant 
maintained its antigenicity and induced strong Th1-biased immune 
responses. Other antigens, such as HpaA, FlaA, SOD, and Hsp, may 
also enhance the immune response to H. pylori infection.

5.5 Multiepitope DNA vaccines

Researchers are exploring ways to increase DNA vaccine efficacy 
through adjuvants, cytokines, chemokines, CpG incorporation, and 
electroporation (200). Nonmethylated CpG motifs in plasmid 
backbones increase vaccination success by stimulating immune 
responses in B cells and natural killer cells (201). The protective 
antigen of H. pylori is encoded by cDNA in an expression vector that 
is absorbed by host cells, activating the immune response (29). Kumari 
et al. (202) stated that the absence of cagW disrupts pilus formation, 
preventing cagA from entering the bacterial membrane. babA is 
crucial for H. pylori adherence to gastric epithelial cells and may 
worsen gastritis by promoting cagA translation (107), making it a 
promising vaccination target (29, 203, 204). Xue et al. (205) developed 
plasmid vaccines targeting cagA, vacA, and babA in albino mice, 
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which showed potential anticancer properties for gastric cancer 
immunotherapy. Figure 3 presents recent advancements in H. pylori 
DNA vaccines, including cagW, cagA-vacA-babA (205), and flaA 
(206). However, challenges such as degradation by deoxyribonucleases, 
delivery issues, and limited immune responses in some primates 
hinder DNA vaccine efficacy. Future advancements are expected to 
improve clinical trial prospects for these vaccines.

5.6 Vector (carrier) vaccines

Both viruses and bacteria can harm human health. Modifying 
virulence-associated genes while preserving infectious properties at 
the mucosal barrier is one strategy to reduce pathogen effects. 
H. pylori-derived immunogens can stimulate an immune response 
when delivered to antigen-presenting cells. Vector-based vaccines can 
mimic natural infections and sustain immune activation, making live 
vectors a promising alternative to mucosal adjuvants in recombinant 
subunit vaccines (169). This section reviews vector vaccines for 
preventing H. pylori infection (see Figure 4).

Intramuscular administration of a replication-defective 
adenovirus vector can reduce H. felis infection spread (207); however, 
uncertainties remain about the immune response from poliovirus 
replicons with the ureB component (208). Research shows that 
intranasal or oral Salmonella enterica serovar Typhimurium-vectored 
vaccines effectively prevent H. pylori colonization (209–211). This 
method allows for needle-free vaccination and promotes the use of 
recombinant antigens and DNA vaccine vectors (212, 213). While 
effective in animal models (214, 215), these vaccines have shown 
limited efficacy in humans. There is a need for Salmonella strains that 
produce protective antigens for comprehensive host immunization. 
Ghasemi et al. (216) reported that a vaccine with hpaA, H. pylori-NAP, 
ureA, and ureB conferred protection against H. pylori SS1 in 70% of 
tested mice.

Nie et al. (217) developed the intranasal influenza A virus (IAV) 
vector vaccine IAV-NapA, which uses two live attenuated influenza 
viruses to express the H. pylori NapA A subunit. The strains 
WSN-NapA and PR8-NapA exhibited significant attenuation and 

strong immunogenicity in mice, inducing robust Th1 and Th17 
immune responses, as well as antigen-specific humoral and mucosal 
responses. The vaccine effectively reduced H. pylori colonization and 
inflammation, suggesting its potential as a dual-purpose vaccine for 
influenza and H. pylori. Lactic acid bacteria serve as effective carriers 
for oral vaccines (218, 219), enhancing immunization due to their 
durability and resistance to gastric acid (220). Furthermore, the 
recombinant measles virus (MV) vaccine expressing the H. pylori 
HspA antigen has demonstrated significant cancer efficacy and strong 
immunogenicity (221), making MV a promising platform for 
vaccine development.

