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Background and aim: In the last years, natural language processing (NLP) 
has transformed significantly with the introduction of large language models 
(LLM). This review updates on NLP and LLM applications and challenges in 
gastroenterology and hepatology.

Methods: Registered with PROSPERO (CRD42024542275) and adhering to 
PRISMA guidelines, we  searched six databases for relevant studies published 
from 2003 to 2024, ultimately including 57 studies.

Results: Our review of 57 studies notes an increase in relevant publications in 
2023–2024 compared to previous years, reflecting growing interest in newer 
models such as GPT-3 and GPT-4. The results demonstrate that NLP models have 
enhanced data extraction from electronic health records and other unstructured 
medical data sources. Key findings include high precision in identifying disease 
characteristics from unstructured reports and ongoing improvement in clinical 
decision-making. Risk of bias assessments using ROBINS-I, QUADAS-2, and 
PROBAST tools confirmed the methodological robustness of the included 
studies.

Conclusion: NLP and LLMs can enhance diagnosis and treatment in 
gastroenterology and hepatology. They enable extraction of data from 
unstructured medical records, such as endoscopy reports and patient notes, 
and for enhancing clinical decision-making. Despite these advancements, 
integrating these tools into routine practice is still challenging. Future work 
should prospectively demonstrate real-world value.

KEYWORDS

natural language processing, large language models, gastroenterology, hepatology, 
electronic health records

Introduction

Recent advances in Natural Language Processing (NLP) show potential for being 
integrated in the field of gastroenterology and hepatology (1, 2). Since the last review in 2014 
by Hou et al.—which highlighted NLP’s growing utility in gastroenterology, particularly for 
extracting structured data from colonoscopy and pathology reports to track quality metrics 
and improve disease detection (2)—the field has evolved considerably. The earlier work by 
Hou et  al. demonstrated promising performance in relatively focused domains, such as 
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colonoscopy quality measure extraction and improving case-finding 
for inflammatory bowel disease, yet it largely described proof-of-
concept implementations and noted challenges with integration into 
routine clinical workflows and data heterogeneity across settings.

In contrast, significant strides in technology, including the advent 
of Large Language Models (LLMs) such as Generative Pre-trained 
Transformer (GPT) and Bidirectional Encoder Representations from 
Transformers (BERT) (3), have expanded the scope of NLP 
applications. While Hou et al.’s era of NLP research centered on rule-
based or traditional machine learning methods optimized for specific 
tasks, newer LLMs can handle a broader range of complex and 
context-rich functions, from automating routine documentation tasks 
to supporting sophisticated diagnostic reasoning and therapeutic 
decision-making (4). These contemporary models may better address 
scalability and integration challenges, moving beyond static data 
extraction toward dynamic interactions with unstructured 
clinical narratives.

NLP and LLMs extract and interpret data from patient records, 
notes, and reports (5–7). In gastroenterology and hepatology, they 
streamline the review of endoscopy, radiology, and pathology reports. 
This technology can help create research cohorts for clinical trials, flag 
complications, and support decision-making systems. Examples 
include managing complex conditions like IBD and hepatocellular 
carcinoma (5, 7, 8).

This review discusses the current applications and challenges of 
NLP and LLMs in gastroenterology and hepatology.

Methods

Registration and protocol

This systematic literature review was registered with the 
International Prospective Register of Systematic Reviews, PROSPERO, 
under the registration code CRD42024542275 (9). Our methodology 
adhered to the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines (10).

Search strategy

We conducted a systematic search of six key databases (PubMed, 
Embase, Web of Science, and Scopus, Cochrane library and IEEE 
Xplore) for studies published until April 2024. Our focus was on the 
outcomes of integrating NLP and LLM models in gastroenterology 
and hepatology. We designed Boolean search strings tailored to each 
database. To maximize coverage, we supplemented our search with a 
manual reference screening of included studies and targeted searches 
on Google Scholar. Details of the specific Boolean strings used are 
provided in the Supplementary materials.

Study screening and selection

Our review encompasses original research articles, and full 
conference papers (11). The exclusion criteria were confined to 
preprints, review papers, case reports, commentaries, protocol studies, 
editorials, and non-English publications. For the initial screening, 

we used the Rayyan web application (12). The initial screening and 
study selection, which were conducted according to predefined 
criteria, were independently performed by two reviewers (MO and 
EK). Discrepancies were resolved through discussion. Fleiss’ kappa was 
calculated for the agreement between the two independent reviewers.

Data extraction

Data extraction was conducted by researchers MO and EK using 
a standardized form to ensure consistent and accurate data capture. 
This included details such as author, publication year, sample size, data 
type, task type, specific field, model used, results, numeric metrics, 
conclusions, and limitations. Any discrepancies in data extraction 
were resolved through discussion and a third reviewer was consulted 
when necessary.

Risk of bias assessment

To ensure a thorough evaluation of the included studies, we used 
three tools, each tailored to a specific study design within our review. 
The Risk Of Bias In Non-randomized Studies of Interventions 
(ROBINS-I) tool has been employed in interventional studies assessing 
NLP in applications such as management, prescription guidance, and 
clinical inquiry responses (13). For diagnostic studies where NLP 
models were compared with physicians or a reference standard for 
diagnosing and detection, the Quality Assessment of Diagnostic 
Accuracy Studies-2 (QUADAS-2) tool was used (14). Finally, the 
Prediction model Risk Of Bias ASsessment Tool (PROBAST) tool was 
utilized for the remaining studies, which involved NLP models 
prediction, without direct comparison to reference standards (15). This 
multitool approach allowed us to appropriately address the diverse 
methodologies and applications presented in the reviewed studies.

Results

Search results and study selection

A total of 720 articles were identified through initial screening. 
After the removal of 114 duplicates, 606 articles remained for further 
evaluation. Title and abstract screening led to the exclusion of 524 
articles, leaving 82 articles for full-text review. Of these, the reasons 
for exclusion and the number of articles excluded for each reason 
remain the same as described earlier. Ultimately, 55 studies met all 
inclusion criteria. By employing reference checking and snowballing 
techniques, two additional studies were identified, resulting in a final 
tally of 57 studies (16–72). A PRISMA flowchart visually represents 
the screening process in Figure 1. Fleiss’ kappa for the agreement 
between screeners was calculated as 0.957, which is considered very 
high (73).

