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Introduction: Bones are a fundamental component of human anatomy, enabling 
movement and support. Bone fractures are prevalent in the human body, and their 
accurate diagnosis is crucial in medical practice. In response to this challenge, researchers 
have turned to deep-learning (DL) algorithms. Recent advancements in sophisticated 
DL methodologies have helped overcome existing issues in fracture detection.

Methods: Nevertheless, it is essential to develop an automated approach for 
identifying fractures using the multi-region X-ray dataset from Kaggle, which 
contains a comprehensive collection of 10,580 radiographic images. This study 
advocates for the use of DL techniques, including VGG16, ResNet152V2, and 
DenseNet201, for the detection and diagnosis of bone fractures.

Results: The experimental findings demonstrate that the proposed approach 
accurately identifies and classifies various types of fractures. Our system, 
incorporating DenseNet201 and VGG16, achieved an accuracy rate of 97% during 
the validation phase. By addressing these challenges, we can further improve DL 
models for fracture detection. This article tackles the limitations of existing methods 
for fracture detection and diagnosis and proposes a system that improves accuracy.

Conclusion: The findings lay the foundation for future improvements to 
radiographic systems used in bone fracture diagnosis.
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1 Introduction

Bones are a vital component of human anatomy, enabling movement and providing 
structural support. Bone fractures, classified as either partial or complete, are disruptions in 
bone continuity. Tibial fractures are the most common type, particularly affecting children, 
athletes, and the elderly, and present significant diagnostic challenges. Consequently, a rapid 
and accurate diagnosis is critical for enhancing the efficiency of the healing process (1).

X-ray, computed tomography (CT), and magnetic resonance imaging (MRI) are the 
predominant imaging modalities used for various conditions, particularly in fracture 
diagnosis. Among these, X-ray is the most widely used and accessible diagnostic tool, in which 
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the targeted body region is exposed to X-ray radiation. Despite 
limitations in image quality, X-rays are sufficient for detecting 
fractures (2, 3). Bone fractures can result from accidents or other 
factors and require prompt care. Orthopedic surgeons typically 
analyze X-rays to identify fractures.

In recent years, machine learning (ML) and deep learning (DL) 
methods have gained prominence in real-time medical analysis (4, 5). 
Various deep convolutional neural network (CNN) models have 
demonstrated success across multiple applications (6, 7). Bone 
fractures, as common injuries, necessitate immediate diagnosis. 
Although medical imaging system was sue to detect fractures, these 
images can be time-consuming, prone to error, and dependent on the 
clinician’s expertise (8, 9). Artificial intelligence (AI) technologies offer 
the potential to automate diagnostic processes, improving the speed 
and accuracy of fracture detection (10–13).The research has been 
conducted on the application of AI to bone fracture identification (14, 
15). The different types of bone fractures are illustrated in Figure 1.

The increasing interest in using ML, particularly DL algorithms 
(16, 17), for processing medical images has been evident in recent 
years. Unlike traditional methods, DL algorithms can automatically 
extract features from images (18, 19). Notably, these methods have 
been employed to analyze X-rays and CT images, assess bone mineral 
density (BMD), identify fractures, and recommend treatments. In 
practice, doctors spend considerable time and effort in manually 
locating fracture sites. The application of DL in computer vision has 
prompted many experts to explore solutions to problems in medical 
imaging. DL methodologies, CNNs have been successfully applied 
across various domains, including healthcare (20–22). DL, a subset of 
ML, specializes in the analysis the medical images. For instance, while 

physicians identify bone fractures through visual assessment of 
X-rays, DL algorithms used to train for performing similar diagnostic 
using comprehensive databases of bone imagery (23–25).

This current research used to enhance existing AI-based tools 
for detecting bone fractures using medical imaging. It focuses on 
studies from the past 10 years, offering a comprehensive evaluation 
of different AI models, their clinical applications, and the challenges 
associated with their practical application. Additionally, the review 
highlights areas where research is lacking and proposes directions 
for future studies. The methodology adheres to a rigorous 
framework to ensure a structured analysis of the existing 
literature (26).

