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Objectives: To implement state-of-the-art deep learning architectures such 
as Deep-Residual-U-Net and DeepLabV3+ for precise segmentation of 
hippocampus and ventricles, in functional magnetic resonance imaging (fMRI). 
Integrate VGG-16 with Random Forest (VGG-16-RF) and VGG-16 with Support 
Vector Machine (VGG-16-SVM) to enhance the binary classification accuracy of 
Alzheimer’s disease, comparing their performance against traditional classifiers.

Method: OpenNeuro and Harvard’s Data verse provides Alzheimer’s coronal 
functional MRI data. Ventricles and hippocampus are segmented using a Deep-
Residual-UNet and Deep labV3+ system. The functional features were extracted 
from each segmented component and classified using SVM, Adaboost, Logistic 
regression, and VGG 16, DenseNet-169, VGG-16-RF, and VGG-16-SVM classifier.

Results: This research proposes a precise and efficient deep-learning 
architecture like DeepLab V3+ and Deep Residual U-NET for hippocampus and 
ventricle segmentation in detection of AD. DeepLab V3+ has produced a good 
segmentation accuracy of 94.62% with Jaccard co-efficient of 85.5% and dice 
co-efficient of 84.75%. Among the three ML classifiers used, SVM has provided 
a good accuracy of 93%. Among some DL techniques, VGG-16-RF classifier has 
given better accuracy of 96.87%.

Conclusion: The novelty of this work lies in the seamless integration of advanced 
segmentation techniques with hybrid classifiers, offering a robust and scalable 
framework for early AD detection. The proposed study demonstrates a significant 
advancement in the early detection of Alzheimer’s disease by integrating state-
of-the-art deep learning models and comprehensive functional connectivity 
analysis. This early detection capability is crucial for timely intervention and 
better management of the disease in neurodegenerative disorder diagnostics.
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1 Introduction

Alzheimer’s disease (AD) gradually impairs memory and 
cognitive functioning, making daily activities difficult. Although rare, 
early-onset AD can affect 30–60-year-olds. However, most late-onset 
Alzheimer’s patients develop symptoms in their mid-60s. AD causes 
most dementia in those over 65 years (1). Severe cognitive impairment 
in later stages might result in malnourishment, dehydration, and 
infections, hence exacerbating existing issues (2). According to the 
World Health Organization (WHO), the current global prevalence of 
dementia exceeds 55 million individuals, with a substantial majority, 
over 60%, residing in low- and middle-income nations. Each year, 
approximately 10 million new cases are recorded. AD, the most 
common form of dementia, is believed to be a contributing factor in 
60–70% of these cases (3). The predicted estimate of 13.8 million 
persons by the year 2060 assumes that no progress will be made in 
medical therapies intended to prevent, decelerate, or treat AD (4). 
Based on a systematic review of Indian research, dementia prevalence 
among individuals at the age of 60 and older is estimated at 1.03% (5).

A neurological exam, vitamin B12 blood tests, and a thorough 
medical and family history evaluation are needed to diagnose AD (6). 
Homocysteine levels can indicate vitamin B12 deficiency, which can 
cause neuronal harm through oxidative stress, calcium influx, and 
apoptosis. Histopathologic evidence from a biopsy or autopsy can 
confirm Alzheimer (7, 8). Biomarkers for AD diagnosis fall into two 
groups. PET and CSF studies can assess brain amyloid in the first 
group. The second group assesses neuronal damage by detecting 
cerebrospinal fluid tau protein, metabolic activity with FDG, and 
shrinkage in MRI images (9–11). The effectiveness of MRI in detecting 
early-stage AD may be  compromised when there are minimal 
structural changes.

Alzheimer’s diagnosis using fMRI offers several benefits: It’s a 
non-invasive imaging technology that uses no ionizing radiation 
or intrusive procedures, making repeated tests safe. fMRI 
measures brain function by measuring blood flow and 
oxygenation, unlike structural imaging methods like MRI, which 
indicate AD related brain activity patterns. fMRI can identify 
brain dysfunction before structural damage, enabling early 
diagnosis and therapy. It is utilized in AD research to study brain 
connectivity, identify network failures, and assess 
therapeutic responses.

Researchers use ventricle size, hippocampus shape, cortical layer 
thickness, and brain volume to identify AD at an early stage (12). 
Short-term and long-term memory depend on the medially located 
hippocampus (13). Neurodegeneration in AD can change the 
hippocampus’s shape and size. The structural changes in the 
hippocampus region can be considered an important change in the 
detection of AD (14).

Hojjati et al. (15) used machine learning to distinguish Mild 
Cognitive Impairment-Converters (MCI-C) from Non-Converters 
(NC). They trained and evaluated a support vector machine 
(SVM) to distinguish MCI-C from MCI-NC with an accuracy rate 
of 89% for sMRI, 93% for rs-fMRI, and 97% for sMRI with 
rs-fMRI. Amini and colleagues (16) suggested k-nearest Neighbors 
(k-NN), SVM, Decision Trees (DT), Linear Discriminant Analysis 
(LDA), and Random Forest (RF) for the fMRI identification of 
Alzheimer’s patients. Multitask feature learning was used to 
retrieve features. According to the results, the accuracy rates for 

the k-NN, SVM, DT, LDA, RF, and their proposed CNN approach 
are 77.5, 85.8, 91.7, 79.5, 85.1, and 96.7%, respectively in 
detection of AD.

