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The liver is a vital organ responsible for numerous metabolic processes in the human 
body, including the metabolism of drugs and nutrients. After liver damage, the organ 
can rapidly return to its original size if the causative factor is promptly eliminated. 
However, when the harmful stimulus persists, the liver’s regenerative capacity 
becomes compromised. Substantial theoretical feasibility has been demonstrated 
at the levels of gene expression, molecular interactions, and intercellular dynamics, 
complemented by numerous successful animal studies. However, a robust model 
and carrier that closely resemble human physiology are still lacking for translating 
these theories into practice. The potential for liver regeneration has been a central 
focus of ongoing research. Over the past decade, the advent of organoid technology 
has provided improved models and materials for advancing research efforts. Liver 
organoid technology represents a novel in vitro culture system. After several years 
of refinement, human liver organoids can now accurately replicate the liver’s 
morphological structure, nutrient and drug metabolism, gene expression, and 
secretory functions, providing a robust model for liver disease research. Regenerative 
medicine aims to replicate human organ or tissue functions to repair or replace 
damaged tissues, restore their structure or function, or stimulate the regeneration 
of tissues or organs within the body. Liver organoids possess the same structure 
and function as liver tissue, offering the potential to serve as a viable replacement 
for the liver, aligning with the goals of regenerative medicine. This review examines 
the role of liver organoids in regenerative medicine.
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Introduction

The liver organoids are laboratory-engineered models that replicate the liver’s structure 
and functions using three-dimensional culture and stem cell technologies. Despite their 
promising potential in medical research and clinical applications, liver organoids face several 
challenges. First, current liver organoids models often fail to fully replicate the structural and 
functional complexity of the adult liver, limiting their application in long-term drug testing 
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and disease research. Second, improving the maturity and 
functionality of liver organoids—particularly their metabolic capacity 
and immune response—remains a critical challenge. Additionally, 
challenges such as large-scale production, standardized culture 
conditions, and the adaptability of liver organoids to individual 
human variations must be addressed for future clinical applications. 
In view of the above issues, this review discusses the future 
development and application prospects of liver organoids in 
experimental regenerative medicine.

The liver is a vital organ in the human body that is responsible for 
detoxification, digestion, and nutrient metabolism. Common liver 
diseases include viral and nonviral hepatitis, hepatic hemangioma, 
cirrhosis/fibrosis, traumatic liver injury, and liver cancer (1). The adult 
liver possesses a robust regenerative capacity, allowing it to rapidly 
restore function following damage (2). Even when a portion of the 
liver is removed, the remaining liver cells can swiftly proliferate to 
restore the organ’s volume and function (3). In mammals, when 75 to 
85% of the liver is surgically removed, the remaining portion cannot 
compensate for systemic metabolism, often resulting in fatal 
posthepatectomy liver failure (PHLF) (4, 5). Chronic damage to the 
liver typically reduces its regenerative capacity over time (6, 7). 
Organoid technology has garnered significant attention since its initial 
discovery (8). Liver organoids, which are three-dimensional cell 
clusters that mimic the structure and function of the liver, have 
become a focal point in drug development, metabolism studies, safety 
assessments, and precision medicine (9–11). Regenerative medicine 
involves the development of functional tissues and materials to repair 
or replace damaged organs and tissues or to promote the regeneration 
of tissues and organs through biological, chemical, and physical means 
(12). Undoubtedly, the emergence of liver organoids represents a 
powerful experimental model and a potential tool in 
regenerative medicine.

The research model in liver injury

Liver injury can be categorized as either acute or chronic. Acute 
liver injury often results from traumatic liver ruptures or nontraumatic 
causes, such as drug-induced liver injury and acute hepatitis 
A. Chronic liver injury is predominantly caused by hepatitis viruses 
or autoimmune diseases (13). Traumatic liver injury is relatively 
common, with numerous cases reported annually (14). Due to the 
liver’s abundant blood supply and bile secretion, liver injury can lead 
to shock and acute peritonitis (15). Timely blood volume support and 
surgical intervention are effective treatments for this type of injury 
(16). Nontraumatic liver injury often occurs after the consumption of 
hepatotoxic substances or drugs or following hepatitis A virus 
infection within a short period (17, 18). Clinically, nontraumatic liver 
injury is characterized by upper abdominal pain, gastrointestinal 
symptoms, such as nausea and vomiting, and elevated transaminase 
and bilirubin levels in biochemical tests (19). Most individuals achieve 
a favorable prognosis by avoiding hepatotoxic agents and using 
hepatoprotective drugs, such as glutathione.

The hepatitis B virus (HBV) is the most common cause of chronic 
liver injury (20). The prevailing view is that long-term HBV infection 
inhibits virus-specific T-cell function and downregulates innate 
immune signaling pathways, enabling the virus to evade immune 
surveillance (21). However, high-level viral replication and the 

production of subviral hepatitis B surface antigen (HBsAg) particles 
play crucial roles in promoting liver damage (22). Chronic liver 
damage leads to edema and fatty degeneration of hepatocytes, 
triggering persistent low-grade inflammation (23). This is often 
accompanied by transient high-grade inflammation and the activation 
of fibrogenic processes, ultimately resulting in viral liver fibrosis (24). 
Currently, the primary method for preventing hepatitis B virus 
infection is the administration of the hepatitis B vaccine. Clinical 
treatment primarily involves the use of interferons and antiviral drugs, 
although a standardized treatment protocol has not yet 
been established.

As liver fibrosis progresses, the liver’s basic structure is gradually 
compromised, eventually leading to irreversible cirrhosis (25). 
Cirrhosis is a prevalent global disease with common causes including 
hepatitis B virus infection, excessive fat and lipid intake, and 
autoimmune hepatitis (26). The main symptoms include liver 
dysfunctions, such as portal hypertension, ascites, and 
hypoalbuminemia (27). Treatment focuses on addressing the 
underlying cause and managing complications, with liver 
transplantation a viable option in certain cases (27, 28). As cirrhosis 
advances, regenerative disorders may arise, potentially progressing 
into hepatocellular carcinoma (29, 30), which is the eighth most 
prevalent cancer and the third leading cause of cancer-related deaths 
globally (31).