Our study makes key contributions to automated bone fracture 
detection. First, we propose an enhanced DL architecture incorporating 
VGG16, ResNet152V2, and DenseNet201 for fracture detection in 
X-ray images, integrating an attention mechanism for focused analysis 
and dilated convolutions for multi-scale feature extraction. Second, 
our model preserves fine-grained details through skip connections, 
which are crucial for detecting subtle fracture lines across various 
anatomical regions. Finally, this work presents a promising step toward 
developing automated tools to assist radiologists, potentially improving 
medical system for diagnosing fracture bone.

2 Relevant literature

The integration of artificial intelligence (AI) into medical imaging 
has significantly transformed the diagnosis of bone fractures across 
various modalities. X-ray imaging, a foundational tool for identifying 

FIGURE 1

Shows bone fracture samples from the dataset.
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fractures, exemplifies this impact, as AI algorithms, particularly those 
based on deep learning, enhance the detection of bone injuries, improve 
the identification of subtle fracture patterns, and assist in recognizing 
early indicators of conditions such as osteoporosis. This technological 
synergy not only increases diagnostic accuracy but also streamlines 
workflows, enabling radiologists to prioritize complex cases more 
effectively. Additionally, Computed Tomography (CT), which provides 
detailed cross-sectional images of bone structures, benefits from AI 
applications that facilitate precise fracture detection, monitor healing 
progress, and aid in the assessment of associated injuries. Similarly, 
Magnetic Resonance Imaging (MRI) plays a critical role in evaluating 
bone and soft tissue injuries, with AI enhancing image quality and 
interpretation through improved segmentation and anomaly detection. 
This is particularly valuable for complex fracture cases where 
surrounding soft tissue damage may complicate diagnosis. Overall, 
these advancements in AI across X-rays, CT, and MRI significantly 
enhance the accuracy of fracture detection and optimize clinical 
workflows, thereby reshaping the landscape of orthopedic imaging.

Rajpurkar et  al. (27) developed CheXNet, a 121-layer CNN 
capable of diagnosing pneumonia from chest X-rays with greater 
accuracy than physicians. Trained on over 100,000 samples, CheXNet 
highlights the effectiveness of DL application in medical imaging. Lin 
et al. (28) combined classification and regression trees (CART) and 
case-based reasoning (CBR) to create a model for detecting liver 
cancer. CART was employed to identify liver issues, followed by CBR 
to pinpoint specific abnormalities, demonstrating the diagnostic 
potentials of AI. Meanwhile, Dombi et al. (29) employed ANN to 
predict rib fractures, utilizing 20 input features to predict the duration 
of hospitalizations, length of stays in critical care units, survival rates, 
and mortality rates, demonstrating AI’s role in healthcare decision-
making. The ANN demonstrated an accuracy of 98%, indicating the 
significant potential for AI in early diagnosis and medical care. Zhang 
et al. (30) integrated language comprehension with musculoskeletal 
image analysis through TandemNet. Their approach enhances the 
accuracy and comprehensibility of DL models by integrating textual 
and visual data in the analysis of medical reports. Ypsilantis and 
Montana (31) developed a recurrent neural network (RNN) that uses 
visual attention to focus on critical areas of an image for precise 
detection of bone fractures, achieving efficient performance.

Fu et al. (32) developed a method for analyzing medical images 
that preserves the three-dimensional texture and structure of the 
proximal femur, enhancing the visibility of fracture lines and assisting 
physicians in identifying more intricate fracture patterns. Yaqub et al. 
(33) employed an unvalidated ML technique to categorize unidentified 
ultrasound images of fetuses into distinct categories, focusing on 
regions with prominent anatomical features. Their model achieved 
high classification accuracy on an extensive collection of clinical 
ultrasound images. Some studies indicated that their methodology 
was initially trained on a bone imaging dataset prior to categorization.

