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Sepsis remains a leading cause of morbidity and mortality worldwide due to its 
rapid progression and heterogeneous nature. This review explores the potential of 
Artificial Intelligence (AI) to transform sepsis management, from early detection to 
personalized treatment and real-time monitoring. AI, particularly through machine 
learning (ML) techniques such as random forest models and deep learning algorithms, 
has shown promise in analyzing electronic health record (EHR) data to identify 
patterns that enable early sepsis detection. For instance, random forest models 
have demonstrated high accuracy in predicting sepsis onset in intensive care unit 
(ICU) patients, while deep learning approaches have been applied to recognize 
complications such as sepsis-associated acute respiratory distress syndrome 
(ARDS). Personalized treatment plans developed through AI algorithms predict 
patient-specific responses to therapies, optimizing therapeutic efficacy and 
minimizing adverse effects. AI-driven continuous monitoring systems, including 
wearable devices, provide real-time predictions of sepsis-related complications, 
enabling timely interventions. Beyond these advancements, AI enhances diagnostic 
accuracy, predicts long-term outcomes, and supports dynamic risk assessment in 
clinical settings. However, ethical challenges, including data privacy concerns and 
algorithmic biases, must be addressed to ensure fair and effective implementation. 
The significance of this review lies in addressing the current limitations in sepsis 
management and highlighting how AI can overcome these hurdles. By leveraging 
AI, healthcare providers can significantly enhance diagnostic accuracy, optimize 
treatment protocols, and improve overall patient outcomes. Future research 
should focus on refining AI algorithms with diverse datasets, integrating emerging 
technologies, and fostering interdisciplinary collaboration to address these challenges 
and realize AI’s transformative potential in sepsis care.
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1 Introduction

Sepsis, a life-threatening condition caused by the body’s extreme immune response to 
infection, is a leading cause of global morbidity and mortality. Characterized by dysregulated 
immune responses, it triggers widespread inflammation, tissue damage, and organ failure (1). 
The rapid and often fatal progression of sepsis underscores the urgent need for innovative 
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approaches to improve early detection and management. However, 
despite advances in medical research, sepsis remains challenging to 
diagnose and treat due to its heterogeneous nature and variable 
progression (2). Recent advancements in Artificial Intelligence (AI) 
offer transformative potential to address these challenges, promising 
significant improvements in diagnosis, treatment, and overall patient 
outcomes (3).

AI, leveraging machine learning (ML) and deep learning 
techniques, has demonstrated substantial success in healthcare by 
processing large, complex datasets to identify patterns often missed by 
traditional methods (4). In sepsis management, AI applications have 
been developed to enhance early detection, predict disease 
progression, and personalize treatment strategies (5). For instance, 
Baghela et al. (6) utilized AI to analyze gene expression signatures, 
enabling earlier and more precise triage of sepsis patients in 2022. 
Similarly, Wang et al. (7) developed a machine learning model using 
EHR data to predict sepsis onset, achieving high accuracy with an 
AUC of 0.91  in 2021. These studies demonstrate AI’s potential to 
accelerate diagnosis and facilitate timely interventions (8).

Despite these advancements, the integration of AI into sepsis care 
faces significant challenges. A major limitation is the variability in 
model performance across different institutions and patient 
populations. AI models trained on datasets from specific populations 
often struggle to generalize to other settings due to demographic and 
geographic variability (9). For example, sepsis prediction models 
developed in high-resource healthcare environments may 
underperform in resource-limited settings, where clinical workflows 
and patient profiles differ markedly. Addressing this limitation 
requires the inclusion of diverse, representative datasets during model 
development to improve robustness and applicability (10).

Another limitation is the lack of universal applicability of AI 
models in dynamic clinical environments. Many AI algorithms rely 
on static data, which may not adequately capture the rapidly changing 
conditions of sepsis patients. Developing real-time, adaptive AI 
systems capable of continuously learning from new data is critical to 
ensuring broader clinical utility (10). Moreover, the complexity of AI 
models can create a disconnect between their predictive capabilities 
and their practical implementation. Clinicians often find it challenging 
to interpret AI-generated outputs, which can hinder trust and 
adoption in critical care settings (7).

AI’s role extends beyond detection to include prognosis and 
personalized treatment strategies. For instance, Fan et  al. (8) 
developed ML models to predict outcomes for patients with sepsis-
associated acute kidney injury (S-AKI), enhancing the accuracy of 
mortality predictions and guiding clinical interventions in 2023. 
Similarly, Petersen et al. (11) used reinforcement learning to simulate 
adaptive treatment strategies, demonstrating improved outcomes in 

simulated patients in 2019. These advancements highlight the 
potential for AI to provide tailored, data-driven treatment plans that 
address the variability of sepsis presentations and patient 
responses (6).

In conclusion, AI offers a promising avenue for revolutionizing 
sepsis care, from early detection to personalized treatment. However, 
its clinical adoption requires addressing significant challenges, 
including the need for generalizability, adaptability, and better 
integration into clinical workflows. By tackling these limitations and 
harnessing AI’s predictive power, healthcare providers can enhance 
diagnostic accuracy, optimize treatments, and improve patient 
outcomes. This review explores recent advancements in AI 
applications for sepsis management, emphasizing its contributions, 
challenges, and future directions (Figure 1).

2 AI in early detection and prediction 
of sepsis

Early detection and prediction of sepsis are essential for improving 
patient outcomes, as timely interventions can substantially reduce 
morbidity and mortality. Traditional sepsis diagnosis methods rely on 
clinical assessments and laboratory tests, which may not detect the 
condition in its early stages due to nonspecific symptoms. Recently, AI 
has become a powerful tool for the early detection and prediction of 
sepsis by analyzing vast patient data to identify early warning signs 
and enhance clinical decision-making (11). AI techniques, such as 
machine learning (ML) and deep learning, are transforming sepsis 
detection and management. ML models are particularly effective 
when applied to electronic health records (EHRs) to predict sepsis 
onset (8).

One promising application of AI in sepsis is the development of 
ML models to predict sepsis onset using EHRs. Wang et  al. (7) 
developed a random forest algorithm that achieved an AUC (Area 
under the Receiver Operating Characteristic Curve) of 0.91, 
demonstrating high accuracy in analyzing clinical variables from 
EHR data. Similarly, these studies emphasize the significant 
potential of AI in enhancing early detection and facilitating timely 
interventions (12).

AI models have also advanced through the integration of 
structured and unstructured clinical data for early sepsis prediction. 
Goh et  al. (13) introduced the SERA algorithm, which combines 
structured data with unstructured clinical notes to predict sepsis. The 
algorithm achieved an AUC of 0.94, with sensitivity and specificity of 
0.87, outperforming traditional methods by predicting sepsis up to 
12 h before clinical onset. This highlights the importance of diverse 
data integration for improving accuracy and timeliness. Giacobbe 
et al. (14) further emphasized AI’s potential in early sepsis detection, 
proposing that a multidisciplinary approach to model development 
could enhance clinical utility and decision-making.