Buvaneswari et  al. employed the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) dataset for AD classification (17). 
They improved data-driven classification using kernel Support Vector 
Regression (SVR) by applying kernel-dependent techniques like PCA 
and t-distributed Stochastic Neighbor Embedding (tSNE). Their 
kernel-based PCA-SVR technique outperformed with 98.53% 
accuracy compared to deep neural networks (80.21%) and 
hippocampus visual features (79.15%).

Mao et al.’s (18) used pre-processed rs-fMRI data and retrieved 
ALFF (Amplitude of Low-Frequency Fluctuations) and ReHo 
(Regional homogeneity) parameters. They computed several graph 
theory-based parameters of the brain functional network. Next, they 
evaluated several classifiers’ recognition performance and predicted 
the SVM with the linear kernel as the best classification algorithm. 
Helaly et  al. (19) developed a framework for early detection and 
classification of AD using deep learning techniques. They analyzed 2D 
and 3D structural brain images of ADNI dataset using basic CNN 
architectures. Second, they used VGG19 model for the classification 
of various stages of AD. They achieved accuracies of 93.61 and 95.17%, 
for 2D, and 3D multi-class AD categorization, respectively. Following 
fine-tuning, VGG19 pre-trained model demonstrated remarkable 
results, attaining better accuracy for AD (97%), EMCI (97%), LMCI 
(95%), and CN (96%).

Hybrid models are more robust and accurate predictions 
compared to conventional models. It reduces overfitting and improve 
performance on unseen data. A hybrid AD diagnostic model might 
combine traditional neuropsychological assessments with real-time 
fMRI data and genetic biomarkers, something conventional models 
cannot dynamically achieve. Hybrid deep learning models like 
VGG-16-RF (VGG-16 combined with Random Forest) and 
VGG-16-SVM (VGG-16 combined with Support Vector Machine) 
can outperform pre-trained models like VGG-16 alone by leveraging 
the strengths of both deep learning (CNN) architectures and 
traditional machine learning (ML) classifiers. When RF combined 
VGG-16, these classifiers use an ensemble of decision trees to 
aggregate feature decisions, which improves generalization by 
reducing overfitting. By applying SVM or RF on top of VGG-16’s 
feature maps, the hybrid models use the deep learning model’s rich 
features in a more controlled and precise way, leading to improved 
performance. Combining VGG-16 with SVM or Random Forest 
allows for more adaptive modeling. The deep features extracted by 
VGG-16 are processed and further refined by the classifiers, enabling 
the hybrid models to better adapt to the data distribution and improve 
performance on specific tasks, such as differentiating between AD and 
normal subjects.

The scope of the article includes focuses on early diagnosis of AD 
by analyzing structural and functional changes in the brain using 
fMRI data. Improving the segmentation accuracy of critical brain 
regions (hippocampus and ventricles) and enhance the classification 
accuracy between AD and normal subjects using state-of-the-art deep 
learning models. The study conducts a comparative analysis of various 
machine learning and deep learning classifiers to identify the most 
effective models for AD detection. The proposed work extracts 
significant functional features from fMRI images and analyzes their 
potential in distinguishing AD from normal cognitive states.
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The objective was to use fMRI data to construct a deep learning 
system to precisely differentiate the hippocampus and ventricles in AD 
patients. To identify disease-specific anomalies, the CONN toolset 
analyses the healthy and Alzheimer’s affected brain functional 
connectivity. This paper proposes a framework to detect AD patients 
using unique features from rs-fMRI images. The ALFF and ReHo 
parameters were retrieved from pre-processed rs-fMRI data, and 
important brain functional network parameters were estimated using 
functional connectivity analysis which is done by realignment, slice-
timing correction, co-registration, and spatial normalization. A Deep-
Residual-U-Net system automates the hippocampus and ventricular 
segmentation in AD patients. The performance of hybrid deep 
learning models such as VGG-16-RF and VGG-16-SVM are compared 
with the machine learning classifiers for AD and normal classification.

Summary of the study’s contribution:

 1 This study uses a deep-learning architecture, including Deep-
Residual-U-Net and DeepLabV3+ for precise segmentation of 
ventricles and hippocampus in fMRI images of AD patients.

 2 Implements a functional connectivity analysis by extracting 
functional features like ALFF, ReHo, and various network 
parameters using the CONN toolbox in MATLAB for robust 
AD detection.

 3 Employs hybrid models like VGG-16 with Random Forest 
(VGG-16-RF) and VGG-16 with Support Vector Machine 
(VGG-16-SVM) for binary classification of AD, demonstrating 
superior performance over traditional classifiers.

The manuscript is structured as follows: Section 1 provides an 
introduction of the study elaborating the literature review related to 

the proposed work. Section 2 elaborates on the methodology 
employed. Section 3 presents the results obtained and offers a detailed 
discussion of their implications. Finally, Section 4 concludes the study, 
summarizing the findings and their relevance.