Yang et  al. (34) developed CNN models to assist in the 
identification and differentiation of intertrochanteric fractures. Their 
dataset was divided into two segments: training, which included 
32,045 images, and testing, which consisted of 11,465 photographs. A 
cascade architecture CNN was utilized to obtain the region of interest 
(ROI), followed by another CNN for segmentation and analysis. In a 
distinct investigation, Haitaamar and Abdulaziz (35) used the UNet 
model to segment rib fractures to categorize CT scan images, with 
images sized at 128 × 128 × 333 pixels. Nguyen et al. (36) applied the 

YOLO 4 model for fracture localization, improving performance 
through data augmentation techniques. Wang et al. (37) developed a 
pyramid network for bone diagnostics using X-ray images, and Ma 
et  al. (38) proposed a two-phase approach for bone fracture 
identification. First, the rapid R-CNN detected 20 fracture sites, 
followed by CrackNet for fracture categorization. A unique Parallel 
Net methodology for fracture classification was also established, 
improving upon the two-scale approach of Wang et al. (39).

3 Methodology

The methodology in this study centers on developing and 
evaluating advanced DL models for the automatic detection of 
bone fractures using X-ray images. To accomplish this, 
we employed a DL approach that involved multiple stages, from 
data preprocessing to model training and evaluation. We used the 
bone fracture multi-region X-ray dataset, a comprehensive 
resource, to build and fine-tune custom models based on three 
well-established architectures, namely, VGG16, ResNet152V2, 
and DenseNet201. Each model was modified and optimized for 
the specific task of bone fracture detection, incorporating 
enhancements such as attention mechanisms and dilated 
convolutions to improve performance. Figure  2 displays the 
architecture of the proposed bone fracture detection system.

3.1 Dataset

This research utilized the bone fracture multi-region X-ray dataset 
from Kaggle, comprising a total of 10,580 radiographic images. These 
images span various anatomical regions, including the lower limbs, 
upper limbs, lumbar spine, hips, and knees, and are categorized into 
fractured and non-fractured cases. The balanced distribution of the 
dataset makes it ideal for training DL models to detect fractures. The 
classes of bone fracture images are presented in Figure 3.

3.2 Preprocessing

Preprocessing involved several key steps to prepare the dataset for 
model training, including image loading, data splitting, and 
normalization. The preprocessing steps of the bone fracture detection 
system are presented in Figure 4.

3.2.1 Data splitting
The bone fracture multi-region X-ray dataset is divided into 7,406 

training images, 2,115 test images, and 1,060 validation images, 
following a 70–20-10 split. This balanced distribution facilitates 
effective training, testing, and fine-tuning of the models across various 
anatomical regions, ensuring robust fracture detection. Figure 5 shows 
the number of images for each class.

3.3 Model architectures

Our research introduces novel enhancements to established DL 
architectures specifically tailored for the challenging task of bone 
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fracture detection. We developed three models based on VGG16, 
ResNet152V2, and DenseNet201, incorporating innovative elements 
to enhance performance and address the unique challenges of medical 
image analysis.

3.3.1 Common enhancements across models
To optimize the performance of the VGG16, ResNet152V2, and 

DenseNet201 architectures for bone fracture detection, 
we implemented four critical enhancements: an attention mechanism, 
dilated convolutions, skip connections, and global average pooling 

(GAP). These modifications were specifically designed to tackle the 
unique challenges of fracture detection in X-ray images.

3.3.2 Attention mechanism
An attention mechanism was incorporated for focusing on key 

ROI within the X-ray images. The attention block processes input 
feature maps using both GAP and global max pooling methods. The 
resulting vectors are concatenated and subsequently processed using 
a shared multi-layer perceptron (MLP) with a bottleneck structure 
comprising two dense layers with ReLU activation. A sigmoid 

FIGURE 2

Architecture of the proposed bone fracture detection system.