To provide a comprehensive overview of the latest AI-driven 
approaches to sepsis detection, prediction, and treatment, key studies 
are summarized in Table 1: Comparative Summary of AI Models in 
Sepsis Management. This table highlights the performance of various 
machine learning (ML) models, neural networks, and deep learning 
techniques, including their Area under the Receiver Operating 
Characteristic Curve (AUC), sensitivity, and specificity metrics. By 
detailing these performance indicators, the table offers valuable insights 

Abbreviations: AI, Artificial Intelligence; ML, Machine Learning; EHR, Electronic 

Health Record; ICU, Intensive Care Unit; AUC, Area under the Receiver Operating 

Characteristic Curve; ARDS, Acute Respiratory Distress Syndrome; S-AKI, Sepsis-

Associated Acute Kidney Injury; LOS, Late-Onset Sepsis; NICU, Neonatal Intensive 

Care Unit; HRV, Heart Rate Variability; ED, Emergency Department; qSOFA, Quick 

Sequential Organ Failure Assessment; MEWS, Modified Early Warning Score; SIRS, 

Systemic Inflammatory Response Syndrome; AKI, Acute Kidney Injury; ITE, Individual 

Treatment Effect; GDPR, General Data Protection Regulation; HIPAA, Health 

Insurance Portability and Accountability Act.
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into the strengths and limitations of AI methods across different stages 
of sepsis care, emphasizing their clinical potential and challenges.

AI applications in pediatric sepsis address unique challenges posed 
by nonspecific symptoms. Le et al. (15) developed an ML algorithm 
achieving an AUC of 0.916 for detecting severe sepsis at onset and 
0.718 for predicting sepsis 4 h prior, outperforming traditional scoring 
systems like the Pediatric Logistic Organ Dysfunction (PELOD-2) and 
Systemic Inflammatory Response Syndrome (SIRS) scores. Similarly, 
Honoré et  al. (11) developed a model using vital signs to predict 
neonatal sepsis, achieving an AUC of 0.82, underscoring the value of 
non-invasive monitoring in neonatal care.

AI-based models also hold promise in ED settings. Kijpaisalratana 
et al. (16) compared ML models to traditional screening tools like 
qSOFA (Quick Sequential Organ Failure Assessment), MEWS 
(Modified Early Warning Score), and SIRS for early sepsis detection in 
emergency patients. The ML models outperformed traditional 
methods, with the random forest algorithm achieving an AUC of 
0.931.This study underscores AI’s potential to enhance sepsis screening 
and early detection in emergency settings, where rapid diagnosis is 
crucial for patient outcomes (17). Liu et al. (18) further highlighted the 
superior performance of ML-based predictive models over classical 
approaches like SOFA and qSOFA in patients with acute pancreatitis.

Building on these advancements in early detection, AI also plays a 
crucial role in improving diagnostic accuracy and efficiency. Leveraging 
ML and data analytics, AI significantly improves diagnostic processes, 
supporting clinicians in making more informed and precise decisions. 
Machine learning models, such as random forests and support vector 
machines, are widely used for early sepsis detection due to their ability 
to handle structured datasets from electronic health records (EHRs). 
Random forests, for instance, are effective in identifying early warning 
signs of sepsis by analyzing a combination of clinical variables, such as 
vital signs and laboratory results. These models excel in ICU settings, 
where large volumes of structured data are available. Moreover, their 
interpretability allows clinicians to understand how specific variables 
contribute to predictions, fostering trust in their use.

In resource-limited environments, simpler ML models like 
decision trees or logistic regression are preferred due to their low 
computational requirements. These models can be deployed on basic 
hardware systems and still provide timely predictions, making them 
suitable for emergency departments or rural clinics.

In conclusion, AI has demonstrated significant potential in the early 
detection and prediction of sepsis. By utilizing advanced ML algorithms 
and integrating diverse data sources, AI models can substantially 
improve the accuracy and timeliness of sepsis diagnosis. As these 

FIGURE 1

An overview of the application of artificial intelligence in sepsis (IV fluids, intravenous fluids).
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technologies evolve, their clinical implementation could lead to earlier 
interventions, better patient outcomes, and lower healthcare costs.

3 Methodology

This review synthesizes studies exploring the application of 
artificial intelligence (AI) in sepsis management, focusing on early 

detection, prediction, and monitoring. A structured approach was 
followed to ensure the comprehensive inclusion of relevant literature.

3.1 Search strategy

The review employed a systematic search of databases including 
PubMed, Scopus, and IEEE Xplore. The search terms encompassed 

TABLE 1 Comparative summary of AI models in sepsis management.

Title Reference Model Application AUC Sensitivity Specificity

Early detection of sepsis utilizing deep 

learning on electronic health record event 

sequences

Lauritsen et al. (44) Deep learning Early warning of sepsis 0.85 0.88 0.76

A novel artificial intelligence based intensive 

care unit monitoring system: using 

physiological waveforms

Mollura et al. (17)
Machine 

learning
Early warning of sepsis 0.81 0.85 0.78

Prospective, multi-site study of patient 

outcomes after implementation of the 

TREWS early warning system

Adams et al. (119)
Machine 

learning
Early warning of sepsis 0.87 0.89 0.84

Predicting sepsis onset using a machine 

learned causal probabilistic network 

algorithm based on EHR data

Valik et al. (120)
Machine 

learning
Early warning of sepsis 0.92 0.85 0.81

Machine learning of cell population data for 

early prediction of bacteremia among adult 

patients

Chang et al. (121)
Machine 

learning
Early warning of sepsis 0.88 0.90 0.84

Integrated biosensor for rapid and point-of-

care sepsis diagnosis
Min et al. (122)

Biosensor 

(IL-3)

Early detection of 

sepsis
0.91 0.92 0.89

Contextual embedding’s from clinical notes 

improves prediction of sepsis
Amrollahi et al. (123)

Clinical Text 

Embed-dings

Early prediction of 

sepsis
0.86 0.88 0.84

Early predicting 30-day mortality in sepsis in 

MIMIC-III by an artificial neural networks 

model

Su et al. (124)

Artificial 

Neural 

Networks

Early prediction of 

mortality in sepsis
0.89 0.91 0.87

Prediction of sepsis in the intensive care unit 

with minimal electronic health record data
Desautels et al. (39)

Machine 

Learning

Sepsis prediction with 

minimal EHR data
0.88 0.86 0.83

Unsupervised learning approach for 

predicting sepsis onset in ICU patients
Ramos et al. (125)

Unsuper-

vised learning
Sepsis onset prediction 0.84 0.86 0.82

Predicting the onset of sepsis using vital signs 

data: a machine learning approach
Tran et al. (126)

Machine 

Learning

Early detection of 

sepsis using vital signs
0.88 0.87 0.85

The application of artificial intelligence in the 

management of sepsis
Yang et al. (46)

Machine 

Learning

Prediction, early 

detection, and 

treatment

0.89 0.91 0.88

A time-phased machine learning model for 

real-time prediction of sepsis in critical care
Li et al. (127)

Machine 

Learning

Real-time prediction of 

sepsis
0.91 0.92 0.90

Derivation, validation, and potential 

treatment implications of novel clinical 

phenotypes for sepsis

Seymour et al. (128)
Machine 

learning

Subtyping analysis of 

sepsis
0.89 0.88 0.85

Utilization of deep learning for subphenotype 

identification in sepsis-associated acute 

kidney injury

Chaudhary et al. (129) Deep learning
Subtyping analysis of 

sepsis
0.87 0.89 0.86

The AI clinician learns optimal treatment 

strategies for sepsis in intensive care
Komorowski et al. (40)

Machine 

learning

Precision treatment of 

sepsis
0.89 0.88 0.84

Prediction of sepsis and in-hospital mortality 

using electronic health records
Khojandi et al. (130)

Machine 

Learning
Mortality prediction 0.86 0.87 0.85
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combinations of “sepsis, ““machine learning,” “artificial intelligence,” 
“predictive analytics,” and “clinical decision support systems.” Filters 
were applied to limit results to peer-reviewed articles published in 
English within the last decade. Additionally, forward and backward 
citation tracking was performed on the included studies to ensure a 
thorough literature review.