2 Methodology

2.1 Data collection

The Alzheimer’s fMRI dataset was obtained from Harvard 
University datasets (20), while the normal fMRI data, which is 
accessible in coronal view and NIfTI format was obtained from 
OpenNeuro datasets (21). From these datasets, 80 images, comprising 
40 normal and 40 abnormal samples. To ensure a fair analysis, 
we allocated 30 raw images (15 per class) for testing purposes, while 
the remaining 50 images (25 per class) were used for training and 
validation. Additionally, the training and validation dataset underwent 
a data augmentation process to enhance model performance and 
generalization. All the subject’s age ranges from 60 to 85 years. The 
study excluded patients with major intellectual deficits, a history of past 
serious mental or neurological diseases (apart from AD), and 
comorbidities involving other underlying pathologies.

2.2 Proposed workflow

Figure 1 shows the schematic diagram illustrating the overall 
methods used in the proposed study. At first, raw images were 
extracted from the dataset and then pre-processed with CONN 

FIGURE 1

Demonstrate the proposed workflow for classification between normal and AD.
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TOOLBOX in MATLAB to evaluate their functionality using the 
temporal bold pre-processing technique. In this procedure, both 
first and second stages of denoising were implemented to complete 
the pre-processing technique. The extracted pre-processed images 
are uploaded in Apeer online open-source software to generate the 
mask images. Then geometrical techniques which included 
rotation, width shift, height shift, shear, and horizontal flip, was 
used for data augmentation. Following the data augmentation 
techniques, segmentation was performed using the DeepLab V3+ 
and Deep-Residual-U-Net architecture. The functional features 
such as ALFF features, ROI Atlas value, Network ROI value, and 
Functional motion mask estimate are extracted from the 
segmented images for the right and left ventricle as well as the 
right and left hippocampal regions. SVM, AdaBoost, and logistic 
regression are three ML classification techniques that leverage the 
collected features. VGG16 and DenseNet-169 are used for 
classification of AD and normal. The performance of Hybrid 
VGG16-RF and VGG16-SVM models were compared with 
machine learning classifiers.

2.3 Pre-processing step

The functional connectivity assessments were performed in AD 
patients and normal subjects using the CONN TOOLBOX in 
MATLAB (22). First, the structural and functional images of the same 
subjects were imported. In the preprocessing phase, functional band-
pass filtering was applied, involving the temporal filtering of BOLD 
data. This process utilized a bandpass filter with cutoff frequencies 
ranging from 0.01 to 0.1 Hz.

Preprocessing was specifically done in a region of interest (ROI) 
to examine the connections and interactions between the 
hippocampus and ventricle. Time series data are collected from these 
regions, correlations was performed, and functional connectivity 
analysis was carried out to disclose the functional organization and 
communication patterns of the brain. The seed-voxel analysis was 
employed to examine the relationships between activity in the seed 
area and other brain regions throughout the entire brain. With this 
connectivity technique, brain areas with similar patterns of activity 
were discovered and connection maps were generated by computing 
correlations between each voxel and the seed region. Conversely, 
voxel-voxel analysis was used to assess the functional connections 
among individual brain voxels, or three-dimensional pixels. The voxel-
voxel approach required calculating correlations between the time 
series data of all possible combinations of brain voxels, whereas the 
seed-voxel method focused on the connectivity of a specific brain 
region (seed). After preprocessing and connection analysis, first-level 
denoising and analysis were completed, and the connectivity values 
were evaluated (23).

The preprocessing workflow consists of the subsequent stages:

 1 To commence, the structural image should be registered with 
the corresponding functional brain image.

 2 Select temporal processing in the preprocessing configuration, 
employing a bandpass filter frequency range of 0.01–0.1 Hz.

 3 Subsequently, choose the ROI-ROI, Seed-Voxel, and Voxel-
Voxel analyses from the menus. The phase is called the “First 
Level Denoising Process.”

 4 Following the completion of the first level of denoising, 
proceed to the first level of analysis to evaluate the 
connectivity values.

 5 Following this, proceed to the results phase (2nd level Analysis) 
to assess the hippocampus and ventricle’s oxygen levels 
and functionality.

2.4 Data augmentation

The instance of the Image Data Generator includes augmentation 
settings to increase the variety of the training data. The parameters 
included in this study consist of: The rotation range option allows for 
picture rotation of up to 20 degrees. The parameter “width_shift_
range” enables horizontal shifting of images, with a maximum 
displacement of 10% to the left or right. The height_shift_range, in a 
similar manner, introduces a vertical shift to the pictures, with a 
maximum displacement of 10% in either an upward or downward 
direction. The zoom_range allows for the application of a zoom-in or 
zoom-out effect with a maximum range of 10%. The shear_range 
option allows for the application of picture shearing, with a maximum 
shearing angle of 10%. The parameters “horizontal_flip” and “vertical_
flip” randomly flip the inputs horizontally and vertically, respectively. 
The fill mode refers to the technique used to fill in vacant areas inside 
the augmented image. The conventional approach involves selecting 
the pixel value closest to the original image.

The Image Data Generator has generated a cumulative count of 
440 augmented images, in conjunction with the initial set of 40 
original images for both normal and AD, respectively. After 
augmentation, the dataset encompasses a grand total of 480 images for 
both normal and AD.