An overview of the included studies

Our systematic review incorporates a total of 57 studies (16–72). 
Among these, a substantial majority, 49 studies, are centered on 
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gastroenterology, while hepatology is the focus of 8 studies. These 
studies span from 2018 to 2024, with a notable increase in publications 
in the last 2 years, particularly between 2023 and 2024, which 
collectively account for 28 of the total included studies. This uptick 
highlights a growing interest in advanced NLP models like GPT-3 
and GPT-4.

The models employed in these studies vary widely, with traditional 
NLP methods and more recent LLMs like GPT-3 and GPT-4. For 
instance, Kong et al. (2024) utilized GPT-4 among other versions for 
medical counseling (38), while Schneider et al. (2023) employed rule-
based NLP algorithms for detecting undiagnosed hepatic 
steatosis (54).

Sample sizes in these studies range from very small datasets to 
large-scale analyses involving millions of data points, such as in the 
study by Schneider et al., which analyzed data from over 2.7 million 
imaging reports (54). The type of data analyzed also varies significantly, 
encompassing electronic health records (EHRs), pathology reports, 
and data generated from AI models responding to preset 
medical queries.

Tasks performed by these models are equally diverse, from 
diagnostic assistance and disease monitoring to providing patient 
education and supporting clinical decision-making. Specific examples 
include the work by Truhn et al. (2024), which focused on extracting 
structured data from colorectal cancer reports (49), and Lahat et al. 

FIGURE 1

PRISMA flowchart.
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(2023), who evaluated the utility of GPT models in answering patient 
questions related to gastroenterology (47).

Risk of bias

We used ROBINS-I, QUADAS-2, and PROBAST to map potential 
biases. Notably, most of the included studies were published in Q1 
journals, affirming their scholarly impact and supported by strong 
SCImago Journal Rank (SJR) scores (Figure 2).

PROBAST results (Supplementary Table S1)
This assessment mostly highlighted low-risk ratings in outcome 

and analysis domains. However, several studies encountered issues 
with high participant-related applicability biases, influencing the 
generalizability of their findings.

QUADAS-2 results (Supplementary Table S2)
A synthesis of QUADAS-2 results revealed that most studies (20 

out of 32) exhibited low risk of bias across all four assessed domains. 
This underscores their methodological robustness and reliability. 
However, three studies were identified as having a high risk of bias in 
one of the four categories. Patient selection applicability concerns were 
notable, primarily due to the reliance on single-center data with 
specific documentation styles, which may limit the broader 
applicability of these findings.

ROBINS-I results (Supplementary Table S3)
Analysis of ROBINS-I revealed that 14 studies displayed a 

moderate risk of bias overall, while one study exhibited a high 
risk. This was largely due to biases in the selection of participants 
into the study and confounding factors, particularly because 
many studies utilized specific questions, queries, or fictional 
vignettes and case scenarios. Despite these concerns, the other 
assessment categories predominantly showed low risk. 
Nonetheless, six studies demonstrated low risk across all 
evaluated domains.

NLP applications

We categorized the applications of the NLP and LLM models 
under three main categories for a synthesized analysis of the results: 
Disease Detection and Diagnosis (n = 30), Patient Care (n = 22), and 
Education and Research applications (n = 5). Disease Detection and 
Diagnosis was further divided into Colonoscopy Reports and Other 
Diagnostic Applications, recognizing that digitized pathology 
reports—though ultimately part of the broader EHR—were considered 
separately to better capture unique NLP tasks. Patient Care was 
subdivided into Management and Communication and Clinical 
Decision Support, focusing on patient-centered and healthcare 
professional–oriented applications, respectively (Tables 1, 2 and 
Figure 3).

FIGURE 2

Trends of the included studies.
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Disease detection and diagnosis

Most of the studies evaluated NLP models in extracting data from 
colonoscopy reports (n = 17) (Figure 4). Nonetheless, there were many 
unique applications.

Colonoscopy reports
This category, which includes 17 studies, primarily explored NLP’s 

role in enhancing the interpretation of unstructured colonoscopy 
reports. Various quality and diagnostic measures were evaluated, such 
as the adenoma detection rate (ADR), a frequent subject of 
investigation. For instance, Nayor et  al. reported that their NLP 
pipeline achieved high precision and recall in the automated 
calculation of ADR (57). Other assessments included polyp detection 
and sizing, with Imler et  al. demonstrating accuracies of 98% for 
pathology level identification and 96% for size estimation (58). 
Additionally, Raju et al. noted that NLP matched or exceeded manual 
methods in identifying and categorizing adenomas with a detection 
rate of 43% (59). Overall, NLP models showed a broad range of 
accuracies from 84 to 100%, consistently outperforming manual 
review methods. Despite needing GPUs, these models reduce the time 
and effort of manual evaluations.

Other diagnostic applications
Beyond colonoscopy, NLP was applied to a diverse array of 

diagnostic contexts in gastroenterology and hepatology.
In gastroenterology, several innovative NLP applications have 

emerged. For example, Wenker et al. utilized NLP to identify dysplasia 
in Barrett’s Esophagus from esophagogastroduodenoscopy (EGD) 
reports with a high accuracy of 98.7% (69). Song et al. developed a 
model to extract detailed clinical information such as disease presence, 
location, size, and stage from unstructured EGD reports, achieving 
high sensitivity, precision, and accuracy scores (61). Denny et  al. 
applied NLP to enhance colorectal cancer screening by identifying 
references to four CRC tests within electronic clinical documentation, 
demonstrating superior recall compared to traditional manual and 
billing record reviews (63). Additionally, Blumenthal et  al. and 
Parthasarathy et al. used NLP for patient monitoring, with the former 
detecting non-adherence to follow-up colonoscopies with an AUC of 
70.2%, and the latter identifying patients meeting WHO criteria for 
serrated polyposis syndrome with 93% accuracy (18, 65).