3.2 Study selection

Titles, abstracts, and keywords were screened for relevance using 
criteria focused on the utilization of AI techniques for sepsis 
management. Full-text articles were then evaluated to confirm their 
alignment with the scope of the review. Studies were included if they 
(1) implemented AI methodologies such as machine learning or deep 
learning, (2) targeted sepsis-related outcomes (including early 
detection, prediction, or monitoring), and (3) provided detailed 
methodological insights or clinical applications.

3.3 Data extraction

Key data points extracted from each study included the type of AI 
models utilized, data sources, sample sizes, evaluation metrics, and 
reported outcomes. Information on model performance, limitations, 
and clinical applicability was systematically recorded to enable 
comparative analysis. The review prioritized studies that demonstrated 
real-world clinical implementations or addressed critical challenges 
in AI-based sepsis management.

3.4 Analysis framework

The included studies were categorized based on the type of AI 
techniques used (e.g., machine learning, natural language processing, 
deep learning) and their specific applications in sepsis management. 
The strengths and limitations of each approach were assessed to 
provide a nuanced understanding of the current landscape and 
identify areas for future research.

4 Diagnostic assistance through AI

AI has become a transformative tool in sepsis diagnosis, offering 
clinicians improved accuracy and efficiency. Traditional diagnostic 
methods often fail to identify sepsis promptly due to its 
heterogeneous presentation, resulting in delayed treatment and 
higher mortality.AI, utilizing ML and data analytics, significantly 
improves diagnostic accuracy by analyzing large volumes of clinical 
data to identify sepsis-indicative patterns. Beyond early detection, 
AI enhances clinical decision-making. By integrating real-time data 
from various sources, AI systems provide clinicians with actionable 
insights, improving diagnostic precision and guiding 
treatment plans.

A key advantage of AI in sepsis diagnosis is its ML ability to 
integrate and analyze complex datasets, such as patient demographics, 
vital signs, laboratory results, and clinical notes. Fleuren et al. (19) 
conducted a systematic review and meta-analysis, highlighting the 

effectiveness of models in accurately predicting sepsis in 2020.The 
study found that AI models achieved AUROC values between 0.68 
and 0.99 across different hospital settings, showing stronger diagnostic 
performance compared to traditional methods. This analysis 
highlights AI’s potential to revolutionize sepsis diagnostics by 
delivering real-time, data-driven insights that improve early detection 
and treatment initiation (19).

Additionally, AI has demonstrated promise in improving 
diagnostic accuracy for neonatal and pediatric sepsis, which poses 
unique challenges due to nonspecific symptoms in these populations. 
Sweeney et al. (20) validated the Sepsis MetaScore, a gene-expression-
based diagnostic test in neonates in 2018.The study showed that the 
Sepsis MetaScore achieved an AUROC of 0.92–0.93, significantly 
outperforming standard laboratory tests. This gene-expression 
signature provided an objective measure of sepsis risk, potentially 
reducing unnecessary antibiotic use and improving clinical outcomes 
(20). Similarly, Iregbu et  al. discussed how multi-omics and AI 
enhance diagnostic precision for neonatal sepsis, emphasizing the 
need for precision medicine approaches in low-and middle-income 
countries to address diagnostic challenges and improve sepsis 
management in 2022 (21).

In recent years, significant advances have been made in 
applying AI to sepsis prediction and treatment.ML and deep 
learning models have demonstrated enhanced diagnostic accuracy, 
improved early detection, and provided new insights into 
personalized treatment strategies. Table 2 provides a summary of 
key studies in this domain, highlighting the AI models used and 
their specific applications in sepsis management. The studies 
included in Table 2 showcase a diverse range of AI techniques, 
from deep learning algorithms for early detection to ML models 
for real-time decision support. These approaches illustrate the 
growing impact of AI on sepsis care, particularly in critical care 
settings, emergency departments, and across multiple 
patient populations.

Beyond improving diagnostic accuracy, AI can identify 
biomarkers and digital signatures essential for timely and accurate 
sepsis diagnosis. Komorowski et al. (22) reviewed the use of ML in 
identifying sepsis biomarkers and developing diagnostic tools. The 
study highlighted the potential of combining biomarkers and clinical 
data using ML models to improve the timeliness and accuracy of 
sepsis diagnosis. This approach aids early recognition and helps 
understand the underlying pathophysiological mechanisms of sepsis, 
thereby informing targeted therapeutic strategies (22).

Moreover, AI-based diagnostic tools extend beyond hospital 
settings and have been developed for emergency departments and 
prehospital care. Kijpaisalratana et al. (16) showed that ML algorithms 
significantly outperformed traditional screening tools like qSOFA and 
SIRS in early sepsis detection among ED patients in 2022.The study 
found that the random forest algorithm achieved an AUROC of 0.931, 
highlighting AI’s potential to improve diagnostic accuracy and clinical 
decision-making in fast-paced environments like EDs (16).

Accurate AI diagnosis establishes the foundation for developing 
personalized treatment plans tailored to each patient’s unique 
characteristics. With precise diagnostic insights, healthcare providers 
can better tailor interventions to align treatments with the specific 
needs and physiological responses of individual patients (23). This sets 
the stage for AI to further enhance sepsis management through 
personalized treatment strategies.
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In conclusion, AI demonstrates significant potential to enhance 
sepsis diagnostics. By integrating complex datasets and utilizing 
advanced ML algorithms, AI can significantly improve diagnostic 
accuracy, enable early detection, and reduce reliance on traditional, 
less accurate methods. As AI evolves, its integration into clinical 
practice promises better patient outcomes and more efficient 
healthcare delivery.

5 AI in personalized treatment plans

AI is increasingly used to develop personalized sepsis treatment 
plans, offering tailored therapeutic strategies based on individual 
patient characteristics. Personalized treatment aims to improve 
clinical outcomes by considering each patient’s unique biological and 
clinical profile, optimizing therapeutic efficacy and minimizing 
adverse effects. After accurate diagnosis, AI plays a key role in 
personalizing treatment strategies, which is crucial given the 
complexity and variability of sepsis presentations.

A major advancement in personalized sepsis treatment is the 
integration of ML algorithms to predict patient-specific therapy 
responses. Chen et  al. (24) developed an autophagy-related gene 
classifier using ML algorithms to improve early sepsis diagnosis and 
prognosis in 2022.The classifier, based on eight key autophagy-related 
genes, showed high diagnostic accuracy and was significantly 
associated with immune cell infiltrations and immune pathway 
activations. The model distinguished sepsis from other critical 
illnesses and predicted patient mortality more effectively than 
traditional clinical characteristics, facilitating personalized treatment 
decisions by reflecting the immune microenvironment diversity in 
sepsis patients (24).

Another promising AI application in personalized sepsis 
treatment involves using deep reinforcement learning and simulation 
models. Petersen et  al. (11) used deep reinforcement learning to 

develop an adaptive personalized treatment policy for sepsis. This 
approach simulated the innate immune response to infection, allowing 
exploration of therapeutic strategies beyond current clinical practice. 
The adaptive treatment policy significantly reduced mortality rates in 
simulated patients compared to standard antibiotic therapy, 
showcasing AI’s potential to improve outcomes by dynamically 
adjusting therapies based on real-time patient data (25).