In the early stages of liver disease, symptoms may be subtle or 
entirely absent. Space-occupying liver lesions are frequently 
discovered incidentally during routine physical examinations. 
Diagnosis typically involves a combination of blood alpha-fetoprotein 
(AFP) levels, enhanced computed tomography (CT), Magnetic 
resonance imaging (MRI), and ultrasound angiography (32, 33). 
Treatment options, depending on the stage of the disease and the 
patient’s specific condition, include surgical resection, local ablation, 
interventional therapy, pharmacotherapy, or liver transplantation (34). 
Unfortunately, the prognosis remains poor even with these treatments 
(35). Hepatitis B virus infection, cirrhosis, and hepatocellular 
carcinoma are closely interconnected, forming a critical disease (36). 
Hepatitis B virus infection is a leading cause of cirrhosis and 
hepatocellular carcinoma, particularly in Asia (37). Cirrhosis 
represents a critical intermediate stage in the progression to 
hepatocellular carcinoma, which is the most severe outcome for 
patients with cirrhosis (36). For patients with advanced cirrhosis and 
hepatocellular carcinoma, liver transplantation is a viable treatment 
option that can significantly enhance survival and quality of life (27, 
38, 39).

Liver damage may also result from immune-mediated and genetic 
disorders. Immune-mediated liver damage, such as autoimmune 
hepatitis, occurs when the immune system mistakenly targets liver 
cells, potentially leading to chronic inflammation and significant 
hepatic injury (40). Primary biliary cholangitis and primary sclerosing 
cholangitis are additional immune-mediated liver diseases that affect 
the bile ducts, potentially causing cholestasis and hepatic damage (41). 
Conversely, hereditary liver diseases, such as hemochromatosis, 
Wilson’s disease, and α1-antitrypsin deficiency, result from genetic 
mutations inherited from parents (42, 43). These genetic mutations 
impair the liver’s ability to metabolize specific substances, leading to 
their accumulation and subsequent liver damage. For instance, 
Wilson’s disease involves defective copper metabolism, whereas 
α1-antitrypsin deficiency impacts protease activity (42, 44). Despite 
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their relative rarity, these disorders significantly affect patient health 
(45). Additional causes of liver damage include alcoholic liver damage, 
nonalcoholic fatty liver disease (NAFLD) due to fat accumulation, and 
drug-induced liver injury (Figure 1). As of 2023, liver diseases have 
resulted in over 2 million deaths globally, with an increasing trend 
(46). All of these conditions, with the exception of traumatic liver 
damage (which involves fewer affected areas), contribute to a 
reduction in liver regenerative capacity (47).

Traditionally, animal models and in vitro cell models have been 
extensively utilized to investigate liver diseases (Figure 2) (48). Animal 
models closely mirror the physiological metabolic processes, tissues, 
and microenvironment of the human body (49). These models aid in 
elucidating the pathogenesis of liver diseases, assessing drug efficacy, 
and investigating novel treatments. Among the various models used 
for liver diseases, the mouse model is the most prevalent. Models of 
cirrhosis and fibrosis are typically induced through bile duct ligation, 
thioacetamide administration, or high-concentration alcohol infusion 
into the hepatic artery (28, 50). Liver cancer models are commonly 
established using methods such as chemical induction, dietary 
modification, genetic engineering, heterotopic transplantation, and 
humanized mouse systems (51). Numerous construction methods and 
animal models exist, although deviations are common due to species 
differences and variations in disease progression (52). The long 
duration, high cost, and ethical constraints associated with animal 
models limit the feasibility of short-term, homogeneous, and high-
throughput experiments (48).

Traditional 2D cell models, which involve culturing single layers 
of cells, are straightforward to culture and grow rapidly (53, 54). 
However, they are confined to a 2D structure consisting of a single 

layer of cells adhering to a culture medium. These models lack the 
matrix and immune cells essential for regulating cell behaviors, such 
as differentiation, survival, proliferation, and migration, making it 
impossible to accurately simulate the organ structure (55). 
Consequently, 2D models fail to provide the varied levels of oxygen 
and nutrients required for multidimensional cell behavior (52). 
Furthermore, repeated subcultures often lead to the loss of the original 
cell characteristics (56, 57). As a central organ for food, drug, and 
energy metabolism, the liver is characterized by a complex and 
multilayered structure, thus posing significant challenges for 2D cell 
models. While 2D models can offer valuable insights, they cannot fully 
replicate the complexity and multidimensional nature of human 
liver disease.

The advances in liver organoids

The organoids represent a novel technology that has emerged over 
the past decade (58). These models exhibit a three-dimensional tissue 
structure and retain functions and characteristics similar to those of 
the original tissue (59). The development history of liver organoids is 
summarized in Table 1 and Figure 3. Clevers et al. (60) successfully 
cultured intestinal organoids from Lgr+ intestinal stem cells. The 
authors utilized pluripotent adult stem cells with high plasticity and 
self-renewal capacity to explore methods for simulating natural 
growth conditions, precisely controlling growth factors and the 
cellular microenvironment and guiding stem cells to differentiate 
along specific pathways to form organoid structures (61). Huch et al. 
(62) cultured liver organoids from damaged Lgr5+ bile duct cells and 

FIGURE 1

Common factors contributing to liver injury and their consequences: autoimmune diseases, viral hepatitis, alcohol, drugs, and trauma can cause 
cirrhosis, hepatocellular carcinoma, and acute liver failure.
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demonstrated that these organoids maintained the original 
characteristics of the liver even after long-term proliferation. A 
subsequent study indicated that liver organoids preserve most of their 
characteristics even during extended proliferation and passage (63). 
Skardal et al. (64) developed an in vitro model of colorectal cancer 
liver metastasis. Leite et al. (65) established an organoid model of liver 
fibrosis. In 2017, they successfully established primary liver tumor 
(PLC) organoids and showed that these organoids retained the 
characteristics and heterogeneity of liver cancer (66). Ouchi et al. (67) 
developed an organoid model of nonalcoholic fatty liver disease 
(NAFLD) in 2019. In the subsequent year, Elbadawy et al. (68) created 
a mouse-derived organoid model for nonalcoholic steatohepatitis 
(NASH). Later, De Crignis et  al. (69) successfully cultured liver 
organoids infected with the hepatitis virus. Organoid models for 
various liver diseases, such as liver fibrosis, drug-induced liver injury, 
and glycogen storage disease type Ia (GSD1a), have now been 
developed (70–72). Based on the number of passages, organoids are 
classified into short-term and long-term. Short-term organoids are 
cultured for up to 30 generations or 3 months and are primarily used 
for low-throughput drug screening, biomarker identification, and the 
exploration of drug sensitivity and resistance mechanisms (73). In 
contrast, long-term organoids are suited for high-throughput drug 
screening and the development of organoid databases (74, 75).