For IBDs, Stidham et  al. utilized NLP to detect and infer the 
activity status of extraintestinal manifestations from clinical notes, 
enhancing detection accuracy to 94.1% and specificity to 95% (52). 
Ananthakrishnan et  al. explored improving case definitions for 
Crohn’s disease and ulcerative colitis by combining codified data with 
narrative clinical texts, which identified 6–12% more patients than 
models using codified data alone, with AUCs of 0.95 for Crohn’s 
disease and 0.94 for ulcerative colitis (53).

In hepatology, NLP has facilitated significant advancements in 
disease identification and progression monitoring. Sada et  al. 
combined NLP with ICD-9 codes to improve the identification of 
hepatocellular carcinoma cases from EHR data, significantly 
enhancing sensitivity and specificity, with an F2 score of 0.92 (71). Van 
Vleck et al. employed NLP to track disease progression in patients 
with non-alcoholic fatty liver disease (NAFLD), demonstrating 
superior sensitivity and F2 scores compared to traditional methods, 
effectively identifying disease progression from NAFLD to NASH or 

cirrhosis with sensitivity of 0.93 and an F2 score of 0.92 (30). 
Furthermore, Sherman et al. developed an NLP model capable of 
automatically scoring and classifying histological features found in 
pathology reports related to metabolic associated steatohepatitis (17). 
The goal was to estimate the risk of progression towards cirrhosis. The 
model demonstrated high positive and negative predictive values, 
ranging from 93.5 to 100%, across various histological features (17). 
Importantly, this NLP model facilitated the creation of a large and 
quality-controlled cohort of MASLD patients (17).

Patient care

The patient care section is subdivided into two categories: patient 
management and communication, which comprises 13 studies, and 
clinical decision support, encompassing 9 studies.

Management and communication
This category explores the use of NLP and LLMs in facilitating 

communication and management.
In gastroenterology, studies like Lahat et al. evaluated ChatGPT’s 

ability to answer real-life gastroenterology-related patient queries, 
achieving moderate effectiveness with accuracy scores ranging from 
3.4 to 3.9 (47). Choo et al. reported an 86.7% concordance rate between 
ChatGPT’s recommendations for managing complex colorectal cancer 
cases and decisions made by multidisciplinary teams (39). 
Furthermore, Lim et al. demonstrated that a contextualized GPT-4 
model provided accurate colonoscopy interval advice, significantly 
outperforming standard models by adhering closely to established 
guidelines (33). Imler et al. used the cTAKES system to achieve an 
81.7% agreement with guideline-adherent colonoscopy surveillance 
intervals, substantially surpassing manual review accuracies (36). 
However, studies like Huo et al. and Atarere et al. indicated variability 
in ChatGPT’s performance, suggesting the need for enhancements in 
AI consistency and reliability (25, 44). In the area of IBD, Zand et al. 
developed an NLP model that categorized electronic dialog data, 
showing a 95% agreement with physician evaluations and underscoring 
the potential of automated chatbots in patient interaction (23). 
Sciberras et al. found ChatGPT to provide highly accurate (84.2%) and 
moderately complete responses to patient inquiries about IBD, with 
particular strengths in topics like smoking and medication (20).

In hepatology, Yeo et al. tested GPT’s proficiency in delivering 
emotional support and accurate information on cirrhosis and 
hepatocellular carcinoma, achieving correct response rates of 79.1% 
for cirrhosis and 74% for carcinoma (29). Samaan et  al. explored 
GPT’s effectiveness in Arabic, noting a 72.5% accuracy rate, though it 
was less accurate than its English counterpart, indicating disparities 
in language performance (34).

Clinical decision support
NLP models were tested for their accuracy and effectiveness in 

decision-making scenarios. For example, Kong et al. evaluated LLMs’ 
capability to provide counseling on Helicobacter pylori, noting that 
while accuracy was generally high (90% acceptable responses), 
completeness needed improvement (38). Li et al.’s integration of NLP 
with machine learning for predicting liver metastases showed 
impressive results with accuracy and F1 scores around 80.4% (24). The 
study by Becker et al. utilized an NLP pipeline tailored for German, 
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TABLE 1 Summary of the included studies.

Author Year Data Type + Sample 
size

Model Model Task Main Result

Gastroenterology

Kong et al. (38) 2024 15 questions related to H. pylori ChatGPT 4.0, ChatGPT 3.5, ERNIE Bot 

4.0

Counseling on H. pylori infection ChatGPT 4.0 achieved 90% accuracy in responses and 100% comprehensibility 

but had a lower completeness rate at 45.6%. ChatGPT 3.5 had an accuracy of 

88% and a completeness rate of 40.9%, while ERNIE Bot 4.0 showed lower 

scores across all metrics.

Lahat et al. 2023 110 real-life patient questions GPT Answering patient questions ChatGPT’s accuracy varied across question types, with a mean accuracy score 

ranging from 3.4 to 3.9 out of 5. It performed better in treatment-related 

questions (average score: 3.9) compared to diagnostic questions (average score: 

3.4).

Truhn et al. (49) 2024 100 colorectal cancer reports GPT-4 Extracting structured information GPT-4 achieved 99% accuracy in extracting T-stage, 95% for N-stage, and 94% 

for M-stage from unstructured histopathology reports.

Zhou et al. (48) 2023 23 medical knowledge questions GPT-3.5 and GPT-4 Gastric cancer consultation and report 

analysis

GPT-4 achieved 91.3% appropriateness and 95.7% consistency in a gastric 

cancer knowledge test. GPT-3.5 had 73.9% appropriateness and 82.6% 

consistency.

Choo et al. (39) 2024 30 patients with Stage IV or 

recurrent colorectal cancer

GPT Formulating management plans ChatGPT achieved an 86.7% concordance with the Multidisciplinary Tumor 

Board decisions, including a 73.3% level 1 concordance for first-line treatments.