FIGURE 3

Sample images of (a) fracture and (b) non-fracture.
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activation function is applied to generate attention weights, which are 
subsequently multiplied element-wise with the original input. This 
mechanism helps the model emphasize features that are most relevant 
to fracture detection, potentially replicating the targeted analysis 
conducted by radiologists.

3.3.3 Dilated convolutions
To capture features at multiple scales, we implemented two dilated 

convolution blocks. The first block uses 256 filters with a 3×3 kernel 
and a dilation rate of 2, while the second block uses 128 filters with a 
3×3 kernel and a dilation rate of 4. Both blocks are followed by ReLU 
activation and batch normalization. Dilated convolutions expand the 
receptive field without increasing the number of parameters, reducing 
spatial resolution. This approach allows the model to consider both 
local details and broader context simultaneously, which is crucial for 
detecting fractures of varying sizes and types.

3.3.4 Skip connection
A skip connection was implemented to preserve fine-grained 

details. The output from the attention block is merged with the output 
from the second dilated convolution block via element-wise addition. 
When necessary, a 1×1 convolution is used to adjust channel 
dimensions before the addition. This integration mitigates the 
vanishing gradient problem in deep networks and helps the model 
retain important low-level features, which are critical for detecting 
subtle fracture lines.

3.3.5 Global average pooling
GAP was applied after the skip connection to reduce the spatial 

dimensions. Each feature map is condensed to a single value by 

averaging all spatial locations, resulting in an output shape of 1x1xC, 
where C is the number of feature maps. GAP acts as a form of 
regularization, decreases the number of parameters, and emphasizes 
identifying features rather than their exact spatial positions. This is 
especially useful when working with X-rays that may have slight 
variations in positioning.

3.3.6 Integration of enhancements
These enhancements were systematically integrated into each 

model in the following sequence: the base model (VGG16/
ResNet152V2/DenseNet201), followed by an attention block, dilated 
convolution blocks, skip connections, GAP, and finally, dense layers for 
classification. The dense layers consist of 128 and 64 units, followed by 
a single unit with a sigmoid activation function for binary classification. 
This enhancement sequence aims to create a model capable of focusing 
on relevant areas, capturing multi-scale features, maintaining 
important low-level information, and making decisions based on the 
overall presence of fracture-indicating features in X-ray images.

3.4 Backbone architectures

In our study, we utilized three prominent DL architectures as the 
backbone for our bone fracture detection models: VGG16, 
ResNet152V2, and DenseNet201. Each of these architectures offers 
distinct advantages in the domain of medical image analysis.

3.4.1 VGG16
VGG16 is known for its straightforward and consistent 

architecture, comprising a total of 16 layers, including 13 convolutional 
layers and three fully connected layers. A notable feature of VGG16 is 
its use of consistently small 3×3 convolutional filters throughout the 
network. This uniformity, combined with max-pooling layers for 
spatial dimension reduction, fosters an effective feature hierarchy. 
Despite having a large number of parameters (138 million), VGG16’s 
strength lies in its ability to capture hierarchical features effectively, 
making it well-suited for a variety of image recognition tasks, 
including medical imaging. The structure of VGG16 is shown in 
Figure 6. The key VGG16 parameters for developing the bone fracture 
detection system are presented in Table 1.

3.4.2 ResNet152V2 model
ResNet152V2, an improved version of the original ResNet, 

features a remarkable depth of 152 layers. Its primary innovation 
lies in the incorporation of residual blocks with skip connections, 
which enables the network to learn residual functions. This 
architecture effectively addresses the vanishing gradient problem, 
facilitating the training of very deep networks. ResNet152V2 

FIGURE 4

Preprocessing steps.

FIGURE 5

Classes of dataset.
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includes several improvements over the original ResNet, such as 
batch normalization applied before convolutions to improve 
training stability, a bottleneck design (1×1, 3×3, 1×1 convolutions) 
in each residual block for increased efficiency, and pre-activation 
with ReLU activation applied before convolutions. Figure  7 
displays the structure of the NesNet52v2 model for developing 
the bone fracture detection system. The parameters of 
ResNet152V2 that used to diagnosis bone fractures is presented 
in Table 2.