Organoids are categorized based on their cell sources into two 
main types: tissue-derived organoids and pluripotent stem cell-
derived organoids, including adult stem cells (ASCs), pluripotent 

stem cells (PSCs), and patient-derived organoids (PDOs). PSCs 
are subclassified into embryonic stem cells (ESCs) and induced 
pluripotent stem cells (iPSCs) (Figure  4) (76). Patient-derived 
organoids (PDOs) are sourced from mature tissues and preserve 
the morphological, physiological, and genetic characteristics of 
the original tissues (77). These organoids are relatively 
straightforward and require less time to culture and exhibit high 
cell maturity (78, 79). In 2017, three types of liver tumor 
organoids—hepatocellular carcinoma, cholangiocarcinoma, and 
mixed-cell carcinoma—were established from eight liver tumor 
patients, retaining the morphological and physiological 
characteristics of the original tumors (66). The following year, 
Nuciforo et al. (80) utilized tumor needle biopsy technology to 
generate liver tumor organoids from biopsy samples of 
hepatocellular carcinoma (HCC) patients, preserving the 
histological, transcriptomic, and genetic characteristics of the 
original tumors. While Wu et al. (81) expanded circulating tumor 
cells (CTCs) from 41 liquid biopsy samples of 31 pancreatic ductal 
adenocarcinoma (PDAC) patients to develop CTC-derived 
organoids in vitro, there are currently no reports of successfully 
inducing malignant liver tumor organoids from CTCs. 
Nevertheless, mature liver tissue can still be used to establish liver 
organoids, even after extended cryopreservation (82).

PSC-derived organoids originate from ESCs or iPSCs. Cells such 
as skin fibroblasts are first reprogrammed into pluripotent stem cells 
in a culture medium and subsequently differentiated into liver cells for 

FIGURE 2

Advantages and disadvantages of cell models, animal models, and organoid models.
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organoid culture (83). Since the first iPSCs were generated from adult 
mouse cells in 2006 (84), subsequent studies have demonstrated the 
applicability of iPSC technology to human cells (85). CRISPR/Cas9 
technology has been employed to overexpress the c-Myc gene, 
successfully inducing HCC organoids from human liver cell organoids 
(86). Adult cells from human sources are reprogrammed into iPSCs 
through the knockout of specific transcription factors, followed by 
differentiation into liver cells. Although the process is time-
consuming, the resulting organoids possess a complex array of cellular 
components, including mesenchymal, epithelial, and potentially 
endothelial cells (87). Compared to patient-derived organoids, 
PSC-derived organoids are particularly useful for studying the early 
stages of human organ development (88). Additionally, organoids can 
be derived from human tissues that difficulty to obtain, such as the 
brain, heart, and bone marrow. Currently, the availability of tissues for 
establishing liver organoids is increasing, and the associated materials 
are becoming more accessible.

The technology in liver organoids

The production of liver organoids has become relatively advanced. 
The main steps are as follows: tissue is digested into single cells using 
digestive enzymes (e.g., collagenase, DNAse, and dispase) filtered 
through a sieve and mixed with matrix gel to form microspheres. 
Subsequently, signal molecules and biological agents that simulate 
stem cell growth factors required by stem cells are added. For instance, 
hepatocyte growth factor (HGF), epidermal growth factor (EGF), 
fibroblast growth factor (FGF), and Wnt family member 3A (Wnt3A) 
promote cell proliferation, while dexamethasone, bone morphogenetic 
protein (BMP), and other cytokines induce hepatocyte maturation. 
Additionally, mTeSR facilitates the differentiation of bile duct cells (62, 
89). In recent years, advancements across multiple disciplines have 
driven innovation in organoid technology.

Microfluidics is a technology that utilizes microchannels ranging 
from tens to hundreds of micrometers to process and manipulate 
small volumes of fluid. This technology can precisely control the 
cellular environment in fields such as biology and biomedical 
engineering (90). Microfluidic technology allows for precise control 
over organoids and provides dynamic physical conditions that 
facilitate the production of high-throughput, uniform organoid 
microspheres (91). Organoid microspheres produced using this 
technology more accurately replicate the in  vivo liver 
microenvironment and the interactions between the liver organ model 
and other tissues and organs (92). This approach holds significant 
potential for disease simulation, personalized medicine, drug 
screening, and regenerative medicine (93). Organ-on-a-chip 
technology employs microfabrication techniques to create a 
micromodel of a biological organ on a chip-sized device (94). The 
integration of organoid and organ-on-a-chip technologies results in 
organoid chips (organoids-on-a-chip). By incorporating microfluidic 
technology, these chips enable the construction of more precise and 
controllable organoid models that simulate the microenvironment, 
vascularization, and tissue interactions (95). Microfluidic liver 
organoid chips are designed to simulate the in vivo liver sinusoid 
structure and the liver microphysiological environment. This approach 
partially compensates for the limitations in the structure, composition, 
and mechanical microenvironment observed in conventional liver 
organoids (96–98). Co-culturing vascular endothelial cells with liver 
cells on the chip simulates a three-dimensional vascular network, 
potentially offering an in  vitro alternative to animal models and 
conventional transplantation (99).

3D bioprinting is a branch of 3D printing that uses cells and an 
extracellular matrix (ECM) as raw materials to construct the desired 
biological structures (100). This technology can directly print complex 
tissue or organ structures and has garnered significant attention across 
various medical fields (101). The primary methods of 3D bioprinting 
include inkjet, extrusion, laser-assisted bioprinting (LAB), and 

TABLE 1 The development history of liver organoid models.