Huo et al. (44) 2024 Responses for 9 patient cases ChatGPT, Bing Chat, Google Bard, 

Claude 2

Providing screening recommendations ChatGPT aligned with guidelines in 77.8% of clinician cases and 55.6% of 

patient cases. Bing Chat, Google Bard, and Claude 2 had alignment rates 

ranging from 25 to 66.7%.

Imler et al. (58) 2013 500 colonoscopy and pathology 

reports

cTAKES NLP engine Categorizing pathology findings The NLP engine achieved 98% accuracy in identifying pathology levels, 97% 

accuracy for location, and 84% accuracy for the number of adenomas.

Lim et al. (33) 2024 62 example case scenarios, tested 

three times

GPT-4, contextualized and non-

contextualized

Providing advice on colonoscopy intervals The contextualized GPT-4 model identified high-risk features with 79% 

accuracy and recommended correct colonoscopy intervals 79% of the time, 

compared to 51% with the standard model.

Imler et al. (36) 2014 10,798 colonoscopy reports, 6,379 

linked to pathology

Clinical text analysis and knowledge 

extraction system (cTAKES)

Determining colonoscopy surveillance 

intervals

Achieved an agreement level of 81.7% with manual review, with a Pearson R of 

0.813.

Bae et al. (60) 2022 2,425 colonoscopy and pathology 

reports

Regular expressions and smartTA Assessing quality indicators The NLP pipeline achieved 99–100% accuracy for identifying polyp subtypes, 

anatomical locations, and neoplastic polyps.

Denny et al. (63) 2012 200 patients KnowledgeMap Concept Identifier Identifying colorectal cancer tests in EMRs Achieved 93% recall and 94% precision in identifying CRC tests, 

outperforming manual reviews (74% recall).

Lahat et al. 2023 20 research questions GPT Generating gastroenterology research 

questions

The model generated relevant questions with a mean clarity score of 4.6 but had 

low originality (1.5 out of 5).

(Continued)
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TABLE 1 (Continued)

Author Year Data Type + Sample 
size

Model Model Task Main Result

Laique et al. (26) 2021 35,914 colonoscopy reports Optical Character Recognition (OCR) 

and NLP

Extracting quality metrics Achieved over 95% accuracy for various clinical variables, with some metrics 

exceeding 99%.

Blumenthal et al. 

(65)

2015 1,531 patients NLP tool called QPID Predicting non-adherence to colonoscopy Achieved an AUC of 70.2%, with 92% specificity and a PPV of 26%.

Harkema et al. 

(42)

2011 679 colonoscopy and pathology 

reports

Rule-based NLP engine Quality measurement in colonoscopy Achieved an F-measure of 0.74 and accuracy of 0.89 for various quality metrics.

Raju et al. (59) 2015 12,748 colonoscopy patients Custom NLP software Reporting colonoscopy quality metrics Achieved 91.3% accuracy in identifying screening colonoscopies and 99.4% 

accuracy in adenoma identification.

Nayor et al. (57) 2018 8,032 screening colonoscopies NLP pipeline Calculating adenoma and serrated polyp 

detection rates

Achieved 100% precision and recall for both adenomas and serrated polyps.

Atarere et al. (25) 2024 20 questions using AI models ChatGPT, BingChat, and YouChat™ CRC screening advice Achieved 89.2% inter-rater reliability with variable alignment to clinical 

guidelines.

Seong et al. (40) 2023 280,668 colonoscopy reports LSTM, BioBERT, Bi-LSTM-CRF Extracting information from reports Bi-LSTM-CRF achieved F1 scores from 0.9564 to 0.9862 across various 

findings.

Lee et al. (21) 2019 800 colonoscopy reports Commercial NLP tool Identifying quality and large polyps Achieved 100% sensitivity and a PPV of 90.6% for identifying large polyps.

Denny et al. (50) 2010 200 patients KnowledgeMap concept identifier Detecting colonoscopy timing and status Achieved a recall of 0.91 and precision of 0.95 for timing descriptors.

Parthasarathy 

et al. (18)

2020 323,494 colonoscopy patients NLP Diagnosing serrated polyposis syndrome Achieved 93% accuracy in identifying correct SPS diagnoses.

Rammohan et al. 

(68)

2024 NR GPT-4 and Bard Answering standard gastroenterology 

questions

ChatGPT 4.0 achieved a mean reliability score of 6.23, while Bard had a mean 

of 2.04.

Pereyra et al. (37) 2024 238 physicians GPT-3.5 Assessing CRC screening recommendations ChatGPT had a mean score of 4.5/10, compared to 7.71/10 for physicians with 

the app.

Song et al. (61) 2022 1,000 validation, 248,966 

application EGD reports

Custom NLP pipeline Extracting information from EGD reports Achieved sensitivity, PPV, accuracy, and F1 scores above 0.966 for various 

conditions.

Peng et al. (45) 2024 131 colorectal cancer questions GPT-3.5 Answering CRC-related questions Achieved a mean accuracy score of 0.91, but lower comprehensiveness (0.85).

Tinmouth et al. 

(70)

2023 1,450 pathology reports NLP Identifying adenomas for ADR Achieved sensitivity of 99.60% and specificity of 99.01%.

Mehrotra et al. 

(27)

2012 24,157 colonoscopy reports NLP (C-QUAL) Assessing colonoscopy quality measures Achieved kappa >0.7 for nine out of 20 measures.

Becker et al. (64) 2019 2,513 German clinical notes from 

500 patients

German-specific NLP pipeline Guideline-based treatment evaluation Achieved 96.64% precision and 94.89% recall for tumor stage detection.

Hou et al. (31) 2013 575 colonoscopy pathology reports Automated Retrieval Console (ARC) Identifying surveillance colonoscopy Achieved 77% recall and 80% precision for surveillance reports.

(Continued)
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TABLE 1 (Continued)

Author Year Data Type + Sample 
size

Model Model Task Main Result

Gorelik et al. (51) 2023 20 clinical scenarios GPT-4 Post-colonoscopy patient management Achieved 90% compliance with guidelines and an 85% accuracy in 

recommendations.