3.4.3 DenseNet201 model
DenseNet201 introduces an innovative dense connectivity 

structure, where each layer is directly connected to all preceding 
layers across dense blocks, resulting in a total of 201 layers. This feed-
forward design allows for a more efficient information flow. 
Transition layers between the dense blocks are incorporated to reduce 
dimensionality and optimize performance. The network is 
characterized by its growth rate, which controls the number of feature 
maps added by each layer. This dense connectivity pattern enhances 
information flow and feature reuse, making DenseNet particularly 
effective for tasks that require fine-grained feature detection. Notably, 
DenseNet achieves high performance while using parameters more 
efficiently than traditional CNNs, as it encourages feature reuse 
throughout the network. Figure  8 shows the structure of the 
DenseNet201 model. The parameters of the DenseNet201 model for 
developing bone fracture detection are shown in Table 3.

4 Experimental results

This section details the experimental outcomes of our study, 
which evaluated the performance of three custom DL 

models—VGG16, ResNet152V2, and DenseNet201—designed for 
automatic bone fracture detection from X-ray images.

4.1 Environment setup

The results obtained in this study were generated using equipped 
with an eighth-generation Intel Core i7 processor, 16 GB of RAM. The 
TensorFlow framework (36) was employed for model development. 
These hardware and software configurations for ensuring the efficient 
training of the DL models.

FIGURE 6

The VGG15 model.

TABLE 1 VGG16 model architecture summary with layer types and output 
shapes.

#Layer name 
of VGG16

#Layer_Type of 
VGG16

#Output 
shape

input_1 InputLayer (128, 128, 3)

vgg16_base VGG16 (4, 4, 512)

attention_block AttentionBlock (4, 4, 512)

dilated_conv_1 Conv2D (4, 4, 256)

dilated_conv_2 Conv2D (4, 4, 128)

skip_connection Add (4, 4, 512)

global_avg_pool GlobalAveragePooling2D (512)

dense_1 system Dense (128)

dropout_1 system Dropout (128)

dense_2 system Dense (64)

dropout_2of system Dropout (64)

Output system Dense (Number of classes)
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4.2 Evaluation metrics

To assess our models’ performances, we evaluated them using the 
confusion matrix. Altogether, these metrics provided a thorough 
evaluation of the models’ classification performances. Equations 1–4 
shows the evaluation metrics equation.

 
100TP TNAccuracy

FP FN TP TN
+

= ×
+ + +  

(1)

 
1 2 x100%precision RecallF score

precision Recall
×

− = ∗
+  

(2)

 

 100%
  

True PositivesSensitivity x
True Positives False Positives

=
+  

(3)

 

 100%
  

True NegativesSpecificity x
True Negatives False Negatives

=
+  

(4)

4.3 Models’ performances

The models based on VGG16, ResNet152V2, and DenseNet201 
were trained on the binary classification dataset for bone fractures to 
differentiate between fractured and non-fractured bone images. All 
three models employed the Adam optimizer with a learning rate of 
0.0001 and a batch size of 16. The training was capped at a maximum 
of 50 epochs, with early stopping implemented after five consecutive 
epochs of no improvement in validation loss. Additionally, when 
validation loss of proposed model is remained unchanged for three 
epochs, the learning rate was reduced in to 0.2, with a minimum 
threshold of 1e-6. These optimization strategies were employed to 
ensure efficient training and to prevent overfitting. The specific 
hyperparameters for each model are shown in Table 4.

4.3.1 ResNet152V2’s performance
The ResNet152V2 model was trained on bone fracture images for 

a binary classification dataset with a maximum of 50 epochs, but the 
training process was halted early after 22 epochs due to a lack of 
improvement in the validation loss. Utilizing the Adam optimizer with 
a learning rate of 0.0001 and a batch size of 16, as detailed in Table 5, 
the RestNet52V2 achieved an accuracy of 92.15%, an F1-score of 
92.35%, a sensitivity of 92.86%, and a specificity of 91.84%.