Authors Time Cell source Result

Clevers et al. (62) 2013/02 Mice derived The first liver organoids

Skardal et al. (64) 2015/10 Human derived In vitro model of liver metastasis of bowel cancer

Leite et al. (65) 2016/02 Human derived Detection of drug-induced liver fibrosis in liver organoid models

Huch et al. (66) 2017/12 Human derived Establishment of models of liver cancer organoids

Vyas et al. (187) 2018/12 Human derived A composite organoid model of hepatocytes and bile cells

Ouchi et al. (67) 2019/08 Human iPSC Organoid modeling of NAFLD

Soroka et al. (188) 2019/09 Human derived Organoid models of biliary cirrhosis

Gómez-Mariano et al. (189) 2020/01 Human derived The organoid model that α-1 organoid model of antitrypsin deficiency liver disease

Elbadawy et al. (68) 2020/04 Mice derived Effect of mouse NASH organoid models

De Crignis et al. (69) 2021/07 Human derived Viral B hepatitis liver organoid model

Guan et al. (70) 2021/10 Human iPSC Liver organoids for liver fibrosis were successfully established

Li et al. (190) 2022/01 Human derived Viral C hepatitis liver organoid model

Bonanini et al. (99) 2022/11 Human derived The microvascular system of liver organoids was constructed

Zhang et al. (72) 2023/05 Human iPSC Liver organoids have the ability to mimic drug-induced liver injury

Shintani et al. (191) 2023/08 Human iPSC A liver organoid model for UGT1A1-specific kinetics and toxicity evaluation

Feng et al. (192) 2024/05 Human iPSC Organoid model of alcoholic fatty liver disease from iPSCs
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acoustic-assisted bioprinting (102). This technology has been employed 
to print various tissues, including skin, heart, bone, cartilage, liver, lung, 
nerve, and pancreatic tissues (103). 3D bioprinting plays a crucial role 
in drug screening, disease modeling, and liver regenerative medicine 
(104, 105). Organoids possess complex biological components and 
structures, including inherent 3D architecture (59). The synergy 
between organoids and 3D bioprinting represents a highly promising 
approach. Currently, the requirements for bioink composition are more 
stringent than those for 2D cell cultures. Bioink is a specialized material 
used in bioprinting that supports living cells and other biological 
components, providing a matrix for cell growth and organization (106, 

107). Liver endothelial cells can be layered and printed into a composite 
organoid model, demonstrating a well-developed vascular and bile 
duct system, thereby maximizing liver function (108). Using 
multicellular 3D droplets, HepaRG/HUVECs/LX-2 liver organoids 
with biomimetic lobule structures have been constructed, effectively 
simulating cell heterogeneity, spatial organization, and ECM 
characteristics (109). Current methods for constructing liver organoids 
still face challenges related to cell heterogeneity, tissue structure, and 
the integrity of functional components. Therefore, developing liver 
organoids using integrated design strategies and multidisciplinary 
engineering methods is paramount.

FIGURE 3

The development of liver disease models. iPSC, induced pluripotent stem cell; AATD, alpha-1 antitrypsin deficiency; ALGS, Alagille syndrome; HBV, 
hepatitis B virus; NAFLD, nonalcoholic fatty liver disease; UGTIA1, UDP glucuronosyltransferase family 1 member A1.

FIGURE 4

Common tissue sources for liver organoids: stem cells and adult cells. Stem cells include iPSCs, ESCs, and ASCs; adult cells mostly come from patients. 
(A) Sources of stem cells for liver organoids: from ECS, iPSC, ASCs. (B) Patient derived, mainly from liver tissue removed after clinical surgery.

https://doi.org/10.3389/fmed.2024.1521851
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Gong et al. 10.3389/fmed.2024.1521851

Frontiers in Medicine 07 frontiersin.org

The application of liver organoids in liver 
regeneration

The regenerative capacity of a healthy liver is robust. Even after a 
major hepatectomy, it can regenerate to its original size within a 
relatively short period (110). The number of hepatocytes and their 
sizes both increase, while the number of hepatic lobules decreases (3). 
In chronic liver injury, the liver’s regenerative capacity becomes 
unbalanced due to cell damage, repair processes, extracellular matrix 
deposition, and subsequent structural alterations (111, 112). In viral 
hepatitis and immune-mediated liver disease, chronic injury is 
characterized by ongoing repair and regeneration and leads to an 
imbalance between these two processes over time (113). Ultimately, 
fibrous tissue repair compresses hepatocyte space, inhibits liver 
regeneration, and results in cirrhosis characterized by diffuse liver 
fibrosis, pseudolobules, and regenerative nodules (114). This 
progression can lead to end-stage liver diseases, including portal 
hypertension and hepatocellular carcinoma (115, 116).

Regenerative medicine has been a field of exploration for many 
years. It has evolved from a search for regenerative tissues or organs 
to methods that stimulate the regeneration of an individual’s own 
tissues or organs (12). Bone and tooth regeneration techniques are 
currently well developed (117, 118). However, progress in liver 
regeneration remains relatively slow. Liver organoids hold a significant 
position and offer substantial potential in regenerative medicine 
(Table 2).

When the liver is injured or a significant portion is removed, the 
remaining liver may temporarily be unable to compensate, potentially 
leading to post-hepatectomy liver failure (PHLF), a serious 
complication and cause of death following liver surgery (119). 
Clinicians use artificial liver blood purification systems (ALBPS) as 
extracorporeal temporary replacement therapy, analogous to 
extracorporeal membrane oxygenation (ECMO) systems. These 
systems provide time for the remaining liver to regenerate; however, 

their treatment efficacy remains limited (120). Artificial livers are 
extracorporeal devices designed for detoxification and metabolic 
functions (121). They play a pivotal role in treating liver failure and 
are recommended as a primary option for patients with this condition 
(122). These devices can be  broadly categorized into two types, 
nonbioartificial livers (NBALs) and bioartificial livers (BALs), which 
can also be combined to form hybrid artificial livers (HALs) (123). 
Nonbioartificial livers operate primarily by purifying blood through 
techniques such as plasma exchange (PE), hemodialysis (HD), 
hemofiltration (HF), and hemoperfusion (HP)/plasma perfusion (PP).