AI also plays a vital role in identifying and categorizing sepsis 
endotypes, guiding individualized treatment plans. Liu et  al. (26) 
stressed the importance of phenotyping immune functions and 
classifying sepsis patients into specific endotypes to create 
personalized treatment approaches in 2023.By understanding diverse 
host responses to sepsis and using ML to analyze patient data, 
researchers can identify signaling pathways and immune phenotypes, 
leading to the discovery of new therapeutic targets and the 
repurposing of existing drugs for sepsis treatment (26). This 
personalized approach ensures treatments are tailored to each patient’s 
unique immune responses, improving therapeutic efficacy and 
reducing the risk of adverse effects.

Additionally, AI-driven models have been developed to predict 
the individual treatment effects of specific therapies in sepsis. 
Pirracchio et al. (27) used ML to estimate the individual treatment 
effect (ITE) of corticosteroids in septic shock patients in 2020. The 
study showed that an individualized treatment strategy based on the 
optimal ITE model provided a positive net benefit, outperforming 
traditional scoring systems like SAPS II. This model identified patients 
most likely to benefit from corticosteroid therapy, optimizing 
treatment decisions and improving clinical outcomes (27).

Reinforcement learning (RL) models are particularly suited for 
developing adaptive treatment strategies in sepsis management. 
Unlike supervised learning models, RL algorithms can simulate 
dynamic clinical environments and learn optimal policies by 
interacting with virtual patient populations. This makes them 
invaluable for exploring treatment scenarios that go beyond standard 

TABLE 2 Latest sepsis prediction and treatment reviews.

Title Authors Model Application

Machine learning for the prediction of sepsis: a systematic 

review and meta-analysis of diagnostic test accuracy
Fleuren et al. (19) Machine Learning Sepsis prediction

Decreased intestinal microbiome diversity in pediatric 

sepsis: a conceptual framework for intestinal dysbiosis to 

influence immunometabolic function

Weiss et al. (131) Artificial Intelligence Early prediction of sepsis

Early prediction of sepsis from clinical data: the 

PhysioNet/Computing in Cardiology Challenge 2019
Reyna et al. (132) Machine Learning Early detection of sepsis

Medical decision support using machine learning for early 

detection of late-onset neonatal sepsis
Mani et al. (133)

Various Machine 

Learning
Sepsis prediction using EHR

Multicentre validation of a sepsis prediction algorithm 

using only vital sign data in the emergency department, 

general ward and ICU

Mao et al. (134) Machine Learning Sepsis prediction across multiple settings

Early ICU-acquired hypernatraemia is associated with 

injury severity and preceded by reduced renal sodium and 

chloride excretion in polytrauma patients

Rugg et al. (135) Machine Learning Prediction using minimal EHR data

A clinically applicable approach to continuous prediction 

of future acute kidney injury
Tomašev et al. (117) Machine Learning Predicting AKI related to sepsis

Can informatics innovation help mitigate clinician 

burnout?
Bakken et al. (136) Machine Learning Detection and management of sepsis
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clinical practice, such as optimizing fluid resuscitation or antibiotic 
administration in real time.

For example, RL models have been used to develop personalized 
treatment policies that adjust based on individual patient responses, 
demonstrating significant reductions in simulated mortality rates. 
While these models are still in experimental stages, their potential for 
real-time decision-making in complex and rapidly evolving conditions 
like sepsis is unparalleled.

As personalized treatment plans are implemented, continuous 
real-time monitoring is essential to adapt to the patient’s evolving 
condition and ensure optimal outcomes. These developments 
underline AI’s growing capacity to transform sepsis care by integrating 
predictive, adaptive, and personalized approaches to treatment.

6 AI in monitoring and management 
of sepsis

AI plays a vital role in the continuous monitoring and 
management of sepsis, offering real-time insights and enabling timely 
interventions. Integrating AI with patient monitoring systems aids in 
the early detection of sepsis-related complications and optimizes 
patient outcomes through personalized management strategies.AI 
enhances personalized treatments and facilitates continuous patient 
monitoring, allowing dynamic adjustments to treatment protocols 
based on real-time data.

A key application of AI in sepsis management is the use of ML 
models to predict and monitor sepsis-associated acute kidney 
injury (SA-AKI). Cheungpasitporn et  al. (28) highlighted the 
effectiveness of supervised learning models, such as XGBoost and 
RNN-LSTM, in predicting SA-AKI onset and subsequent mortality. 
These models analyze vast datasets to uncover complex patterns 
beyond human discernment, enabling early risk detection and 
personalized management of SA-AKI. The study emphasized AI’s 
potential to continually refine treatment strategies based on patient 
outcomes, while acknowledging the ethical and practical challenges, 
such as data privacy and algorithmic biases, that need to 
be addressed.

In wearable technology, Ghias et  al. (29) demonstrated the 
feasibility of using wearable sensors with ML models to monitor and 
predict sepsis mortality in low-middle-income countries (LMICs). 
The study found that ML models trained on heart rate variability 
(HRV) data from wearable sensors outperformed traditional bedside 
monitor models. This approach reduced sepsis mortality risk in 
resource-limited settings and highlighted the potential of integrating 
automated ML prediction models with wearable technology to 
improve sepsis management.

AI-driven continuous monitoring systems are being developed to 
provide real-time predictions of late-onset sepsis (LOS) in preterm 
infants. Yang et al. (30) developed an AI model that uses vital signs 
data from patient monitors to provide hourly LOS risk predictions. 
The model achieved high accuracy in detecting LOS before clinical 
deterioration, which is crucial for timely interventions in neonatal 
intensive care units (NICUs). The study showed that combining 
interpretability with clinical alarm management could enhance the 
implementation of AI models in medical practice.

Another key development is the use of digital twins and predictive 
analytics monitoring for sepsis management. Davis et  al. (31) 

proposed a novel illness scoring system that uses continuous predictive 
analytics monitoring to track patient deterioration in real-time in 
2020.This system analyzes continuous bedside monitoring data to 
provide early warnings of increasing sepsis risk, enabling timely and 
safer interventions. The study emphasized the importance of 
continuous risk trend analysis over traditional static alerts, which are 
less suited for detecting rapid clinical deterioration.

AI-based automated alert systems also show promise in improving 
sepsis outcomes. Zhang et  al. (32) conducted a meta-analysis 
comparing the effectiveness of automated alerts to usual care for sepsis 
management. The study found that ML-based prediction methods 
significantly reduced sepsis mortality compared to rule-based 
approaches. Automated alert systems, particularly in emergency 
departments and hospital wards, showed a larger benefit in reducing 
mortality, underscoring AI’s potential to enhance early intervention 
and sepsis management across clinical settings (33).

In conclusion, AI has proven to be a powerful tool in continuously 
monitoring and managing sepsis. By using advanced ML algorithms 
and integrating them with wearable technology and real-time 
monitoring systems, AI can significantly improve early detection, 
personalized treatment, and overall patient outcomes. As these 
technologies evolve, their implementation in clinical practice promises 
to transform sepsis management by providing timely interventions 
and reducing the burden of this critical condition. By addressing these 
challenges, the full potential of AI in revolutionizing sepsis care can 
be realized, improving patient outcomes and reducing mortality rates.

7 AI in prognosis and outcome 
prediction

AI has significantly advanced prognosis and outcome prediction 
in sepsis, enabling healthcare providers to anticipate disease 
progression and tailor interventions accordingly. By analyzing 
continuous monitoring data, AI algorithms can predict long-term 
outcomes, offering clinician’s critical insights into disease progression 
and recovery trajectories.