Figure 9 illustrates the performance of the ResNet152V2 model. 
The training accuracy (blue line) consistently improves, nearing 100%, 
while the validation accuracy (orange line) rises rapidly during the 
initial epochs, peaking at around 90% before stabilizing.

The loss curves show a sharp decline in training loss (blue line) as 
the epochs advance. However, the validation loss (orange line) 
demonstrates a comparable but less pronounced drop. At about epoch 
5, the validation loss starts fluctuating, suggesting potential issues with 
the model’s generalization capability on unknown data. This variability 
indicates that the model may benefit from fine-tuning to enhance 
its resilience.

The confusion matrix illustrating the performance of the 
ResNet152V2 model for bone fracture classification is shown in 
Figure 10. The algorithm accurately identified 947 fractured instances 
(TP) and 1,002 non-fractured cases (TN). However, it erroneously 
categorized 89 fractured instances as non-fractured (FN) and 77 
non-fractured cases as fractured (FP). These findings show that while 
the model demonstrates strong efficacy in both detecting and 

FIGURE 7

NesNet52v2 model for detecting bone fractures.

TABLE 2 ResNet152V2 output shapes.

#Layer name of 
NesNet52v2

#Layer_Type of 
NesNet52v2

#Output shape

input_1 InputLayer (128, 128, 3)

resnet152v2 ResNet152V2 (4, 4, 2048)

attention_block AttentionBlock (4, 4, 2048)

dilated_conv_1 Conv2D (4, 4, 256)

dilated_conv_2 Conv2D (4, 4, 128)

skip_connection Add (4, 4, 2048)

global_avg_pool GlobalAveragePooling2D (2048)

dense_1 of system Dense (128)

dropout_1 of system Dropout (128)

dense_2 of system Dense (64)

dropout_2 of system Dropout (64)

Output of system Dense (Number of classes)
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excluding fractures, there is little opportunity for enhancement in 
minimizing misclassifications, especially FNs, which are crucial in 
medical diagnostics.

4.3.2 VGG16’s performance
The VGG16-based model’s training ended after 20 epochs due to 

early stopping, achieving an accuracy of 96.55%, which reflects strong 
performance in distinguishing between fractured and non-fractured 
images. Its F1-score of 96.64% underscores a good balance between 
precision and recall. The model’s recall (sensitivity) reached 97.31%, 
showing its effectiveness in accurately identifying fractured cases. 
Meanwhile, the precision (specificity) was 95.98%, indicating its 

effectiveness in reducing FP. Table 6 shows the results of the VGG16 
model’s performance.

Figure  11 depicts the effectiveness of the VGG16 model in 
classifying bone fractures. The training accuracy (blue line) increases 
significantly, nearing 100%. This signifies the model’s excellent 
assimilation of the training data. The validation accuracy (orange line) 
exhibits a similar pattern, reaching a maximum of about 95% before 
stabilizing after several epochs.

The training loss (blue line) shows a steady decline as the model 
continues to learn, while the validation loss (orange line) initially 
reduces before stabilizing with slight variations. These consistent 
validation loss values suggest that the model is not significantly 
overfitting, although the minor variations imply room for further fine-
tuning to optimize performance.

The confusion matrix for the VGG16 model in identifying bone 
fractures indicates robust performance, as presented in Figure 12. 
The algorithm precisely predicted 992 fractured and 1,050 
non-fractured instances. Notably, it misclassified 44 fractured 
occurrences as non-fractured and 29 non-fractured instances as 

FIGURE 8

The DenseNet201 model.

TABLE 3 DenseNet201 model architecture summary with layer types and 
output shapes.