Samaan et al. (34) 2023 91 questions on liver cirrhosis GPT Answering cirrhosis-related questions in 

Arabic

Achieved 72.5% accuracy in Arabic, with comprehensive responses only in 

24.2% of cases.

Cankurtaran 

et al. (67)

2023 20 questions on Crohn’s disease and 

ulcerative colitis

GPT Responding to IBD queries Scored higher for professional queries (mean reliability: 6/7) than for patient 

queries (mean: 4/7).

Nguyen Wenker 

et al. (69)

2023 1,000 patients for NLP validation CLAMP NLP software Identifying dysplasia in Barrett’s Esophagus Achieved 98.7% accuracy, 100% precision, and 92.3% recall.

Imler et al. (66) 2018 23,674 ERCP procedures NLP Quality measurement for ERCP Achieved accuracy of 90–100% and precision of 84–100%.

Li et al. (62) 2021 5,570 patients NLP Identifying Lynch Syndrome for MMR 

screening

Achieved 100% sensitivity, specificity, PPV, and NPV.

Li et al. (16) 2022 22,206 patients across various tests ENDOANGEL-AS NLP and deep 

learning

Identifying high-risk patients for 

surveillance

Achieved 100% accuracy in internal testing and 99.91% in external testing.

Wagholikar et al. 

(35)

2012 53 patients NLP Providing colonoscopy surveillance 

guidance

Made optimal recommendations in 90.6% of cases.

Sciberras et al. 

(20)

2024 38 questions from IBD patients GPT-3.5 Generating responses to IBD patient queries Achieved 84.2% accuracy with a median score of 4.0 for completeness.

Stidham et al. 

(52)

2023 1,240 patients with IBD NLP Detecting and inferring EIM activity status Achieved 94.1% accuracy, with sensitivity of 0.92 and specificity of 0.95.

Ganguly et al. 

(22)

2023 2,276 colonoscopy procedures NLP Adenoma detection and report card 

generation

Achieved 100% sensitivity, specificity, and accuracy.

Ma et al. (43) 2024 165 esophageal ESD cases GPT-3.5 Post-procedural quality control for 

esophageal ESD

Achieved accuracy of 92.5–100% across different factors.

Gravina et al. (32) 2024 Questions from 2023 Italian 

medical exam

GPT 3.5 and Perplexity AI Answering medical residency exam 

questions

GPT 3.5 achieved 94.11% correct responses in the latest exam.

Fevrier et al. 2020 401,566 colonoscopy linked with 

pathology reports

SAS® PERL NLP tool Extracting data from colonoscopy reports Achieved Cohen’s κ between 93 and 99% and PPV of 97–100% for common 

categories.

Benson et al. (55) 2023 24,584 pathology reports NLP pipeline Extracting features of colorectal polyps Achieved 98.9% precision and 98.0% recall, with an F1-score of 98.4%.

Zand et al. (23) 2020 16,453 lines of dialog from 424 

patients

NLP model Developing a chatbot for IBD patient 

support

Achieved 95% agreement with physician evaluations in categorizing dialogs.

Ananthakrishnan 

et al. (53)

2013 1,200 patients for Crohn’s and UC NLP techniques Improving EMR case definitions for IBD Achieved AUC of 0.95 for CD and 0.94 for UC.

(Continued)
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TABLE 1 (Continued)

Author Year Data Type + Sample 
size

Model Model Task Main Result

Wang et al. (72) 2024 200 medical discharge summaries GPT-4 Classifying GI bleeding events GPT-4 showed high accuracy (94.4% for identifying GI bleeding), 

outperforming ICD codes significantly and demonstrating comparable or 

slightly lower accuracy to human reviewers

Hepatology

Benedicenti et al. 

(56)

2023 56 gastroenterologists, 25 residents, 

31 specialists

GPT-3 Answering clinical vignettes on Hepatology 

and Gastroenterology

Demonstrated improvement over time, underperformed vs. humans

Li et al. (24) 2023 1,463 postoperative colorectal 

cancer patients

NLP and machine learning integration Predicting liver metastases High accuracy in risk prediction

Wang et al. (41) 2022 LiverTox database DeepCausality framework Causal inference for drug-induced liver 

injury

Achieved 92% accuracy and an F1-score of 0.84 for DILI predictions.

Yeo et al. (29) 2023 164 questions about cirrhosis and 

hepatocellular carcinoma

GPT Providing answers on cirrhosis and HCC GPT provided accurate knowledge on cirrhosis (79.1% correct) and 

hepatocellular carcinoma (74% correct), although only a small proportion were 

considered comprehensive (cirrhosis 47.3%, HCC 41.1%).

Sherman et al. 

(17)

2024 3,134 patients with liver disease NLP Classifying liver disease pathology The NLP model achieved high positive and negative predictive values (93.5–

100%) across different histological features

Van Vleck et al. 

(30)

2019 38,575 patients CLiX clinical NLP engine Identifying NAFLD patients and disease 

progression

The NLP model demonstrated superior sensitivity and F2 scores compared to 

ICD codes and text searches. Sensitivity of 0.93 and an F2 score of 0.92 in 

identifying NAFLD

Sada et al. (71) 2016 1,138 patients identified from 

ICD-9 codes

Automated Retrieval Console (ARC) Improving identification of hepatocellular 

cancer

Combining ICD-9 codes with NLP improved HCC identification: pathology 

(PPV 0.96, sensitivity 0.96, specificity 0.97), radiology (PPV 0.75, sensitivity 

0.94, specificity 0.68)

Pradhan et al. 

(28)

2024 22 patients/caregivers and 

transplant hepatologists

Multiple LLMs Generating patient educational materials 

about cirrhosis

AI materials matched human readability but were rated less actionable.

Schneider et al. 

(54)

2023 2.15 million pathology and 2.7 

million imaging reports

Rule-based NLP algorithm Identifying hepatic steatosis Identified 3,007 biopsy-proven NAFLD cases and 42,083 imaging-proven cases, 

with a PPV of 99.7%.