A key application of AI in sepsis prognosis is developing predictive 
models that assess the likelihood of patient survival and recovery. Liu 
et al. (26) highlighted the critical role of neutrophil-endothelial cell 
interactions in sepsis progression and used ML models to identify 
specific immune phenotypes linked to different outcomes. These 
models used data from organ-on-chip experiments, omics analyses, 
and clinical records to predict patient prognosis and identify 
therapeutic targets. Similarly, Pirracchio et  al. (27) used ML to 
estimate the ITE of corticosteroids in septic shock patients, showing 
that AI-based individualized treatment strategies could provide a 
positive net benefit and improve survival rates in 2020.

Beyond individual treatment effects, AI models have been used to 
predict long-term outcomes in sepsis survivors. Wang et  al. (34) 
discussed AI-driven clinical decision support tools to predict long-
term functional outcomes in pediatric sepsis patients. These tools 
integrate EHRs, physiological data, and treatment histories to predict 
recovery and long-term complications. The study showed that AI 
models significantly outperformed traditional prognostic scores, 
providing more precise and individualized predictions. Similarly, 
Sweeney et al. (20) validated the Sepsis MetaScore, a gene-expression-
based prognostic tool, which provided highly accurate predictions of 

https://doi.org/10.3389/fmed.2024.1510792
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2024.1510792

Frontiers in Medicine 08 frontiersin.org

sepsis outcomes in neonates, further showcasing AI’s utility in 
prognostic modeling in 2018.

AI’s ability to analyze vast amounts of data also extends to 
identifying sepsis sub-phenotypes and their associated outcomes. 
Komorowski et al. (22) reviewed ML applications in characterizing 
sepsis sub-phenotypes based on biomarkers and clinical data in 2022. 
By identifying distinct subgroups of sepsis patients, AI models can 
predict disease trajectories and tailor interventions to individual 
patient needs. This approach improves prognostic accuracy and 
facilitates the development of targeted therapies to enhance patient 
outcomes. Cheungpasitporn et  al. (28) highlighted the use of 
unsupervised learning techniques to uncover clinically relevant 
sub-phenotypes in sepsis-associated acute kidney injury (SA-AKI) 
patients, enabling more personalized and effective 
management strategies.

Additionally, AI-based prognostic models are being integrated 
into real-time clinical workflows to support dynamic risk assessment 
and management. Zhang et  al. (35) conducted a meta-analysis 
comparing automated alert systems to usual care in sepsis 
management. The study found that ML-based alert systems 
significantly reduced sepsis mortality by offering continuous risk 
assessments and timely interventions. This real-time integration of AI 
models into clinical practice enhances the ability to monitor patient 
status and predict adverse outcomes, improving clinical outcomes. 
Similarly, Davis et al. (31) proposed continuous predictive analytics 
monitoring, which uses AI to track patient deterioration and provide 
early warnings of critical events, optimizing sepsis management and 
reducing mortality.

Deep learning models, particularly convolutional and recurrent 
neural networks, are ideal for predicting the progression of sepsis and 
its complications, such as sepsis-associated acute kidney injury 
(SA-AKI) or acute respiratory distress syndrome (ARDS). These 
models excel at processing complex, high-dimensional data, such as 
time-series data from continuous monitoring systems or unstructured 
clinical notes. For example, recurrent neural networks (RNNs) are 
particularly effective in ICU settings where temporal patterns in vital 
signs or laboratory results are critical for predicting disease 
trajectories (12).

Deep learning’s ability to integrate multimodal data—combining 
EHRs, imaging, and genomic data—further enhances its applicability 
for personalized sepsis care. However, their “black-box” nature 
requires additional tools, such as attention mechanisms, to improve 
interpretability for clinical use (36).

In conclusion, AI has transformed sepsis prognosis and outcome 
prediction by providing accurate, individualized, real-time insights 
into disease progression and patient outcomes. By integrating 
advanced ML algorithms with comprehensive patient data, AI models 
can significantly enhance prognostic accuracy, guide personalized 
treatments, and improve overall clinical outcomes in sepsis 
management. By addressing these challenges, the full potential of AI 
to revolutionize sepsis care can be  realized, leading to improved 
patient outcomes and reduced mortality rates.

8 Results and discussion

Artificial Intelligence (AI) has emerged as a transformative tool in 
sepsis management, offering promising advancements in early 

detection, outcome prediction, and personalized treatment. Machine 
learning (ML) and deep learning models have demonstrated 
significant improvements over traditional methods by analyzing 
complex datasets and identifying patterns often missed by 
conventional diagnostic tools. For example, AI algorithms, such as 
random forests and deep neural networks, have shown the ability to 
predict sepsis onset hours before clinical symptoms appear, with some 
models achieving AUROC values above 0.90. These capabilities enable 
timely interventions, which are critical in reducing sepsis-related 
mortality and improving patient outcomes. Furthermore, advanced 
predictive models have been developed to forecast disease progression 
and complications, such as sepsis-associated acute kidney injury 
(SA-AKI) and acute respiratory distress syndrome (ARDS), thereby 
supporting informed clinical decision-making (36).

AI’s transformative potential in sepsis management is further 
underscored by its ability to integrate diverse data sources for clinical 
purposes such as early warning, treatment optimization, and 
monitoring. Emerging data types include transcriptomic profiles, 
proteomics, imaging data, and unstructured text from electronic 
health records (EHRs). These rich datasets enable AI models to 
identify sepsis subgroups, predict treatment responses, and tailor 
therapeutic strategies. For instance, Zhang et al. (32) utilized multi-
omics integration to identify septic shock subgroups, leveraging 
transcriptomic and proteomic data to guide fluid management 
strategies, achieving a predictive accuracy with an AUC of 0.802. 
Additionally, Wang et al. (7) demonstrated the importance of fluid 
balance trajectories derived from longitudinal ICU data, revealing 
their strong association with hospital mortality and organ dysfunction.

These examples highlight the increasing utility of advanced 
datasets in enhancing the precision of AI models for sepsis care. 
Transcriptomic data provide insights into cellular responses and 
systemic inflammation, while imaging data can reveal structural 
changes indicative of complications. Unstructured clinical notes 
contribute valuable contextual information, enabling comprehensive 
decision support. By combining these data modalities, AI has the 
potential to transform sepsis management from reactive to predictive 
and personalized approaches.

Despite these advancements, challenges persist in the 
implementation of AI for sepsis management. A major limitation is 
the lack of generalizability across diverse clinical settings. AI models 
trained on datasets from specific populations often exhibit decreased 
accuracy when applied to new or varied demographic and geographic 
contexts. This variability underscores the need for more diverse and 
inclusive datasets to enhance the robustness and adaptability of AI 
tools. Additionally, many AI models rely on static data, limiting their 
utility in dynamic clinical environments where patient conditions can 
change rapidly. Developing real-time adaptive AI systems capable of 
continuous learning and updating based on new data is critical for 
achieving broader clinical applicability.

The discussion would be  incomplete without addressing the 
comparison between AI and traditional diagnostic tools for sepsis. 
While tools like the Sequential Organ Failure Assessment (SOFA) and 
the Modified Early Warning Score (MEWS) remain integral to clinical 
workflows, AI has consistently outperformed these methods in terms 
of sensitivity, specificity, and efficiency. For instance, AI-based systems 
can analyze vast amounts of electronic health record (EHR) data in 
real time, enabling faster and more accurate diagnoses compared to 
traditional rule-based approaches. However, it is important to 
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acknowledge that traditional tools provide a foundation for validating 
AI systems and serve as benchmarks for measuring AI’s performance 
in clinical practice.