These devices focus on the detoxification and filtration of 
metabolic wastes using systems such as the molecular adsorption 
recirculating system (MARS), fractionated plasma separation and 
adsorption, and therapeutic plasma exchange (TPE) (124). A 
bioartificial liver primarily consists of functional hepatocytes within 
an in vitro bioreactor. Hepatocytes perform metabolism, synthesis, 
and secretion either through blood flow across a semipermeable 
membrane or by direct contact. These devices are typically used for 
short-term support (125). Compared to NBALs, BALs are composed 
of functional hepatocytes that provide essential liver functions, 
including detoxification, metabolite synthesis, and biotransformation 
(126). Hybrid artificial livers integrate both approaches: the 
nonbiological component handles liver detoxification, while the 
bioartificial component performs detoxification, synthesis, and 
biotransformation. This combination offers complementary benefits 
and holds promise for future advancements. Addressing the challenges 
of stability and long-term functionality in bioartificial livers could 
potentially be enhanced by integrating liver organoids.

Organoid transplantation has emerged as a prominent topic in 
regenerative medicine and has shown promising results in animal 
experiments (Table 2). Yuan et al. (127) transplanted proliferating 
human hepatocytes (ProliHHs) encapsulated in organoids into the 
peritoneal cavity of mice with PHLF. This approach aimed to enhance 
liver regeneration, reduce endotoxins and hyperammonemia, alleviate 

TABLE 2 Current status of liver organoid transplantation.

Author Time Cell source Animal Position Result

Ye et al. (193) 2016/06 PDO Mice Subcutaneous Hybrid hepatobiliary organoids increase blood albumin concentration

Zhou et al. (194) 2017/05 PDO Mice Orthotopic Orthotopic transplantation of mouse liver organoids

Nie et al. (128) 2018/01 PSCs Mice Kidney capsule Liver organoid transplantation improves the survival rate of mice with 

acute liver injury

Wu et al. (195) 2019/06 PDO Mice Subcapsular spleen Hybrid hepatobiliary organoids maintain liver function in mice

Tsuchida et al. (131) 2019/12 Mice derived liver Mice Portal vein Portal vein liver organoid transplantation has safety and efficacy

Tsuchida et al. (196) 2020/01 PSCs Porcine Portal vein Human iPSC-derived liver organoids can be safely transplanted

Kruitwagen et al. (197) 2020/02 Dog derived liver Dog Portal vein Extend the lifespan of COMMD1-deficient dog

Sampaziotis et al. (198) 2021/01 PDO Mice Intrahepatic ducts Extends lifespan of mice with bile duct disease

Guo et al. (83) 2021/02 PSCs Mice Central nervous 

system

Understanding the mechanisms of liver failure in DGUOK mutant MDS

Zhang et al. (199) 2021/10 Porcine biliary Porcine Patch transplant Without evidence of emboli or ectopic cell distribution

Salas-Silva et al. (136) 2023/12 PDO Mice Submesenteric Can improve survival rate of mice with acute and chronic liver injury

Li et al. (200) 2024/01 PSCs Monkey Liver subcapsular 

and submesenteric

Effective and safe for advanced liver disease

Yuan et al. (127) 2024/04 PDO Mice Intraperitoneal Encapsulated liver organoids improve survival in mice with acute liver 

injury
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hypoglycemia, and improve overall survival (127). Functional liver 
organoid (LO) tissue generated from the endoderm, endothelial cells 
(EC), and mesenchymal cells (MC) derived from human-induced 
pluripotent stem cells (hiPSCs) from a single donor can significantly 
enhance the survival rate and liver function of mice with acute liver 
injury (128). Such liver organoid grafts need to survive for 
approximately 1 week to allow the liver to regenerate sufficiently to 
support systemic metabolic functions. To address this need, Labour 
et al. (129) developed a structurally adjustable, animal-free, three-
dimensional porous scaffold that evenly distributes cells and supports 
their survival for over 7 days. When combined with other 
advancements, this scaffold has potential for clinical application.

In chronic liver damage, such as viral hepatitis, advanced disease 
stages involve concurrent damage, repair, and regeneration. The 
resulting fibrous tissue compresses functional liver cells, leading to 
liver failure and symptoms such as ascites and spider nevi (130). In a 
rat model of chronic liver injury, liver organoid transplantation via 
the portal vein significantly improved bile reconstruction rates and 
the replacement of damaged liver tissue. Additionally, ductal 
reactions were reduced, and precancerous lesions marked by 
placental glutathione S-transferase (GST-p) were diminished (131). 
In cases of portal hypertension caused by cirrhosis, transjugular 
intrahepatic portosystemic shunt (TIPS) and portal vein shunt 
surgeries can alleviate symptoms such as ascites and hematemesis 
(132). However, these treatments are ineffective against hepatic 
encephalopathy caused by hyperammonemia, which can only 
be  managed by restricting protein intake and using medications 
(133). Combining 3D printing technology with liver organoids to 
replace liver cell functions can facilitate the degradation of toxic 
substances, thereby alleviating hepatic encephalopathy (134). 
Compared to hepatocyte-derived artificial livers, liver organoids offer 
more precise regulation of biomarkers such as Aspartate 
aminotransferase (AST), Alanine transaminase (ALT), and blood 
ammonia (135, 136).

Due to trauma, the liver sustains significant damage. Following 
emergency surgery, the remaining liver tissue is insufficient to meet 
the metabolic demands of the body. In such cases, the primary clinical 
treatment involves providing artificial liver support while waiting for 
the liver to regenerate to a level that meets the body’s minimum 
requirements (137). Liver organoids may assist in repairing damaged 
liver tissue through transplantation or cell therapy. Transplanting liver 
organoids, or mature hepatocytes derived from them, into the liver of 
patients with traumatic liver injury can accelerate liver repair by 
promoting hepatocyte proliferation, differentiation, and 
tissue regeneration.