2.5 Deep learning-based segmentation

2.5.1 Segmentation using DeepLab V3+
The DeepLabV3+ architecture (24) is a framework designed for 

the purpose of semantic image segmentation. The process starts with 
an input image of dimensions 512 × 512 × 3. The model has a 
pre-trained ResNet-50 as its encoder, extracting image features from 
the convolutional layers. The Atrous Spatial Pyramid Pooling (ASPP) 
module is employed for the purpose of integrating features at several 
scales. This integration is achieved via the utilization of various 
operations, including image pooling, 1×1 convolutions, and 3×3 
convolutions with distinct dilation rates (namely, 6, 12, and 18). Each 
of these convolutions is equipped with 256 filters. The process of 
concatenation involves merging the output of the ASPP module with 
the features extracted from the preceding encoder layers. Squeeze-and-
Excite blocks are utilized to augment the feature recalibration and are 
implemented both before to and after two successive 3×3 convolution 
layers, each including 256 filters. The last stage of the process entails 
the implementation of up-sampling and a 1×1 convolution using a 
solitary filter. This is then followed by the application of a sigmoid 
activation function, resulting in the generation of predictions for pixel-
wise semantic segmentation. The filter size remains constant at 256 
over the whole network, except for a single layer that employs 48 filters. 
The architectural design of this system efficiently utilizes multi-scale 
information and feature recalibration approaches to achieve precise 
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semantic segmentation. The main advantage of using DeepLab V3+ is 
ASPP enables the model to capture contextual information at multiple 
scales by applying atrous (dilated) convolutions with varying rates. The 
use of ASPP and decoder refinement allows for sharper and more 
accurate delineation of object boundaries.

2.5.2 Segmentation by Deep-Residual-U-Net
The ResUNet model (25) has been specifically developed for the 

purpose of performing image segmentation tasks. The process starts 
with an input layer that possesses a size of 256 × 256 × 3. The encoder 
is comprised of five sequential stages, with each stage comprising a 
stem layer and subsequent residual blocks. The diameters of the filters 
exhibit a gradual rise, ranging from 16 to 256, therefore facilitating the 
extraction of features at varying scales. The bridge section improves 
feature representations by including two convolutional blocks. The 
decoder employs up sample-merge blocks to reinstate spatial 
resolution through the process of upscaling feature maps and 
combining them with skip connections originating from the encoder. 
The inclusion of both high-level and low-level information in the 
model is essential for achieving precise segmentation. The last layer 
employs a 1×1 convolution operation to provide a segmentation mask 
consisting of a single channel. Additionally, it utilizes a sigmoid 
activation function to enable pixel-wise binary predictions. The size 
of the input is aligned with the dimensions of the input layer of the 
model, whilst the size of the output corresponds to the dimensions of 
the segmentation mask generated by the final layer. The sizes of the 
filters used in the convolutional layers are determined by the filter list 
[16, 32, 64, 128, 256], which is designed to enable multi-scale feature 
extraction and enhance the effectiveness of image segmentation. The 
main advantage of using Deep-Residual-U-Net is it incorporates 
residual blocks, which extract richer and more hierarchical features. 
This enhances the network’s ability to capture fine details, essential for 
precise segmentation. Residual connections lead to faster training by 
optimizing gradient propagation, reducing the likelihood of model 
degradation. The Jaccard, conformity, and dice coefficients are 
measured to quantitatively distinguish the Deep-Residual-U-Net 
segmented image with the ground truth image.

Jaccard co-efficient is measured using the formula as mentioned 
in Equations 1, 2

 ( )J P,G | P G| |P G|= ∩ ∪
 (1)

dice co-efficient are calculated using the formula

 ( )D P,G 2 | P G|/ | P|+|G|= ∩
 (2)

Where ∣P∣ represents Total number of pixels in the prediction; ∣G∣ 
indicates total number of pixels in the ground truth.

2.6 Training and validation

The training process utilized a dataset consisting of fMRI pictures 
of Alzheimer’s-affected brains, together with corresponding ground 
truth segmentations. After preprocessing, the brain images and masks 
of both normal individuals and patients with AD were subjected to 

random scaling, resulting in dimensions of 1,024 × 1,024 pixels. Initially, 
there was a collection of 40 images for both normal and AD subjects, 
respectively. As detailed in Figure  1, we  employed seven data 
augmentation techniques along with one set of raw images, making a 
total of eight techniques. In our study, this resulted in a dataset of 
50 × 8 = 400 images, which was divided into 80% for training and 20% 
for validation. Additionally, as described in Section 2.1, an independent 
set of 50 images was utilized exclusively for the testing process.

The training method has 100 epochs, 0.001 initial learning rate, 
and 0.01 weight decay. In Deep-Residual-U-Net a loss function like 
binary cross-entropy and an optimizer like Stochastic Gradient 
Descent (SGD) optimized the model’s parameters during training. In 
DeepLabV3+, the adam optimizer is integrated with a custom loss 
function and metrics algorithms for evaluating semantic segmentation. 
The model is then trained on the training data and utilize the training 
data for model optimisation and monitoring performance on the 
validation data.

2.7 Feature extraction

The ALFF and ReHo parameters were derived using pre-processed 
rs-fMRI data. Subsequently, other essential characteristics of the 
brain’s functional network were computed using graph theory (18, 26).

 1 ALFF (Amplitude of Low-Frequency Fluctuations) feature: The 
ALFF metric measures low-frequency oscillations in fMRI data 
to measure resting brain activity. A higher ALFF indicates 
more low-frequency brain activity changes. These changes are 
intimately connected to brain region interconnection and 
neuronal activity.

 2 ROI Atlas Value is the mean or aggregated functional activity 
in defined brain areas or ROI. Anatomical or functional brain 
atlases are used to define these regions, and the studied feature 
reflects the average degree of activity in each region.