Vaccines using Lactococcus lactis (L. lactis) increase mucosal 
immunogenicity (222), and modified strains can trigger immune 
responses at both the mucosal and systemic levels (223). Zhang et al. 
(224) studied a recombinant L. lactis LL-plSAM-WAE vaccine in 
BALB/c mice, which expressed the SAM-WAE antigen. This vaccine 
induced antibodies against H. pylori virulence factors and activated T 
cells, indicating strong potential for H. pylori vaccine development in 
clinical trials. Bacillus subtilis (B. subtilis) spores are effective vectors 
for mucosal vaccination (186, 225, 226). Oral or nasal administration 
enhances mucosal immunity, particularly Th1 responses, and 
increases secretory immunoglobulin A (sIgA) production (227). These 
spores can germinate under suitable conditions and endure extreme 
environments, including gastric secretions (228). Thus, animals and 
humans are likely exposed to low levels of Bacillus (229). In a study by 
Katsande et al. (186), mice were given genetically modified B. subtilis 
spores expressing the H. pylori antigens ureA and ureB, leading to 
specific mucosal responses, increased fecal sIgA levels, and increased 
antibody production.

Saccharomyces cerevisiae (S. cerevisiae) is a promising candidate 
for immune studies against various pathogens (230). Cen et al. (231) 
used S. cerevisiae to express recombinant ureB and vacA, creating an 
oral vaccine that significantly reduced H. pylori infection in mice. 
Attenuated Listeria monocytogenes (L. monocytogenes) is an effective 
vector for enhancing antibody production against H. pylori (232). It 
stimulates immune responses, especially from CD4+ and CD8+ T 
lymphocytes (233), and is widely used as a vaccine carrier in 
immunotherapy for tumors and infectious diseases (234). The hly 

FIGURE 3

H. pylori DNA vaccines, including cagW, cagA-vacA-babA, and flaA, have been developed to enhance immunological responses.
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gene promoter (PhIy), encoding listeriolysin O, is often used for 
developing vaccine strains for foreign antigen production (235), but 
Ding et al. (236) reported that it is inadequate for optimal antigen 
expression and strong immune responses. Live attenuated bacteria 
must survive acidic environments such as macrophage phagosomes 
and the gastric cancer microenvironment (237). A key limitation is the 
lack of a well-characterized promoter array for regulating foreign 
antigen transcription in L. monocytogenes. Ma et al. (238) identified 
21 potential promoters from L. monocytogenes cultured at pH 7.4 and 
5.5, with seven intrinsic promoters outperforming Phelp and five 
constitutive promoters showing high activity in the production of 
ureB, an antigen against H. pylori.

6 Challenges in developing 
Helicobacter pylori vaccines and 
moving from animal models to clinical 
trials

The effectiveness and immunogenicity of human vaccines differ 
from those of animal vaccines, creating translational challenges. No 
H. pylori vaccine candidates have advanced to human clinical trials, 
with many discontinued (135). Factors affecting H. pylori include 
immune evasion, genetic variations, its intracellular presence, and 
limited funding. T-regulatory cells are essential for a nonharmful 
relationship with H. pylori, but their responses may inhibit Th1 and 
Th17 functions (239), potentially promoting H. pylori proliferation. 

Genetic variations account for approximately 30% of the heterogeneity 
among H. pylori isolates (240), leading to significant genotype 
variability among individuals and within the same patient. The 
intracellular presence of H. pylori is also a critical factor to consider 
(241). H. pylori is commonly found in the stomach layers, epithelium, 
and immune cells of patients with gastric disorders (242) and often 
outnumbers and prolongs the lifespan of immune cells (243). Mouse 
models are inadequate for studying H. pylori (244), and Amalia et al. 
(245) highlighted the need for better models, as murine immune 
responses do not reflect human responses (240). Domestic monkeys 
share similarities with humans regarding H. pylori, suggesting that 
larger mammals may be  more suitable for vaccine studies (246). 
Despite the prevalence of H. pylori, major biopharmaceutical 
companies are reluctant to develop vaccines because of challenges in 
assessing immune protection, genetic diversity, and host responses, 
complicating manufacturing.