Hemochromatosis is an abnormality in iron metabolism that 
results in excessive iron accumulation in the blood (138). This surplus 
iron is deposited in various organs, with the liver being the primary 
site of storage. As a result, liver lesions are a major cause of 
complications such as unexplained cirrhosis, bronze skin, and 
diabetes, with an increased risk of subsequent hepatocellular 
carcinoma (139). In clinical practice, diagnosis is confirmed through 
a positive genetic test (140). Treatment is primarily aimed at reducing 
blood iron levels through methods such as phlebotomy and iron 
chelation therapy. Patients with hemochromatosis often experience 
pathological changes in the liver, including damage, inflammation, 
and fibrosis, which can progress to liver failure (138). In this case, liver 
organoids offer a valuable tool for simulating and evaluating the effects 

of iron overload on hepatocyte function, as well as exploring potential 
restorative therapies through cell-based approaches.

Wilson’s disease is a genetic disorder characterized by impaired 
copper metabolism, leading to the accumulation of copper in the body 
(44). This copper overload can cause damage to the liver, nervous 
system, and other organs, with the liver being the most significantly 
affected organ in patients (44). Chronic copper accumulation results 
in liver damage, inflammation, fibrosis, liver failure, and even 
hepatocellular carcinoma (141, 142). The primary treatments for 
Wilson’s disease include pharmacological interventions, such as 
copper chelators, and liver transplantation (143). However, these 
therapies do not fully restore liver function and may be associated 
with side effects. In cases of advanced liver damage or liver failure, 
liver transplantation is often the only viable treatment option (144). 
Liver organoids hold significant potential in regenerative medicine, 
offering a promising approach to repair liver damage. These organoids 
can expand and differentiate into large numbers of functional 
hepatocytes in  vitro, making them a potential alternative to liver 
transplantation or a “biological patch” for partially damaged liver 
tissue. Furthermore, the strong differentiation and proliferative 
capacity of organoids provide a novel strategy for promoting liver 
repair and regeneration in patients with Wilson’s disease.

Autoimmune hepatitis (AIH) is a chronic inflammatory liver 
disease caused by an abnormal immune response, characterized by 
immune cell attacks (especially T cells) on the liver, leading to liver 
damage, inflammation, and fibrosis (145). If untreated, AIH can 
progress to liver failure, cirrhosis, and even hepatocellular carcinoma 
(40). AIH is strongly associated with human leukocyte antigen (HLA) 
genes. The primary susceptible genotype in the European population 
is HLA-DRB10301, while the secondary susceptible genotype is 
HLA-DRB10401 (146). The pathophysiology of AIH involves an 
autoimmune attack on liver cells triggered by T cell activation (145). 
As a result, prednisone and azathioprine are commonly recommended 
as first-line treatments (147). In the chronic stage of AIH, the liver 
may develop pathological changes, including fibrosis and connective 
tissue hyperplasia, which can ultimately lead to liver failure (40). The 
regenerative potential of liver organoids offers a promising new 
avenue for treating AIH. By transplanting liver organoids derived 
from the patient or a donor, or by inducing the proliferation of liver 
organoids in vitro and directing them to the site of liver damage, liver 
tissue regeneration can be  promoted, potentially restoring liver 
function. Additionally, liver stem cells or differentiated hepatocytes 
within the organoids can contribute to tissue repair and mitigate the 
progression of fibrosis.

Drugs are absorbed from the gastrointestinal tract, enter the liver 
through the portal vein, and are metabolized by liver enzymes (148). 
Unmetabolized drugs are then transported throughout the body via 
the bloodstream, exerting their effects on target organs (149). In 
recent years, the incidence of drug-induced liver injury (DILI) has 
gradually increased, partly due to the diminished efficacy of drugs 
caused by immune detection inhibitors, chemotherapy agents, 
polypharmacy, and adverse reactions resulting from interactions 
during drug metabolism (18). The Roussel Uclaf Causality Assessment 
Method (RUCAM) is widely employed to assess the causality of DILI, 
and it is crucial to discontinue the causative drug (150). Common 
drugs associated with DILI include acetaminophen and carbon 
tetrachloride, while specific drugs such as isoniazid, itraconazole, and 
oral contraceptives are also implicated. A small subset of DILI cases 
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may result in chronic liver damage even after discontinuation of the 
causative drug (151). Autoantibodies, such as antinuclear antibodies 
(ANA), may become positive during DILI, complicating the diagnosis 
as they can overlap with AIH (152). Both conditions may present with 
positive ANA, elevated immunoglobulin G, and similar 
histopathological findings (153). The key to differentiating DILI from 
AIH lies in whether liver inflammation resolves after stopping the 
causative drug (153). In DILI, treatment primarily involves cessation 
of the offending drug, with supportive therapies such as 
ursodeoxycholic acid (UDCA) to promote bile secretion, enhance 
antioxidant activity, and protect the liver (154). Zhang et  al. (72) 
demonstrated that dispersed human liver organoids (HLOs) derived 
from the iPSC system exhibit DILI prediction capabilities comparable 
to intact HLOs, with the ability to measure IC50 values for compound 
cytotoxicity. In regenerative medicine, liver replacement therapy 
becomes crucial when acute liver damage caused by DILI leads to liver 
failure. As a cell model with a high degree of self-organization, liver 
organoids can stimulate the proliferation and regeneration of 
hepatocytes through specific growth factors and signaling pathways. 
Transplanting liver organoids or their derivatives could potentially 
restore damaged liver function, offering a promising treatment option 
for severe drug-induced liver injury.

For patients with advanced liver cancer, liver transplantation 
remains the preferred treatment option (155). Current transplantation 
methods are categorized into orthotopic liver transplantation, 
heterotopic liver transplantation, and various forms of cell therapy. 
Cell therapy itself is further divided into hepatocyte transplantation 
(HTx), nonparenchymal hepatocyte transplantation, hepatic 
progenitor cell (HPC) transplantation, and bioartificial liver (BAL) 
trials (156). However, the global shortage of liver donors and the high 
cost of transplantation mean that many patients either cannot access 
a liver transplant or cannot afford the procedure, often resulting in 
death (155). HTx faces challenges due to issues with engraftment and 
host immune responses (157). Nonparenchymal cell transplantation, 
while used to regulate immune function and hepatocyte survival, has 
not yet demonstrated substantial clinical progress (89). The safety and 
efficacy of HPC transplantation are controversial, partly due to the 
role of HPCs in liver cancer development (158). Although effective in 
short-term liver support and detoxification, BAL devices have serious 
adverse reactions and do not improve long-term survival rates, 
limiting their application (159). Liver organoids can be transplanted 
into various sites, including the liver, mesentery, renal capsule, and 
omentum, with common methods being spleen injection, portal vein 
injection, and liver implantation (62, 131, 156, 160). In this context, 
combining liver organoids with 3D printing technology and 
biomaterials to create hybrid artificial livers holds promise as a 
potential alternative to traditional liver transplantation (161).