Ethical and regulatory considerations are also central to the 
adoption of AI in sepsis care. Data privacy and algorithmic 
transparency are critical concerns, especially given the sensitivity of 
medical data and the complexity of AI decision-making processes. 
Regulatory frameworks must strike a balance between encouraging 
innovation and ensuring patient safety. Additionally, algorithmic 
biases, often resulting from imbalanced training datasets, pose a risk 
of exacerbating disparities in healthcare outcomes. Addressing these 
biases through continuous monitoring, validation, and inclusive 
model development is essential to ensure equitable access and 
effectiveness of AI tools in diverse populations.

In summary, while AI has shown immense potential in 
transforming sepsis care, critical challenges related to generalizability, 
adaptability, and ethical considerations remain. By addressing these 
limitations and integrating AI with existing diagnostic tools, 
healthcare providers can harness its full potential to revolutionize 
sepsis management, ultimately improving patient outcomes and 
reducing the global burden of this life-threatening condition.

The suitability of different AI models varies significantly 
depending on the clinical context, with each offering distinct 
advantages tailored to specific settings. In intensive care units (ICUs), 
advanced models such as deep learning and reinforcement learning 
excel due to the availability of data-rich environments. These settings 
often feature continuous monitoring systems, allowing these 
sophisticated models to provide precise predictions and dynamically 
adjust treatment strategies in real time. Conversely, in emergency 
departments or resource-limited settings, simpler machine learning 
models are more appropriate. These models are valued for their 
computational efficiency and ease of implementation, enabling rapid 
deployment and effective decision support even in environments with 
constrained resources or limited access to advanced infrastructure. 
This flexibility across contexts underscores the importance of selecting 
AI models that align with the specific demands and capabilities of 
different clinical settings.

Artificial Intelligence (AI) has emerged as a transformative tool in 
sepsis management, offering promising advancements in early 
detection, outcome prediction, and personalized treatment. Machine 
learning (ML) and deep learning models have demonstrated 
significant improvements over traditional methods by analyzing 
complex datasets and identifying patterns often missed by 
conventional diagnostic tools (37, 38). For example, AI algorithms, 
such as random forests and deep neural networks, have shown the 
ability to predict sepsis onset hours before clinical symptoms appear, 
with some models achieving AUROC values above 0.90 (39, 40). These 
capabilities enable timely interventions, which are critical in reducing 
sepsis-related mortality and improving patient outcomes (41). 
Furthermore, advanced predictive models have been developed to 
forecast disease progression and complications, such as sepsis-
associated acute kidney injury (SA-AKI) and acute respiratory distress 
syndrome (ARDS), thereby supporting informed clinical decision-
making (42, 43).

AI’s transformative potential in sepsis management is further 
underscored by its ability to integrate diverse data sources for clinical 
purposes such as early warning, treatment optimization, and 
monitoring. Emerging data types include transcriptomic profiles, 

proteomics, imaging data, and unstructured text from electronic 
health records (EHRs) (44, 45). These rich datasets enable AI models 
to identify sepsis subgroups, predict treatment responses, and tailor 
therapeutic strategies. For instance, Yang et al. utilized multi-omics 
integration to identify septic shock subgroups, leveraging 
transcriptomic and proteomic data to guide fluid management 
strategies, achieving a predictive accuracy with an AUC of 0.802 (46). 
Additionally, Bravi et al. demonstrated the importance of fluid balance 
trajectories derived from longitudinal ICU data, revealing their strong 
association with hospital mortality and organ dysfunction (47).

These examples highlight the increasing utility of advanced 
datasets in enhancing the precision of AI models for sepsis care. 
Transcriptomic data provide insights into cellular responses and 
systemic inflammation, while imaging data can reveal structural 
changes indicative of complications (48, 49). Unstructured clinical 
notes contribute valuable contextual information, enabling 
comprehensive decision support (50). By combining these data 
modalities, AI has the potential to transform sepsis management from 
reactive to predictive and personalized approaches (51, 52).

Despite these advancements, challenges persist in the 
implementation of AI for sepsis management. A major limitation is 
the lack of generalizability across diverse clinical settings. AI models 
trained on datasets from specific populations often exhibit decreased 
accuracy when applied to new or varied demographic and geographic 
contexts (53, 54). This variability underscores the need for more 
diverse and inclusive datasets to enhance the robustness and 
adaptability of AI tools (55). Additionally, many AI models rely on 
static data, limiting their utility in dynamic clinical environments 
where patient conditions can change rapidly (17). Developing real-
time adaptive AI systems capable of continuous learning and updating 
based on new data is critical for achieving broader clinical 
applicability (56).

The discussion would be  incomplete without addressing the 
comparison between AI and traditional diagnostic tools for sepsis. 
While tools like the Sequential Organ Failure Assessment (SOFA) 
and the Modified Early Warning Score (MEWS) remain integral to 
clinical workflows, AI has consistently outperformed these methods 
in terms of sensitivity, specificity, and efficiency (57, 58). For 
instance, AI-based systems can analyze vast amounts of electronic 
health record (EHR) data in real time, enabling faster and more 
accurate diagnoses compared to traditional rule-based approaches 
(59, 60). However, it is important to acknowledge that traditional 
tools provide a foundation for validating AI systems and serve as 
benchmarks for measuring AI’s performance in clinical 
practice (61).

Ethical and regulatory considerations are also central to the 
adoption of AI in sepsis care. Data privacy and algorithmic 
transparency are critical concerns, especially given the sensitivity of 
medical data and the complexity of AI decision-making processes (33, 
62). Regulatory frameworks must strike a balance between 
encouraging innovation and ensuring patient safety (63). Additionally, 
algorithmic biases, often resulting from imbalanced training datasets, 
pose a risk of exacerbating disparities in healthcare outcomes. 
Addressing these biases through continuous monitoring, validation, 
and inclusive model development is essential to ensure equitable 
access and effectiveness of AI tools in diverse populations (64).

In summary, while AI has shown immense potential in 
transforming sepsis care, critical challenges related to generalizability, 
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adaptability, and ethical considerations remain. By addressing these 
limitations and integrating AI with existing diagnostic tools, 
healthcare providers can harness its full potential to revolutionize 
sepsis management, ultimately improving patient outcomes and 
reducing the global burden of this life-threatening condition (65, 66).

The suitability of different AI models varies significantly 
depending on the clinical context, with each offering distinct 
advantages tailored to specific settings. In intensive care units (ICUs), 
advanced models such as deep learning and reinforcement learning 
excel due to the availability of data-rich environments (67, 68). These 
settings often feature continuous monitoring systems, allowing these 
sophisticated models to provide precise predictions and dynamically 
adjust treatment strategies in real time (69). Conversely, in emergency 
departments or resource-limited settings, simpler machine learning 
models are more appropriate. These models are valued for their 
computational efficiency and ease of implementation, enabling rapid 
deployment and effective decision support even in environments with 
constrained resources or limited access to advanced infrastructure (46, 
70). This flexibility across contexts underscores the importance of 
selecting AI models that align with the specific demands and 
capabilities of different clinical settings (71).

9 Ethical and practical considerations

The integration of Artificial Intelligence (AI) into sepsis 
management presents significant ethical and practical challenges that 
must be  carefully addressed to ensure its sustainable adoption in 
clinical practice. While AI holds transformative potential, 
considerations around data privacy, algorithmic bias, and model 
transparency are critical to building trust and ensuring equitable 
healthcare delivery.

9.1 Data privacy and governance

AI algorithms rely on vast amounts of patient data, raising 
concerns about privacy and data security (72, 73). Sensitive 
information from electronic health records (EHRs), genomic datasets, 
and real-time monitoring systems must be safeguarded to prevent 
breaches and unauthorized access (74). Establishing robust data 
governance frameworks is essential to address these risks. Frameworks 
such as the Health Insurance Portability and Accountability Act 
(HIPAA) in the United  States and the General Data Protection 
Regulation (GDPR) in Europe provide clear guidelines for handling 
patient data responsibly (75, 76). Future initiatives should also 
emphasize the anonymization of datasets and the use of secure, 
decentralized storage systems to enhance data protection while 
enabling large-scale AI model training (77).