 3 The Network ROI Value metric measures brain network or 
functional connectivity module via functional activity.

 4 Functional Motion Mask Process Estimation is used to correct 
motion-related distortions in fMRI data. Head movement 
while scanning may cause motion artifacts that complicate the 
analysis. This capability evaluates and measures movement in 
fMRI data to reduce its impact on subsequent analytical 
methods. Four types of characteristics are retrieved 
independently from each fMRI. Both the Hippocampus and 
Ventricle portions of the brain undergo the operation 
separately. The extraction procedure produces four feature 
values: ALFF, ROI Atlas, Network ROI, and Functional Motion 
Mask, for both the Hippocampus and Ventricle regions in 
each image.

2.8 Machine learning classification

The supervised machine learning classifiers such as SVM, 
Adaboost and logistic regression are applied in the proposed study. 
SVM are utilized for tasks including regression, outlier identification, 
and linear or nonlinear classification. SVM handles non-linear data 
effectively by mapping input data into higher dimensions using 
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kernels (e.g., RBF, polynomial). It is useful when the dataset is small 
and clean.

It provides good performance with well-defined class boundaries. 
Typically, a linear SVM’s decision function is specified as as given in 
Equation 3:

 ( ) ( )Sign w·x b f x+ =  (3)

Where, f(x) determines the judgment function that designates one 
of the two classes (+1 or −1) for an input feature vector x. If the value 
included in parenthesis is positive, the sign function returns +1; if it is 
negative, it returns −1.

x: The data point you wish to categorize is represented by the input 
feature vector.

w: The weight vector, which establishes the decision boundary’s 
orientation. It is a vector that has the same size as x.

b: The bias term, which establishes the offset from the origin and 
the decision boundary’s location. This value is scalar.

Setting SVM classifier hyperparameters: Maximum margin and 
minimum classification errors are determined by the ‘C’ parameter. 
Higher ‘C’ values, such as 1, reduce margins and training data errors. 
The ‘kernel’ option specifies the higher-dimensional data transformation 
kernel function. A ‘linear’ kernel is used to classify the dataset linearly.

AdaBoost has been found to exhibit a certain degree of resilience 
in the presence of noisy data. Due to its emphasis on samples that 
present challenges in classification, this approach can effectively 
alleviate the influence of noise within the training data. AdaBoost 
achieves better performance for datasets with smaller feature spaces 
or misclassification focus. It works well with slightly noisy datasets, 
ensuring robust performance. The hyperparameters used in the 
Adaboost are as follows: Number of estimators: 50 and learning rate: 1.

Logistic regression exhibits computational efficiency and 
possesses the capability to effectively handle voluminous datasets and 
a substantial number of characteristics without incurring substantial 
computational burden. Logistic Regression are less prone to overfitting 
with small datasets. The hyperparameter used in logistic regression 
are as follows: C = 1; solver = lgbfs. The high level of efficiency 
exhibited by this technology renders it well-suited for applications that 
require real-time and online functionality (27). As detailed in Figure 1, 
we employed seven data augmentation techniques along with one set 
of raw images, making a total of eight techniques. In our study, this 
resulted in a dataset of 50 × 8 = 400 images, which was divided into 
80% for training and 20% for validation. Additionally, as described in 
Section 2.1, an independent set of 50 images was utilized exclusively 
for the testing process. SVM classifier performance is compared to 
AdaBoost and Logistic Regression classifiers.

2.9 Hybrid deep-learning classification

2.9.1 Hybrid VGG16-SVM network
The medical image classification challenge utilizes a pre-trained 

VGG16 model as a feature extractor (28). The model is initialized 
using pre-trained weights obtained from the ‘ImageNet’ dataset. The 
updated VGG16 model is utilized to extract features from the 
training, validation, and test datasets. Following this, the attributes 
are utilized as input for a classifier known as SVM. The SVM is set up 

with predetermined settings, including a linear kernel, reduced 
regularization, and the activation of probability estimation. The 
model is trained using the extracted features derived from the training 
data. Ultimately, the SVM is employed to provide predictions 
regarding the class labels for the test dataset. The proposed 
methodology utilizes the transfer learning capabilities of the VGG16 
model for extracting features, coupled with the SVM algorithm for 
classification purposes.

2.9.2 Hybrid VGG16-RF classifier
The features were extracted from a pre-trained VGG-16 model. 

To generate a feature vector, a predetermined size is assigned to 
each image. These features may need normalization or scaling based 
on the RF classifier. RF classifiers accept pre-processed feature 
vectors. In RF classifier, several hyperparameters are tuned to get 
the best performance matrices which can evaluate the binary 
classification. Tree count, maximum depth, and split features are 
some of the frequent hyperparameters that are used in RF classifiers 
to get effective result. The parameters such as accuracy, precision, 
recall, and F1 score were used to assess the RF classifier on a test 
dataset (29). As detailed in Figure  1, we  employed seven data 
augmentation techniques along with one set of raw images, making 
a total of eight techniques. In our study, this resulted in a dataset of 
50 × 8 = 400 images, which was divided into 80% for training and 
20% for validation. Additionally, as described in Section 2.1, an 
independent set of 50 images was utilized exclusively for the testing 
process. RF work best with 100 or more trees because they aggregate 
the predictions of several trees to generate more accurate and robust 
classifications. Setting n_estimators to 1 creates a single decision 
tree in our RF model classifier.