Liver cell transplantation necessitates long-term proliferation, 
sustained liver function activity, cell maturation, angiogenesis, and 
minimal immune rejection. Sgodda et al. (162) reported a scalable 
three-dimensional suspension culture system that allowed 
PSC-derived liver organoid cells to maintain a stable gene expression 
profile and metabolic characteristics for up to 3 weeks. By 2018, 
researchers demonstrated that human hepatocyte-derived liver 
organoids could proliferate for several months and exhibited 
successful outcomes when transplanted into mice undergoing liver 
resection (74). Further advancements in 2019 saw Mun et al. (163) 
culture liver organoids with stable liver function and long-term 

proliferation using PSCs. Regarding cell activity and functional 
stability, liver organoids composed of hepatocytes and bile duct cells 
generated using honeycomb micropores based on 
polydimethylsiloxane showed significant improvements in cell 
albumin secretion, liver marker expression, cytochrome P450-
mediated metabolism, and bile transport function (164). Reza et al. 
(165) produced liver organoids that enhanced bilirubin metabolism, 
and portal vein transplantation in rats alleviated symptoms in a 
Crigler–Najjar syndrome model.

In general, iPSC-derived liver organoids are less mature than adult 
liver cells (166). To address this issue, liver bud (LB) cells were exposed 
to dexamethasone, which stimulated the BMP, FGF, HGF, and Wnt 
signaling pathways while inhibiting the TGFβ pathway, leading to the 
development of mature hepatocyte-like cells (HLCs). These cells were 
then used to model mature liver organoids in  vitro and further 
matured into functional hepatocytes and bile ducts (167). 
Incorporating 3D printing technology, hiPSC-derived hepatoblasts 
were encapsulated in preformed aggregates of alginate beads to create 
human-engineered livers that closely mimic human liver function 
(127). This approach generates mature, functional hepatocytes and 
offers a permanent, unlimited source of liver cells (168). In liver 
organoid transplantation, the formation of blood vessels is crucial for 
ensuring an energy supply and metabolic circulation. Microfluidic 
chips have been used to simulate conventional liver transplantation 
within microvascular beds cultured in  vitro l (99). Following the 
transplantation of liver microtissues, these microvascular beds were 
successfully anastomosed to establish a stable, perfusable vascular 
network (99). Additionally, Takebe et al. (169) developed vascularized 
and functional human livers from human iPSCs (iPSC-LBs) and 
implanted them into a mouse model of lethal liver failure. The liver 
buds integrated with the host blood vessels within 48 h, resulting in 
significant improvements in mouse survival (169). Therefore, the 
application of liver organoids in regenerative medicine holds 
tremendous promise.

Challenges ad future of liver organoids

For liver organoids, the absence of an immune microenvironment, 
large blood vessels, and nerves remains a significant barrier to their 
broader application. In addition to these, we also need to pay attention 
to the standardized generation process of liver organoids, preclinical 
validation and regulations, interdisciplinary cooperation in approval, 
and industrial support. Immune rejection is a major challenge in 
organ transplantation, particularly in liver and kidney transplants 
(170). When rejection occurs, the recipient’s immune system identifies 
the transplanted organ as foreign and mounts an attack against it 
(171). To mitigate this risk, immunosuppressants are used to dampen 
the recipient’s immune response (172), but this approach increases 
susceptibility to infections and other complications (173). Thus, 
achieving a balance between effective immunosuppression and 
minimizing rejection is crucial for successful 
posttransplant management.

Advances in human leukocyte antigen (HLA) matching 
technology and transplant immunology have significantly improved 
the prognoses of transplant recipients (174). Although excellent HLA 
matching can substantially reduce rejection rates, it cannot entirely 
eliminate the risk (174). In organoid cultures, constructing blood 
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vessels is a key challenge. Blood vessels are essential not only for 
material transport but also for maintaining tissue structure and 
function (175). The absence of large blood vessels can result in an 
inadequate nutrient supply to the organoid’s central areas, adversely 
impacting its development, functional expression, and long-term 
viability (176, 177). The absence of innervation significantly impacts 
liver regulation, an aspect that remains challenging within the scope 
of current orthotopic liver transplantation techniques. The autonomic 
nerves and sensory fibers within the liver’s nervous system are crucial 
for regulating liver function, regeneration, and disease (178). The 
absence or dysfunction of these nerves can significantly disrupt 
normal liver regulation, potentially affecting its metabolic function, 
regenerative capacity, and disease resistance (179). The neural activity 
of the liver is influenced by factors such as food intake, emotional 
states, and physical activity. Hepatic encephalopathy, a neurological 
disorder resulting from liver dysfunction, can be triggered by various 
conditions, including infection, gastrointestinal bleeding, electrolyte 
and acid–base imbalances, and drug use (180). Inflammatory 
responses, alterations in ammonia and lactate levels, changes in 
neurotransmitter concentrations, and modifications in metabolic 
pathways can impact nervous system function (181).

The liver communicates with the central nervous system through 
the autonomic nervous system, with nerve fibers playing a role in 
regulating liver function and response. The liver may influence the 
regulation of food intake and other physiological behaviors. Following 
liver organoid transplantation, it is imperative to simulate the electrical 
signals of both the autonomic and sensory nerves to maintain the 
body’s fluid balance. The liver nervous system is integral to liver 
development, regeneration, and disease processes. Strategies to 
enhance liver organoid function post-transplantation through the 
simulation of liver nervous system electrical signals—particularly 
regarding fluid and immune regulation—warrant further investigation.