AI, artificial intelligence; AUC, area under the curve; BARD, Google’s Generative AI Model; BioBERT, biomedical bidirectional encoder representations from transformers; cTAKES, clinical text analysis and knowledge extraction system; CD, Crohn’s disease; CDSS, 
clinical decision support system; CLAMP, clinical language annotation modeling and processing; CLiX, clinical information extraction; CRC, colorectal cancer; DILI, drug-induced liver injury; EMR, electronic medical record; ENDOSC, endoscopic submucosal 
dissection; EIM, extraintestinal manifestations; ERNIE, enhanced representation through knowledge integration; F1, F1-score; GI, gastrointestinal; GPT, generative pre-trained transformer; HCC, hepatocellular carcinoma; IBD, inflammatory Bowel disease; ICD, 
international classification of diseases; LSTM, long short-term memory; MMR, mismatch repair; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NLP, natural language processing; NPV, negative predictive value; OCR, optical character 
recognition; PPV, positive predictive value; SPS, serrated polyposis syndrome; UC, ulcerative colitis.
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TABLE 2 Included studies designs, comparisons and validations methods.

Author Study design Field + Specific 
interest

Model Human comparator Validation Limitations

Gastroenterology

Kong et al. (38) Comparative analysis Gastroenterology, H. pylori ChatGPT 4.0, ChatGPT 

3.5, ERNIE Bot 4.0

None None Limited completeness and possible bias in non-English 

settings.

Lahat et al. (46) Cross-sectional analysis Gastroenterology, General GPT 3 Gastroenterologists None Variation in response quality; occasional inaccuracies.

Truhn et al. (49) Retrospective analysis Gastroenterology, CRC GPT-4 Manual data extraction Internal Challenges with OCR accuracy; handling of handwritten 

notes.

Zhou et al. (48) Retrospective analysis Gastroenterology, Gastric 

cancer

GPT-3.5 and GPT-4 None None Importance of human oversight and detail accuracy 

limitations.

Choo et al. (39) Prospective analysis Gastroenterology, CRC GPT MDT decisions None Small sample size; retrospective nature.

Huo et al. (44) Retrospective analysis Gastroenterology, CRC 

screening

ChatGPT, Bing Chat, 

Google Bard, Claude 2

None None Variability in responses between chatbots; static data 

collection point.

Imler et al. (58) Retrospective cohort study Gastroenterology, 

Colonoscopy (adenoma 

detection)

cTAKES NLP engine Manual review Internal Single institution study; template-driven reports.

Lim et al. (33) Retrospective analysis Gastroenterology, CRC 

screening

GPT-4 None Internal Free-text input limitations; lack of standardized prompts.

Imler et al. (36) Retrospective analysis Gastroenterology, 

Colonoscopy intervals

cTAKES NLP engine Paired, blinded experts None Difficulty with complex cases needing manual review.

Bae et al. (60) Retrospective analysis Gastroenterology, 

Colonoscopy quality

Regular expressions, 

smartTA

5 Human annotators Internal Dataset-specific NLP system; reliance on accurate input data.

Denny et al. (63) Retrospective analysis Gastroenterology, CRC 

screening

KnowledgeMap Concept 

Identifier

Manual chart review Internal Single-center study with small sample size.

Lahat et al. (47) Retrospective analysis Gastroenterology, Research 

questions

GPT 3 Gastroenterologists None Small expert panel; subjective ratings.

Laique et al. (26) Retrospective analysis Gastroenterology, CRC 

screening

OCR + NLP Manual review Internal & External Variability in documentation styles; reliance on high-quality 

scans.

Blumenthal et al. (65) Retrospective analysis Gastroenterology, 

Colonoscopy adherence

QPID NLP tool None Internal Sample representativeness; generalizability to other settings.

Harkema et al. (42) Retrospective analysis Gastroenterology, 

Colonoscopy quality

Rule-based NLP engine Manual annotations Internal Single institution study; mix of report styles.

Raju et al. (59) Retrospective analysis Gastroenterology, 

Colonoscopy ADR

Custom NLP software Manual review None Institution-specific study; not tested on other systems.

(Continued)
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TABLE 2 (Continued)

Author Study design Field + Specific 
interest

Model Human comparator Validation Limitations

Nayor et al. (57) Retrospective analysis Gastroenterology, 

Colonoscopy ADR

Custom NLP pipeline Manual review Internal Misclassification risks; complexity of free text.

Atarere et al. (25) Cross-sectional analysis Gastroenterology, CRC 

screening

ChatGPT, BingChat, 

YouChat™

Board-certified physicians None Models not designed for medical use; reliance on training 

data.

Seong et al. (40) Retrospective analysis Gastroenterology, 

Colonoscopy

Bi-LSTM-CRF None Internal Single institution study; reporting style variations.

Lee et al. (21) Cross-sectional analysis Gastroenterology, 

Colonoscopy quality

Commercial NLP tool Manual chart review Internal Single healthcare system study; dependency on physician 

reports.

Denny et al. (50) Retrospective analysis Gastroenterology, CRC 

screening

KnowledgeMap Concept 

Identifier

Manual review Internal Focus on colonoscopies; error sources in date references.

Parthasarathy et al. (18) Retrospective cohort study Gastroenterology, CRC 

screening

NLP Clinicians None 7% error rate in data extraction.

Rammohan et al. (68) Prospective analysis Gastroenterology, General GPT-4, Bard None None Focus on specific questions; limited to two AI tools.

Pereyra et al. (37) Prospective observational 

study

Gastroenterology, CRC GPT-3.5 Physicians None Small number of vignettes; outdated model.

Song et al. (61) Retrospective analysis Gastroenterology, 

Gastroscopy

Custom NLP pipeline Gastroenterologists Internal Specificity to data formatting; need for manual updates.

Peng et al. (45) Prospective observational 

study

Gastroenterology, CRC GPT-3.5 Expert answers Internal Limited question scope from a reference book.

Tinmouth et al. (70) Retrospective analysis Gastroenterology, 

Colonoscopy ADR

NLP Expert review Internal Voluntary reporting system; procedure-specimen mismatch.