3 Results

Figure 2 demonstrates that a typical brain exhibits elevated BOLD 
signals in contrast to a brain affected by AD. Within the depicted 
diagram, the red color is representative of a bold reaction that is 
positive in nature, whereas the blue color denotes a bold response that 
is negative in nature. To evaluate the functionality of certain brain 
areas such as the hippocampus and ventricle regions, the coronal brain 
scans of participant are aligned both structurally and functionally. The 
quantification of functional connectivity can be achieved both before 
and after denoising. Figures  2A,C represents the input image of 
Alzheimer’s brain and normal brain, respectively, and Figures 2B,D 
demonstrate the output image of Alzheimer’s brain and normal brain, 
respectively, after preprocessing.

Figure 3 illustrates the process of generating a mask image for the 
purpose of segmenting the hippocampus and ventricle area in both 
normal and Alzheimer’s brain images. (3a) The input picture depicts 
a brain in a normal state. (3b) and (3c) A mask representing the region 
of the hippocampus and ventricles in a normal brain (3d) The input 
image depicts a brain affected by AD; (3e) and (3f) A mask 
representing the region of the hippocampus and ventricles in an AD.

Figure  4 shows healthy and Alzheimer’s patients predicted 
segmented components. (4a) and (4g) normal brain image; (4b) and 
(4h) Ground truth of hippocampus and Ventricle region in normal; 
(4c) and (4i) Prediction of Hippocampus and ventricle region in 
NORMAL; (4d) and (4j) Alzheimer’s Brain image; (4e) and (4k) 
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Ground truth of hippocampus and ventricle region in AD; (4f) and 
(4l) Prediction of hippocampus and ventricle region in AD.

Table 1 depicts the evaluation matrices of normal and Alzheimer’s 
brain segmentation. In Deep lab V3+ Segmentation method, the 
segmentation accuracy was obtained as 89.65 and 90.14% in 
Hippocampus and Ventricle region, respectively. The Jaccard and dice 
co-efficient calculated in the Hippocampus region of AD was 80 and 
79%, respectively. Similarly, in the ventricle region of AD, 82% of 
Jaccard coefficient and 81% of Dice coefficient were achieved.

Deep Residual-UNET has provided the accuracy for segmentation 
of Hippocampus and Ventricle region of AD as 94.09 and 92.09%, 
respectively. In the Hippocampus region of AD, the Jaccard coefficient 
and Dice coefficient are calculated as 89 and 84%, respectively. 
Additionally, in the ventricle region, the Jaccard coefficient is 84%, and 
the Dice coefficient is 82%. Deep Residual UNET demonstrated 
superior segmentation accuracy, achieving 94.09%. The sensitivity and 
specificity were also noteworthy at 82 and 97%, respectively, 
surpassing the performance of DeepLabV3+.

Table 2 shows the evaluation matrices of ML classification in AD 
detection. Among the three ML classifier models, SVM demonstrates 

the highest accuracy for three types of regions, namely the 
hippocampus, ventricle, and a combination of features from both 
regions, achieving accuracies of 90, 92.4, and 93%, respectively. 
Similarly, SVM exhibits the highest F1-scores across different regions: 
90.7% for the hippocampus, 92.7% for the ventricle, and 93.81% for 
the combination of both the regions.

Table 3 represents the performance matrices of Machine learning, 
deep learning, and Hybrid models. In this research, three types of 
machine learning classifications were conducted, including SVM, 
AdaBoost, and Logistic Regression. Among these, SVM achieved the 
highest accuracy and F1-score, with values of 91.8 and 92.4%, 
respectively. Similarly, among all the deep learning and hybrid models, 
the VGG-16-RF classifier outperformed others, boasting the highest 
accuracy and F1-score at 96.87 and 96.90%, respectively. Overall, 
among the machine learning, deep learning, and hybrid models, 
VGG-16-RF demonstrated superior performance.

In Figure 5, the Receiver Operating Characteristic (ROC) curve 
visually represents the trade-off between the true positive rate and 
false positive rate, adjusting the discriminating threshold of a 
classification model. In the current context, the ROC curve is 

FIGURE 2

Pre-processing of Alzheimer and normal brain in fMRI images. (A) Demonstrates the input image of Alzheimer’s brain and (B) demonstrates the output 
image of Alzheimer’s brain after preprocessing, similarly, (C) demonstrates the input image of normal brain and (D) demonstrates the output image of 
normal brain after preprocessing.
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associated with two classifiers such as VGG16-RF and VGG16-SVM 
classifier, whose AUC values are 0.96 and 0.94, respectively. 
VGG-16-RF is a best-performing classifier with the highest AUC. The 
curve is closest to the top-left corner, indicating excellent sensitivity 
and specificity. Similarly, the ROC curve for SVM classifier has AUC 
value of 0.92. The ROC curve illustrates that hybrid models (e.g., 
VGG-16-RF, VGG-16-SVM) achieve the best classification 
performance, leveraging both deep learning for feature extraction and 
machine learning for robust classification. Among the standalone 
models, VGG-16 and DenseNet-169 also show competitive results, 
while AdaBoost and traditional SVM are slightly less effective.