In the context of the posttransplantation responses of liver 
organoids, CRISPR/Cas9 technology has been employed to create 3D 
biomanufactured liver structures from HLA-edited hiPSCs. This 
manipulation of HLA molecules results in immune-tolerant or 
customized liver tissues, enhancing donor-recipient compatibility and 
reducing the risk of acute and chronic rejection reactions (182). The 
rapid advancement of biomaterials and 3D printing technology is 
poised to revolutionize the medical field, particularly in the fabrication 
of artificial organs. These technologies have enabled the creation of 
artificial liver models with intricate vascular structures (183).

Researchers at Peking Union Medical College Hospital have 
successfully developed a novel artificial liver featuring a hepatic 
venous structure, utilizing suspension printing technology and 
holographic lattice acoustic tweezers (184). This development opens 
new avenues for alternative sources in liver transplantation (184). This 
model not only replicates the structural features of the liver but also 
demonstrates significant functional potential. Additionally, it offers a 
reference method for constructing an artificial liver vascular system 
integrated with organoids.

Integrating liver organoids into a bioartificial liver involves 
replacing liver cells in an artificial liver device with liver organoids and 
combining these with the filtering, adsorption, detoxification, and 
other functions of a nonbiological artificial liver (185). This hybrid 
approach aims to leverage the advantages of liver organoids to 
simulate the liver’s natural functions, thereby supporting or replacing 
the functions of a damaged liver. This in vitro device mimics the liver’s 

metabolic and detoxification functions by processing nutrients and 
metabolic waste from the gastrointestinal tract and venous blood 
through a semipermeable membrane, ultimately returning these 
substances safely to the patient’s body. It functions similarly to the 
in vitro hemodialysis equipment used for renal failure. The advantage 
of using liver organoids lies in their ability to replicate the cellular 
heterogeneity, structural functionality, and microenvironment of 
in vivo liver tissue. This maximizes the restoration of authentic liver 
function and helps prevent rejection and vascular embolisms 
associated with foreign body implantations. Another advantage is the 
monitorability and maintainability of function: unlike traditional 
transplanted organs, the activity and functionality of artificial 
organoid livers can be  rigorously assessed before and after 
transplantation to ensure that they are in optimal condition prior to 
patient implantation. This monitoring includes evaluating the 
metabolic activity, protein expression, and cell signaling of liver cells 
to confirm proper functionality posttransplantation.

Surgery is crucial in treating liver malignancies; however, 
advanced-stage liver disease often necessitates the removal of a 
substantial portion of the liver due to systemic intolerance, severe liver 
damage, or a large tumor size. In such cases, the remaining liver may 
temporarily be insufficient to support the body’s metabolic functions 
postsurgery, necessitating additional supportive care to maintain vital 
signs. Liver organ transplantation is an effective treatment for 
end-stage liver disease; however, it carries risks, including immune 
rejection and vascular embolism (186). To mitigate these issues, 
artificial liver organoids and liver integrants are anticipated to replace 
traditional transplantation methods. These can be  selected and 
customized based on the patient’s specific needs to minimize 
immune rejection.

The advancement of CRISPR/Cas9 technology offers a novel 
approach by enabling precise editing and customization of liver 
organoid cells at the molecular level, providing more targeted 
treatment options. Utilizing CRISPR/Cas9 technology allows for the 
correction of genetic defects at the cellular level or the introduction of 
specific functional genes. These engineered livers can more effectively 
adapt to the patient’s physiological environment, thereby reducing the 
likelihood of rejection. This technology maybe can also enhance the 
liver’s regenerative capacity and reduce its reliance on prolonged 
proliferation. Consequently, gene-edited liver cells can be expanded 
ex vivo and then transplanted into the patient, where they can continue 
to grow and function without eliciting an excessive immune response.

Currently, liver organoids production is typically conducted in 
small-scale laboratories, while clinical translation necessitates 
standardized, large-scale production technologies, including 
automated culture systems, culture medium optimization, and 
organoid quality control. A quality control system must 
be established for liver organoids to ensure that their functionality, 
structure, and stability meet the standards required for clinical 
application. To ensure the safety and efficacy of liver organoids in 
clinical applications, extensive preclinical validation is required. 
Such studies include the use of animal models, long-term safety 
testing, and comparative analysis of traditional models. Clinical 
application of liver organoids must comply with local ethical and 
legal requirements. This process requires enhanced collaboration 
with regulatory agencies, as well as the pre-design of clinical trial 
pathways and data collection methods to ensure the smooth 
approval of relevant procedures.
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Summary and outlook

The research and application of liver organoids represent a cutting-
edge frontier in regenerative medicine. This technology offers novel 
possibilities for treating liver diseases by replicating the structure and 
function of the human liver. The development of liver organoids marks 
a significant advancement in liver transplantation technology. 
Traditional transplantation faces challenges such as donor shortages and 
rejection. Liver organoid technology offers a potential solution by 
reducing reliance on donor livers. Advances in biomaterials and 3D 
bioprinting technology are expected to enhance the structural and 
functional complexity of future liver organoids, bringing them closer to 
authentic human livers. The integration of these technologies will not 
only enhance the maturity and functionality of organoids but also 
facilitate the rapid and efficient establishment of comprehensive liver 
organoid models in vitro. This advancement has significant implications 
for treating end-stage liver disease, studying liver pathogenic 
mechanisms, and conducting drug screening. In clinical applications, 
liver organoid technology offers physicians a broader range of treatment 
options. These organoids can reconstruct the hepatobiliary system both 
in vivo and in vitro, demonstrating significant potential for liver function 
replacement and tissue regeneration. Particularly in in  vivo 
transplantation, liver organoids have shown the potential for safe and 
effective implantation, with demonstrated therapeutic effects. Moreover, 
combining liver organoids with other tissue-engineering materials may 
further enhance their therapeutic efficacy.

In summary, liver organoid technology has broad application 
prospects in regenerative medicine. Although liver organoid 
transplantation has shown promising results at the laboratory stage, its 
efficacy has been demonstrated in mice, pigs, and other animal models. 
This technology holds significant potential. However, the clinical 
application of liver organoid transplantation has not yet been reported, 
and crucial evidence-based clinical research remains insufficient. As 
related technologies continue to advance, more personalized and precise 
treatment plans for liver disease are anticipated, offering renewed hope 
to patients. Progress in this field could not only enhance the quality of 
life for patients with liver disease but may also fundamentally transform 
our understanding and treatment approaches for liver disease.
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