7 Ethical challenges in vaccine trials 
for vulnerable populations

Research involving vulnerable populations requires a careful 
approach to prevent exploitation, especially in vaccine trials. This is 
critical in developing countries, where socioeconomic disadvantages 
can lead to coercion. Past ethical violations emphasize the need for 
sound design and ethical guidance. Inclusive design and ethical 
considerations are vital for advancing scientific knowledge while 

FIGURE 4

Some vector (carrier) vaccines used in murine models in trials to protect against H. pylori.
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preserving human dignity. Informed consent is essential for ethical 
research and human rights, particularly for vulnerable populations, 
but it poses challenges in vaccine trials. These principles must 
be adapted to local conditions and cultural sensitivities.

8 Advantages, limitations and 
development stages of Helicobacter 
pylori vaccines

H. pylori vaccines are vital for therapy and prevention, enhancing 
mucosal immunity and mixed immune responses. The main types are 
toxin-based and OMP vaccines, with OMP vaccines being safer and 
more effective because of their lower antigen and adjuvant 
requirements, potentially reducing antibiotic resistance in aging 
populations in developing countries. However, viable OMP candidates 
are limited. Prophylactic vaccination can eradicate bacteria, but 
challenges exist in identifying suitable antigens and developing 
effective delivery systems. Toxin vaccines also improve safety but face 
selection challenges. Innovations such as virus-like particle and DNA 
vaccines offer new research avenues, although significant hurdles 
remain before their clinical use. Vaccine development is crucial for 
preventing H. pylori infections and establishing herd immunity. 
Various vaccine types, including whole-cell, subunit, and epitope 
vaccines, have been developed, but their efficacy is uncertain. 
Researchers are also exploring DNA and live vector vaccines, which 
may activate antibodies or T cells for protective immunity, although 
the mechanisms are not well understood. Current vaccines do not 
meet ideal criteria, such as inducing systemic Th1-biased immune 
responses and stimulating mucosal immunity in gastric tissue. Future 
efforts should prioritize optimal protection with minimal side effects.

9 Future directions

The development of H. pylori vaccination strategies requires 
further preclinical testing in suitable animal models before human 
trials. A reliable method for assessing vaccine efficacy would aid 
progress. Research has shown that mice immunized with combinations 
of five adjuvant H. pylori proteins achieve better bacterial clearance. 
Prime-boost vaccination strategies involving various H. pylori antigens 
have shown significant protective effects in murine models. However, 
an effective H. pylori vaccine has not yet been developed because of 
limited knowledge of antigens and immune responses. It remains 
uncertain whether vaccines alone can eradicate H. pylori or if 
antibiotics are needed. The link between H. pylori infection and upper 
gastrointestinal disorders has renewed interest in vaccine 
development, which could help prevent chronic gastritis, peptic ulcers, 
gastric cancer, and MALT lymphoma.

10 Conclusion

H. pylori is implicated in a range of gastric disorders, including 
peptic ulcers, stomach cancer, lymphoma, and gastritis. The 
pathogenicity of this bacterium is modulated by several virulence 
factors, including cagA, vacA, ure, HP-NAP, catalase, and OMPs. A 
comprehensive understanding of these factors is essential for the 

effective treatment and management of associated conditions. The 
prevalence of OMPs varies geographically, and all H. pylori strains 
possess these proteins, rendering them potential targets for vaccine 
development. Current clinical trials are exploring recombinant 
vaccines that incorporate various antigens, including the cagA, vacA, 
ure, babA, sabA, oipA, and porin proteins. Recent advancements in 
antigen detection have opened new avenues for vaccine development, 
emphasizing innovative delivery methods and adjuvants. Nevertheless, 
the majority of research remains in preliminary stages. Continued 
efforts are critical to the development of a safe and effective vaccine 
against H. pylori, which necessitates the identification of immune-
suppressing mechanisms, the selection of effective antigens and 
adjuvants, and the enhancement of public awareness, particularly in 
developing countries.
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