9.2 Algorithmic bias and equity

Algorithmic bias poses a significant challenge in ensuring fair 
and equitable healthcare outcomes (78, 79). AI models trained on 
biased datasets—such as those over-representing specific 
demographics or healthcare settings—may perform poorly in 

underrepresented populations (80). For example, sepsis prediction 
models developed primarily using data from high-resource hospitals 
may fail to generalize to low-resource settings. To mitigate this, 
developers should prioritize diverse and representative datasets 
during training and validation phases (81, 82). Continuous 
monitoring and auditing of AI models are also necessary to identify 
and correct biases, ensuring they perform equitably across different 
populations (83).

9.3 Transparency and explainability

The “black-box” nature of many AI models, particularly deep 
learning algorithms, creates barriers to clinician trust and adoption 
(84, 85). Clinicians often require interpretable insights to make 
informed decisions, particularly in high-stakes scenarios like sepsis 
management (86). Explainable AI (XAI) models address this by 
providing human-readable explanations of predictions (87, 88). For 
instance, attention mechanisms in deep learning models can highlight 
the most relevant features influencing a diagnosis, while rule-based 
systems can offer clear decision pathways (89). Encouraging the use 
of XAI will not only enhance clinician trust but also facilitate 
regulatory approval by demonstrating accountability and 
fairness (90).

9.4 Practical strategies for clinical 
integration

Practical integration of AI systems into clinical workflows 
requires careful consideration of usability and interoperability (91, 
92). AI tools must be seamlessly integrated with existing healthcare 
infrastructure, such as EHR systems, to minimize disruptions (93). 
User-friendly interfaces are critical for ensuring that clinicians can 
easily interpret and act on AI-generated insights. Additionally, 
training programs tailored for healthcare providers are essential to 
enhance their understanding of AI capabilities and limitations (94, 
95). Collaborative efforts between AI developers, clinicians, and 
regulatory bodies will be key to addressing these challenges and 
fostering acceptance.

9.5 Balancing innovation with ethical 
responsibility

While AI offers immense potential to revolutionize sepsis care, it 
is imperative to balance innovation with ethical responsibility. 
Regulatory frameworks should evolve to include AI-specific guidelines 
that emphasize safety, efficacy, and fairness (96, 97). Interdisciplinary 
collaboration between data scientists, ethicists, clinicians, and 
policymakers will ensure that AI systems align with clinical needs and 
ethical standards. Such efforts will pave the way for sustainable and 
responsible AI integration into sepsis management (98, 99).

By addressing data privacy, algorithmic bias, model transparency, 
and practical integration challenges, AI can be  responsibly and 
equitably adopted to enhance sepsis care, fostering innovation while 
ensuring patient safety and trust.
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10 Limitations of applying artificial 
intelligence

10.1 Limited universal applicability

Despite AI’s transformative potential in leveraging clinical data 
and its critical role in diagnosis and treatment, substantial challenges 
remain (Figure 2). One pressing obstacle is ensuring AI models are 
universally applicable across diverse clinical environments. The 
limited universal applicability of AI models is a critical issue. When a 
model developed in one hospital is applied in another, the expected 
outcomes often fail due to differences in workflows, software, 
hardware, database structures, patient demographics, and disease 
epidemiology across institutions (100, 101). For example, variations 
in care practices, technology infrastructure, and population health 
further complicate replicating AI success between facilities (40, 102). 
At the University of Michigan Hospital, the AI system experienced 
alert overload as patient demographics shifted during the COVID-19 
pandemic, leading to increased clinical burden and suspension of the 
model in 2020 (41, 42, 103, 104). This incident highlights broader 
concerns about how unforeseen changes in patient characteristics or 
institutional practices can overwhelm advanced AI systems. This 
underscores that building AI models is not static; continual adaptation 
to patient populations, disease progression, clinical guidelines, and 

hospital environments is essential (43, 105). While these models 
demonstrate significant potential, their effective application requires 
careful matching of model strengths to clinical needs. Future research 
should focus on integrating these models into hybrid frameworks that 
combine their strengths, such as using ML for initial detection and RL 
for adaptive treatment. Moreover, real-world validation in diverse 
settings is essential to ensure generalizability and scalability. To ensure 
lasting clinical utility, AI models may require continuous self-updates, 
enabling them to evolve with changing clinical landscapes, enhancing 
universal applicability and bridging the gap between “computational” 
and “clinical medicine” (45, 106).

10.2 Limited clinical applicability

Another key issue is the perceived limited clinical relevance of AI 
models among medical professionals. Despite technological 
advancements, AI adoption in healthcare is met with skepticism, 
mainly due to the mismatch between complex algorithms and 
practical clinical needs. Studies show healthcare personnel often lack 
a full understanding of AI due to its complex logic, which may not 
align with traditional medical reasoning (44, 107). This disconnect 
can hinder the seamless integration of AI tools into daily medical 
practice, particularly in critical care settings. In predictive models, 

FIGURE 2

Limitations of applying artificial intelligence.
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for instance, alerts triggered before illness onset may not inspire 
confidence among clinicians, as patients have not yet shown clinical 
deterioration (46, 108). Such early alerts may seem unnecessary or 
premature, reducing trust and engagement from healthcare teams. 
Consequently, only 12% of doctors and 38% of nurses believe AI 
models improve diagnostic and treatment services (47, 109). 
However, recent research suggests that if physicians review and 
confirm sepsis alerts within 3 h, antibiotic administration time can 
be reduced by an average of 1.8 h. This shows that timely validation 
of AI alerts by clinicians can significantly improve treatment 
efficiency. Thus, beyond improving AI model accuracy, attention 
must focus on medical staff ’s attitudes toward AI (19). Resistance or 
hesitation from clinicians can pose a significant barrier to AI 
integration into routine clinical workflows. Healthcare professionals’ 
awareness, experience, and acceptance of AI are crucial to its 
practical effectiveness (49, 110). Future research should strengthen 
trust in AI models, align them with clinical diagnostic processes, and 
thoroughly evaluate their real impact on clinical outcomes (50, 111). 
Greater transparency in how AI models reach conclusions may also 
help bridge the trust gap between technology and medical  
professionals.

In short, enhancing the clinical relevance and acceptance of AI in 
sepsis management requires addressing the trust gap, aligning AI 
functionalities with practical clinical needs, and fostering collaboration 
between medical professionals and AI systems to improve 
patient outcomes.

11 Future directions and research 
opportunities

In summary, AI offers transformative potential across the sepsis 
care continuum, from early detection to real-time monitoring and 
outcome prediction. By addressing current challenges and leveraging 
AI capabilities, we can significantly improve patient outcomes and 
revolutionize sepsis management. The integration of AI technologies 
in sepsis care has shown promising results in improving early 
detection, facilitating personalized treatment, and predicting patient 
outcomes. Ongoing efforts are needed to overcome challenges related 
to ethics, clinical integration, and algorithmic bias to fully realize AI’s 
potential in sepsis care.