4 Discussion

The study presents a comprehensive analysis of Alzheimer’s 
disease (AD) detection and segmentation, highlighting the 
comparative performance of various models. Functional brain 
analysis reveals distinct differences in BOLD signal patterns 
between normal and AD-affected brains, with preprocessing 
enhancing structural and functional alignment for hippocampus 
and ventricle evaluation. Deep Residual-UNET outperforms 
DeepLab V3+ in segmentation tasks, achieving superior accuracy 
(94.09% for the hippocampus, 92.09% for the ventricle), as well as 
higher Jaccard and Dice coefficients. It also demonstrates excellent 
sensitivity (82%) and specificity (97%). For classification, SVM 
excels among machine learning models, achieving up to 93% 

accuracy and a 93.81% F1-score when combining hippocampus and 
ventricle features. Among hybrid models, VGG-16-RF stands out, 
achieving the highest accuracy (96.87%) and F1-score (96.90%), as 
well as an AUC of 0.96  in ROC analysis, outperforming 
VGG-16-SVM (AUC 0.94) and standalone models like VGG-16 and 
DenseNet-169. The results affirm that hybrid approaches leveraging 
deep learning for feature extraction and machine learning for 
classification provide the most robust performance for AD detection 
and segmentation.

Amini et al. (16) put forward a classification framework for fMRI 
data that incorporates a range of methodologies, such as k-NN, SVM, 
DT, LDA, and RF classifiers. A CNN architecture was utilized to 
evaluate the severity of AD through the comparison of fMRI pictures 
obtained from individuals diagnosed with Alzheimer’s. Regarding the 
classification outcomes, the CNN model demonstrated a noteworthy 
accuracy rate of 96.7%. Additionally, it exhibited a precision score of 
100% and a sensitivity score of 87.5% for the severe class.

According to the research conducted by Li et al. (30), classifiers 
have primarily employed two-dimensional (2D) or three-
dimensional (3D) images as the primary input data. Although fMRI 
offers comprehensive 4D data encompassing both spatial and 
temporal information pertaining to the brain, there is a conspicuous 
dearth of appropriate techniques for the processing of these 4D 
images. The VGG 19 model produced an enhanced accuracy rate of 
79.21%, whilst the implementation of the ResNet 50 model 
provided a little lower accuracy rate of 78.70%. The DenseNet 121 
model showed a notable increase in accuracy, with a value of 

FIGURE 3

Generation of mask image for segmentation of hippocampus and ventricle region in Normal and Alzheimer’s brain image. (A) Input image of NORMAL 
brain (B) mask of hippocampus region in NORMAL (C) Mask of ventricle region in NORMAL (D) Input image of AD brain (E) mask of the hippocampus 
region in AD (F) Mask of ventricle region in AD.
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81.58%. Furthermore, the 3D-LSTM model had superior 
performance compared to the other models, achieved an accuracy 
of 89.47%.

Sarraf et al. (31) demonstrated the use of fMRI data from normal 
controls and Alzheimer’s patients using CNN and well-known 
LeNet-5 architecture, with test data accuracy reaching 96.85%. This 
experiment indicates that the most effective way to separate clinical 
from healthy fMRI data by means of extracting shift and scale 

invariant features and then classify them using deep 
learning techniques.

Alorf et al. (32) employed rs-fMRI data and deep learning models, 
specifically Stacked Sparse Autoencoders and Brain Connectivity 
Graph Convolutional Networks, to classify AD stages and yielded the 
accuracies of 77.13 and 84.03%, respectively. According to Bamber 
et al. (33), the OASIS-3 dataset was constructed using a total of 2,168 
distinct MRI images. The dataset comprises 1734 training and 434 

FIGURE 4

Displays the expected segmented component in healthy people and Alzheimer’s patients. (A) Normal brain image; (B) Ground truth of hippocampus 
image in normal; (C) Prediction of Hippocampus region in normal; (D) Alzheimer’s Brain image; (E) Ground truth of hippocampus in AD brain; 
(F) Prediction of hippocampus in AD; (G) Normal brain image; (H) Ground truth of ventricle region in normal; (I) Prediction of ventricle region in 
NORMAL; (J) Alzheimer brain image; (K) Ground truth of ventricle in AD; (L) Prediction of ventricle in AD.
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validation images in which, 20% of the images were used for testing, 
while the remaining 80 % were allocated for training. The proposed 
CNN-trained model demonstrated the capability to distinguish 
between moderate dementia, very mild dementia, non-demented 
individuals, and mild dementia with a loss-free and 98% accuracy.

In our research, we propose a precise and efficient deep-learning 
architecture, such as DeepLab V3+ and Deep Residual U-NET, for 
hippocampus and ventricle segmentation in the detection of 
AD. DeepLab V3+ exhibits strong performance with a segmentation 
accuracy of 94.62%, along with Jaccard and Dice coefficients of 85.5 
and 84.75%, respectively. Furthermore, among three machine learning 
classifiers employed, SVM yields promising results with an accuracy 
of 93%. Notably, the combination of VGG-16 with a RF classifier 

surpasses other deep learning approaches, achieving a higher accuracy 
of 96.87%.