Mehrotra et al. (27) Cross-sectional analysis Gastroenterology, 

Colonoscopy

NLP (C-QUAL) Physician manual review Internal Single healthcare system study.

Becker et al. (64) Retrospective analysis Gastroenterology, CRC German-specific NLP Manual review Internal Documentation complexity; moderate performance in some 

areas.

Hou et al. (31) Retrospective analysis Gastroenterology, IBD 

surveillance

ARC Gastroenterologist Internal Pathology reporting variability.

Gorelik et al. (51) Prospective observational 

study

Gastroenterology, 

Postcolonoscopy

GPT-4 Society guidelines None Inherent randomness and outdated training data.

Samaan et al. (34) Cross-sectional analysis Gastroenterology, Cirrhosis GPT Transplant hepatologist None Model hallucinations; Arabic response accuracy gap.

Cankurtaran et al. (67) Retrospective analysis Gastroenterology, IBD GPT-4 None None Response variability; lack of detail in treatment advice.

(Continued)
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TABLE 2 (Continued)

Author Study design Field + Specific 
interest

Model Human comparator Validation Limitations

Wenker et al. (69) Retrospective analysis Gastroenterology, Barrett’s 

Esophagus

CLAMP Manual review Internal & External VA sample limits generalizability.

Imler et al. (66) Retrospective cohort study Gastroenterology, ERCP Apache UIMA-based 

NLP

Gastroenterologist Internal Single-center bias; ICD coding assumptions.

Li et al. (62) Retrospective analysis Gastroenterology and 

hepatology

ML and NLP fusion Two experienced physicians External Scale of data integration and complexity; limited 

interpretability.

Li et al. (16) Retrospective cohort study Gastroenterology, Upper GI 

cancer

ENDOANGEL-AS Physicians Internal & External Annotation variability; semi-structured data limits.

Wagholikar et al. (35) Retrospective analysis Gastroenterology, 

Colonoscopy

NLP Gastroenterologist Internal Single expert; single institution.

Sciberras et al. (20) Prospective study Gastroenterology, IBD GPT-3.5 None None Lacks detailed responses; occasional inaccuracies.

Stidham et al. (52) Retrospective cohort study Gastroenterology, IBD NLP Human reviewers Internal Source document variation limits generalizability.

Ganguly et al. (22) Retrospective analysis Gastroenterology, 

Colonoscopy ADR

NLP Manual review Internal Human input reliance; data integration complexity.

Ma et al. (43) Retrospective analysis Gastroenterology, 

Esophageal ESD

GPT-3.5 Human operators Internal Single-center dataset limits; small prompt optimization cases.

Gravina et al. (32) Cross-sectional analysis Gastroenterology, Education GPT 3.5, Perplexity AI None Internal AI education lacks oversight; variable performance.

Fevrier et al. (84) Retrospective cohort study Gastroenterology, 

Colonoscopy

NLP tool Manual review Internal Incomplete documentation and specimen data challenges.

Benson et al. (55) Retrospective analysis Gastroenterology, 

Colonoscopy

NLP Manual annotations None Report structure adaptations; evaluation of rare features 

limited.

Zand et al. (23) Retrospective cohort study Gastroenterology, IBD NLP 3 Physicians None Homogeneous patient sample limits generalizability.

Ananthakrishnan et al. (53) Retrospective analysis Gastroenterology, IBD NLP None Internal Single healthcare system; needs broader validation.

Wang et al. (72) Retrospective analysis Gastroenterology, GI 

bleeding

GPT-4 Human reviewers None Single clinical scenario focus; model specificity.

Hepatology

Benedicenti et al. (56) Cross-sectional analysis Gastroenterology, Education GPT-3 Gastroenterologists None Performance variability; static format.

Li et al. (24) Retrospective cohort study Hepatology, HCC NLP Manual review External Limited generalizability; physician agreement variability.

Wang et al. (41) Retrospective analysis Hepatology, DILI DeepCausality None Internal Dependency on structured data; specificity to LiverTox.(Continued)
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achieving high precision and recall in guideline-based treatment 
extraction from clinical notes (64). Further, Wang et  al.’s 
“DeepCausality” framework accurately assessed causal factors for 
drug-induced liver injuries, aligning well with clinical guidelines (41). 
Another significant study, Wagholikar et al., demonstrated that an 
NLP-powered clinical decision support system could assist in making 
guideline-adherent recommendations for colonoscopy surveillance, 
as it made optimal recommendations in 48 out of 53 cases (35).

Education and research

Five studies focused on this aspect. Generally, NLP and LLMs have 
demonstrated a promising capacity to enhance learning and knowledge 
dissemination. Benedicenti et al. explored the accuracy of ChatGPT in 
solving clinical vignettes against gastroenterologists, noting an initial 
40% accuracy that improved to 65% over time, suggesting a potential 
for future clinical integration with continued advancements (56). Zhou 
et  al. assessed GPT-3.5 and GPT-4 for their ability to provide 
consultation recommendations and analyze gastroscopy reports 
related to gastric cancer, with GPT-4 achieving 91.3% appropriateness 
and 95.7% consistency (48). Lahat et  al. utilized GPT to generate 
research questions in gastroenterology, finding the questions relevant 
and clear but lacking in originality (46). Meanwhile, Gravina et al. 
highlighted the efficacy of ChatGPT 3.5 in medical education, as it 
outperformed Perplexity AI in residency exam questions with a 
94.11% accuracy rate (32). Additionally, Pradhan et  al. compared 
AI-generated patient educational materials on cirrhosis with human-
derived content, finding no significant differences in readability or 
accuracy, though human materials were deemed more actionable (28).

Validation and comparisons

Of the 57 studies, only 5 performed external validation using 
independent datasets. A total of 30 studies used internal validation, 
with 27 applying classical subsets of the same data for re-testing and 
validating their main results. Three studies employed a method of 
running LLM prompts multiple times (2–3 times) to assess the 
consistency of responses. Meanwhile, 22 studies did not perform any 
validation. Regarding direct comparisons of NLPs and LLMs with 
human counterparts, 44 studies compared the model’s performance 
with manual review by physicians or manual data extraction methods. 
The number of human reviewers varied between studies, ranging from 
1 to 5. Thirteen studies did not perform direct comparisons (Table 2).