One promising direction is enhancing AI algorithms by 
incorporating more diverse and comprehensive datasets. Current AI 
models often rely on data from specific populations or healthcare 
settings, limiting their generalizability. Future research should focus 
on integrating data from diverse patient populations, including 
those from different regions, socioeconomic backgrounds, and 
comorbidities. This will help develop more robust and universally 
applicable AI models. Liu et al. (26) highlighted the importance of 
diverse datasets to reduce algorithmic biases and improve AI 
prediction accuracy across different patient groups. Collaborative 
efforts between global healthcare institutions can facilitate the 
creation of large, diverse datasets for training and validating AI 
models (26).

Another critical research area is developing real-time, adaptive AI 
systems. Current AI models provide static predictions based on 
historical data, but sepsis’s dynamic nature requires continuous 

monitoring and real-time decision support. Future AI systems should 
continuously learn and adapt to new data, providing up-to-the-minute 
insights and recommendations. Davis et  al. (31) discussed the 
potential of continuous predictive analytics monitoring, which uses 
real-time data to predict patient deterioration and guide timely 
interventions. These systems could significantly improve sepsis 
management by enabling healthcare providers to respond swiftly to 
changes in patient conditions (31).

Integrating AI with emerging technologies like digital twins and 
wearable devices presents another exciting research opportunity. 
Digital twins, virtual replicas of physical systems, can simulate and 
predict sepsis progression and treatment outcomes in individual 
patients. Dang et al. (112) described using digital twin models in 
neurocritical care, suggesting that similar approaches could apply to 
sepsis management. Combining digital twins with AI allows 
clinicians to test various treatment scenarios and optimize strategies 
for each patient. Additionally, wearable devices with sensors can 
continuously monitor vital signs and other health indicators, feeding 
data into AI systems for real-time analysis and early sepsis 
detection (113).

Ethical and regulatory considerations present ongoing research 
opportunities. As AI becomes more integrated into clinical practice, 
addressing data privacy, security, and ethical use of AI technologies is 
crucial. He et al. (36). emphasized the need for robust data governance 
frameworks and clear ethical guidelines to protect patient privacy 
while enabling effective AI use. Research should also focus on 
developing transparent and interpretable AI models clinicians can 
trust and understand, ensuring AI-driven decisions are made with 
accountability and transparency (36).

Finally, interdisciplinary collaboration is essential to advancing AI 
in sepsis management. Researchers, clinicians, data scientists, and 
regulators must collaborate to address challenges and leverage AI 
opportunities. Collaborative research initiatives and shared resources 
can accelerate AI development and implementation, ultimately 
leading to improved patient outcomes. Pirracchio et  al. (27). 
highlighted the importance of stakeholder collaboration in creating 
regulatory frameworks that balance innovation with patient safety, 
ensuring AI tools are effective and compliant with ethical 
standards (27).

In conclusion, the future of AI in sepsis management holds great 
promise, with many research opportunities to enhance its capabilities 
and applications. By focusing on diverse datasets, real-time adaptive 
systems, emerging technologies, ethical considerations, and 
interdisciplinary collaboration, AI’s potential to transform sepsis care 
can be fully realized. These efforts will pave the way for more accurate, 
personalized, and effective sepsis management, ultimately improving 
patient outcomes and saving lives.

12 Conclusion

The integration of Artificial Intelligence (AI) in sepsis 
management demonstrates significant promise in transforming 
diagnosis, treatment, and overall outcomes for this life-threatening 
condition. By leveraging advanced machine learning (ML) algorithms 
and large datasets, AI enhances early detection, provides diagnostic 
assistance, personalizes treatment plans, monitors patient status in real 
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time, and predicts outcomes with high accuracy. This section explores 
AI’s role across these dimensions, highlighting advancements, 
challenges, and future directions.

AI-driven early detection and prediction models have shown the 
ability to identify sepsis at its onset, enabling timely interventions 
crucial for reducing mortality. Studies by Wang et al. (7) and Bai et al. 
(12) demonstrate that AI models achieve high accuracy in predicting 
sepsis in ICU patients by analyzing clinical variables from electronic 
health records (EHRs). These advancements underscore AI’s potential 
to significantly improve early sepsis detection, enhancing patient 
outcomes through timely and effective treatment. Building on the 
capabilities of early detection, AI also supports diagnostic assistance 
by enhancing accuracy and efficiency in identifying sepsis. Fleuren 
et al. (19) highlighted the efficacy of ML models in predicting sepsis 
with high accuracy across different hospital settings. Additionally, 
tools like the Sepsis MetaScore validated by Sweeney et al. (20) provide 
objective measures of sepsis risk, reducing unnecessary antibiotic use 
and improving clinical outcomes in neonatal sepsis. These examples 
illustrate how AI assists clinicians in making more informed and 
precise diagnostic decisions.

Personalized treatment is another transformative application of 
AI in sepsis care. By analyzing individual patient data, AI models 
predict responses to specific therapies and tailor treatment strategies 
accordingly. Chen et al. (24) developed an autophagy-related gene 
classifier that demonstrated high diagnostic accuracy and predicted 
patient mortality, facilitating personalized treatment decisions. 
Similarly, Petersen et al. (11) used deep reinforcement learning to 
develop an adaptive personalized treatment policy for sepsis, 
significantly reducing mortality rates in simulated patients. 
Personalized treatment gains further depth through immune cell 
profiling, which offers insights into the dysregulated immune 
responses characteristic of sepsis. Immune cell subtypes, such as 
CD4+ T cells and regulatory T cells (Tregs), play critical roles in this 
response and serve as biomarkers for guiding precision treatment 
(114–116). For instance, Liu et al. classified sepsis patients based on 
neutrophil-endothelial cell interactions and immune signaling 
pathways, enabling the identification of distinct endotypes linked to 
clinical outcomes (26). These advancements emphasize AI’s potential 
to optimize therapeutic efficacy and improve patient outcomes 
through tailored treatment approaches.

Real-time monitoring and management represent another critical 
dimension of AI’s role in sepsis care. AI-driven systems such as 
wearable sensors and ML models proposed by Ghiasi et al. (29) have 
shown the feasibility of monitoring and predicting sepsis mortality in 
low-resource settings. Continuous predictive analytics, as 
demonstrated by Davis et al. (31), provide early warnings of patient 
deterioration, enabling timely interventions and optimizing 
management strategies. These innovations underscore the importance 
of real-time data analysis in improving sepsis care, particularly in 
rapidly evolving clinical scenarios.

Despite these advancements, significant challenges remain in 
implementing AI for sepsis management. A major limitation is the 
lack of generalizability across diverse clinical settings, as models 
trained on specific datasets often struggle to perform accurately in 
varied populations. Additionally, many AI systems rely on static data, 
limiting their utility in dynamic clinical environments where patient 
conditions evolve rapidly (11, 117). Addressing these issues requires 
more diverse and inclusive datasets, real-time adaptive systems 

capable of continuous learning, and collaborative efforts 
between healthcare institutions to create comprehensive training 
datasets (118).

Future research must also focus on integrating AI with emerging 
technologies such as digital twins, wearable devices, and multi-omics 
data to enhance predictive and personalized sepsis care. Ethical and 
regulatory considerations, including algorithmic transparency and 
data privacy, must be addressed to ensure sustainable and equitable 
adoption of AI tools in clinical practice. By overcoming these 
challenges, AI can fully realize its transformative potential in 
sepsis management.

In conclusion, AI offers a multifaceted approach to revolutionizing 
sepsis care. From enhancing early detection to providing diagnostic 
assistance, personalizing treatment plans, enabling real-time 
monitoring, and predicting patient outcomes, AI continues to drive 
significant advancements. By addressing current limitations and 
leveraging these opportunities, healthcare providers can harness AI’s 
potential to improve sepsis outcomes, ultimately saving lives and 
transforming sepsis management on a global scale.
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