The limitation of the study includes as follows: The study 
primarily relies on a limited dataset sourced from OpenNeuro and 
Harvard’s Dataverse. This may not adequately represent diverse 
populations, potentially leading to biases in the findings. Variations 
in demographics, genetic factors, and disease progression stages 
across populations are not comprehensively captured, which could 
limit the model’s applicability to broader contexts. The findings have 
not been validated on independent, external datasets. This absence of 
cross-validation or testing on diverse datasets raises concerns about 
the generalizability and robustness of the proposed framework when 
applied in real-world scenarios. The study relies on specific tools like 

TABLE 1 Evaluation matrices of normal and Alzheimer’s brain segmentation.

ROI Accuracy% Sensitivity Specificity Jaccard coefficient Dice coefficient

DeepLabV3+

Normal ventricle 93.21 0.8 0.92 0.82 0.8

Normal hippocampus 91.12 0.78 0.94 0.84 0.85

Alzheimer ventricle 93.74 0.74 0.95 0.85 0.89

Alzheimer hippocampus 89.65 0.81 0.9 0.87 0.82

Deep Residual -UNET

Normal ventricle 96.29 0.89 0.98 0.83 0.81

Normal hippocampus 95.25 0.86 0.98 0.86 0.88

Alzheimer ventricle 92.85 0.81 0.96 0.84 0.86

Alzheimer hippocampus 94.09 0.82 0.97 0.89 0.84

TABLE 2 Evaluation matrices of ML classification.

Classification 
type

Features Performance metrics

F1 score% Precision % Accuracy % Specificity % Sensitivity %

SVM Hippocampus 90.7 82.9 90 80.4 100

Ventricles 92.7 86.5 92.4 85.15 100

Combined 93.81 88.3 93 87.8 100

Adaboost Hippocampus 90.4 92.39 91 89.81 92.39

Ventricles 84.81 87.09 85.5 84.1 87.09

Combined 91.39 96.59 92 88.39 96.59

LR Hippocampus 58.63 80 68.4 63.88 80

Ventricles 58.88 89.83 70.4 64.39 89.83

Combined 58.39 97.56 71.15 64.77 97.56

TABLE 3 Performance matrices of machine learning, deep learning and hybrid models.

Classifier F1Score% Precision% Sensitivity% Accuracy%

SVM 92.4 85.9 84.45 91.8

AdaBoost 88.86 92.01 92.83 89.5

Logistic regression 58.63 89.13 94.49 69.98

VGG-16 90.88 89.65 87.11 91.22

DenseNet169 87.02 85.41 83.12 88.54

VGG-16-RF 96.90* 95.91* 97.91* 96.87*

VGG-16-SVM 89.73 82.66 84.54 90.25

Bold font * indicates Excellent performance.
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the CONN toolbox for functional connectivity analysis, which may 
not be universally available or easy to use for all researchers.

Some potential areas for future work and research in the field of 
AD diagnosis using deep learning are as follows:

 1 Integrate fMRI data with structural MRI, PET scans, and 
genetic data. This may improve AD diagnosis and  
comprehension.

 2 Use longitudinal studies to examine brain connection and 
segmentation changes. This may aid disease progression and 
biomarker identification for early detection.

 3 Validate deep learning models on bigger and more diversified 
datasets, including medical data, in clinical investigations. This 
would make the diagnostic procedures more generalizable and 
reliable (Table 4).

5 Conclusion

The proposed study used deep-learning framework for 
segmenting the hippocampus and ventricles in AD using functional 
MRI data. By focusing on functional MRI (fMRI) data, the study 
successfully segments critical brain regions, specifically the 
hippocampus and ventricles, which are key biomarkers for AD 
progression. This study suggests a precise and effective deep-learning 
networks such as DeepLab V3+ and Deep Residual U-NET for the 
segmentation of the hippocampal and ventricle in the identification 
of AD. Advanced networks like DeepLab V3+ and Deep Residual 
U-Net have shown remarkable efficacy, with DeepLab V3+ achieving 
a segmentation accuracy of 94.62%, along with Jaccard and Dice 
coefficients of 85.5 and 84.75%, respectively, underscoring its 
capability in handling complex anatomical structures. Among the 

FIGURE 5

Illustrates the ROC curve for various deep learning and Hybrid models.

TABLE 4 Performance comparison of the existing literature with the proposed model for AD classification.

References Input to the model Model Accuracy

Amini et al. (16) fMRI CNN 96.7%

Li et al. (30) fMRI Dense Net 121 89.47%

Sarraf et al. (31) fMRI LeNet-5 96.85%

Alorf et al. (32) rs-fMRI Stacked Sparse Autoencoders, Graph 

Convolutional Networks

77.13%

84.03%

Bamber et al. (33) MRI CNN Model 98%

Proposed work fMRI VGG-16 RF 96.87%
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three ML classifiers used, SVM has produced good results, with an 
accuracy of 93%. Furthermore, the hybrid model integrating VGG-16 
with Random Forest (RF) delivered the best results among 
convolutional neural network (CNN) architectures, achieving a 
highest accuracy of 96.87%, demonstrating the advantages of 
combining feature extraction strength of CNNs with the decision-
making capabilities of ensemble models. The integration of high-
performing CNN architectures and hybrid models demonstrates the 
feasibility of achieving accurate and automated diagnostics. This 
advancement could lead to better monitoring of disease progression, 
reduced diagnostic delays, and informed therapeutic strategies. The 
proposed CNN models play a crucial role in advancing the detection 
of early AD and potentially influencing the course of the illness 
through timely intervention.
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