Discussion

Our systematic review assessed the integration of NLP and LLMS 
in gastroenterology and hepatology, registering significant 
advancements. We reviewed 57 studies, highlighting a sharp increase 
in research over the last 2 years, particularly focusing on newer models 
like GPT-3 and GPT-4. These studies reflect a shift from traditional 
tasks, such as report analysis, to more dynamic roles in patient 
management and research facilitation.

To present the findings in a clear and easily interpretable manner, 
we opted to categorize the reviewed studies into a minimal set of T
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broad application areas. We acknowledge that these categories are not 
absolute and that certain studies may naturally span multiple domains 
(for example, colonoscopy surveillance intervals, while placed under 
one heading, could also be considered a form of clinical decision 
support). Nonetheless, by grouping the research into broader, more 
encompassing categories, we  aimed to give readers a high-level 
understanding of where progress is most pronounced, and which 
areas appear closer to real-world clinical integration.

The results show that certain NLP applications seem ready for 
immediate clinical use. For example, Schneider et al. (2023) identified 
42,000 hepatic steatosis cases using an NLP model on 2.15 million 
pathology reports and 2.7 million imaging reports. This level of 
precision (PPV 99.7%) exemplifies NLP’s readiness to support 
diagnostic processes in large-scale healthcare settings. Similarly, 
Truhn et al. (2024) successfully employed GPT-4 to extract structured 
data from colorectal cancer reports with a precision of 99% for T-stage 

identification, suggesting a high reliability of NLP in processing and 
structuring complex pathological data.

Conversely, the technology’s expansion into more dynamic roles 
such as comprehensive disease management and holistic patient care is 
still evolving. For instance, Kong et  al. (2024) found that while the 
accuracy and comprehensibility of GPT-4’s responses to medical 
inquiries about Helicobacter pylori were high, the completeness of the 
information was less satisfactory. This indicates ongoing challenges in 
ensuring that NLP outputs are not only accurate but also 
fully informative.

Our results suggest that both classic NLP methods and newer 
models can be effectively integrated to streamline manual tasks such 
as extracting data and making diagnoses from complex and 
unstructured reports, with an accuracy that typically surpasses 
manual screening (16–18, 21, 22, 27, 33). This builds upon and adds 
on a previous systematic review of NLP in gastroenterology and 

FIGURE 3

Summary of NLP applications and outcomes.

FIGURE 4

Visual framework of NLP extracting adenoma characteristics from unstructured colonoscopy report.
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hepatology conducted by Hou et al. (2). While he found promising 
results, he  emphasized the need for careful consideration of the 
quality of clinical data within EHRs, and also highlighted the 
importance of understanding variations and deviations from 
established clinical practice standards (2). Our updated results 
indicate that these models consistently demonstrate high accuracies 
(16–18, 21, 22, 27, 33). This trend is observable in other fields 
utilizing NLP, such as radiology and infectious diseases (74, 75). 
However, our research suggests that applying these methods to more 
complex tasks like patient management, education, and clinical 
decision-making is still challenging (20, 29, 34, 37). While newer 
models show promising results, there are significant limitations and 
variability that require further development (67). This trend is 
consistent with data and the current findings from other fields 
(76, 77).

Several limitations of our review must be acknowledged. Many 
studies utilize single-institution datasets, which could affect the 
generalizability of the findings. This is important especially because 
only 5 studies (8.7%) reported performing an external validation. 
The accuracy of NLP outputs is heavily dependent on the quality of 
the input data, with errors or inconsistencies in medical records 
potentially leading to inaccurate results (78). The opaque nature of 
AI decision-making processes (‘black box’) raises concerns about 
the transparency and trustworthiness of these models in clinical 
settings (79). Ethical considerations around potential biases in 
training data and algorithmic outputs underscore the necessity for 
careful implementation to ensure fairness and equity in healthcare 
delivery (80). Moreover, the accuracy and reliability of NLP and 
LLM outputs are directly tied to the quality of the input data. EHRs, 
clinical notes, and imaging reports often contain incomplete, 
ambiguous, or inaccurately recorded information. These data 
imperfections can lead to propagation of errors and compound 
biases within the model’s output, potentially influencing clinical 
decision-making and patient care. Additionally, while many NLP 
and LLM models show promise in structured tasks like disease 
detection or data extraction, they remain susceptible to 
“hallucinations”—generating plausible-sounding but factually 
incorrect statements (81). Such errors, if undetected, may result in 
misguided clinical judgments, suboptimal patient management, and 
delayed interventions. An additional critical dimension of these 
limitations involves the potential for algorithmic biases, including 
those related to sociodemographic factors such as race, ethnicity, 
gender, language proficiency, and socioeconomic status (82, 83). 
Models trained on unrepresentative or historically biased data risk 
perpetuating systemic inequalities in healthcare. Despite the 
promising accuracy of some NLP applications, they are not yet 
widely integrated into day-to-day clinical workflows, particularly 
for patient care and decision-making; current limitations and the 
need for thorough testing and validation—especially for newer, less 
researched techniques—have thus far hindered their routine 
implementation in practice.

In conclusion, our systematic review highlights the impact of 
NLP and LLMs in gastroenterology and hepatology. On one hand, 
NLP has already proven its utility in screening and analyzing medical 
reports, facilitating streamlined screening policies with impressive 
outcomes. On the other hand, the capabilities of newer LLMs are still 
unfolding, with their full potential in complex management and 

research roles yet to be fully realized. The results demonstrate that 
while some applications of NLP are well-established and highly 
effective, newer LLMs offer exciting, emerging applications that 
promise to further enhance clinical practice. Moving forward, 
research focus should be on refining these models, and externally 
validating the results to ensure prospectively they meet real-world 
clinical needs.
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