#Layer name of 
DenseNet201

#Layer_Type of 
DenseNet201

#Output 
shape

input_1 of system InputLayer (128, 128, 3)

densenet201 DenseNet201 (4, 4, 1920)

attention_block AttentionBlock (4, 4, 1920)

dilated_conv_1 Conv2D (4, 4, 256)

dilated_conv_2 Conv2D (4, 4, 128)

skip_connection Add (4, 4, 1920)

global_avg_pool GlobalAveragePooling2D (1920)

dense_1 of system Dense (128)

dropout_1 of system Dropout (128)

dense_2 Dense (64)

dropout_2 Dropout (64)

Output Dense (Number of 

classes)

TABLE 4 Hyperparameters of each model.

#Hyperparameter #Values of system

Optimizer_Function_proposed system Adam

Learning_Rate_proposed system 0.0001

Loss_Function_proposed system Binary cross-entropy

Batch_Size_proposed system 16

Number_Epochs 50

Early stopping patience 5

Reduce LR factor 0.2

Reduce LR patience 3

Min LR 1e-6
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fractured. The VGG16 model has great accuracy and recall, with 
few false positives and false negatives, hence confirming its efficacy 
in differentiating between fractured and non-fractured bones.

4.3.3 DenseNet201’s performance
The DenseNet201-based model’s training concluded after 39 

epochs due to early stopping, with a final accuracy of 97.35%, 
demonstrating its robust performance in distinguishing between 
fractured and non-fractured images. The F1-score of 97.41% 
highlights a balanced trade-off between precision and recall, 
demonstrating the model’s efficacy. With a sensitivity (recall) of 
97.78%, the model effectively identified fractured cases, and its 
specificity (precision) of 97.06% reflects its capability to minimize false 
positives. These results underscore the reliability of the DenseNet201 
model in bone fracture detection tasks. The key results of DenseNet201 
are summarized in Table 7.

The efficacy of the DenseNet201 model in identifying bone 
fractures is demonstrated in Figure  13. The training accuracy 
(blue line) shows a sharp increase during the first epochs, 
eventually stabilizing at approximately 98%. The validation 
accuracy (orange line) follows a similar pattern, though it remains 
somewhat lower than the training accuracy, reaching a peak of 
around 96%.

The training loss (blue line) and validation loss (orange line) both 
exhibit a significant decrease in the early epochs. This signifies that the 
model rapidly reduces errors during the training process. However, 
after about 15 epochs, the validation loss begins to fluctuate, while the 
training loss consistently declines, indicating a probable onset 
of overfitting.

The confusion matrix of the DenseNet201 model is presented in 
Figure 14. Out of the 1,036 fractured instances, the model correctly 
categorized 1,004, with only 32 cases being misclassified as 
non-fractured. Similarly, among 1,079 non-fractured examples, the 
model accurately classified 1,055, with only 24 misclassified as 
fractured. These findings emphasize the DenseNet201 model’s 
exceptional accuracy and minimal misclassification rates, 
underscoring its reliability in differentiating between fractured and 
non-fractured bones in medical imaging applications.

5 Discussion and comparative analysis

In recent years, bone fracture diagnosis and classification have 
garnered significant research interest due to the increasing need for 
reliable solutions. Is it possible to identify and treat every fracture in 
the human body? This work aimed to simplify fracture diagnosis and 
accelerate the diagnostic process by leveraging DL models to examine 
bone images.

Three modified DL models—DenseNet 201, ResNet 152 V2, and 
VGG16—were trained for bone fracture diagnosis and evaluated 
based on four key criteria: accuracy, F1-score, sensitivity (recall), and 
specificity. This comparative analysis provided deeper insights into 
each model’s performance.

DenseNet 201 emerged as the most consistent model, achieving a 
maximum accuracy of 97.35%. This high level of accuracy underscores 
the model’s precision in distinguishing between fractured and 
non-fractured bone scans. With an F1 score of 97.41%, DenseNet201 
successfully balances accuracy and recall, minimizing both false 

TABLE 5 Results for diagnosis bone fractures using ResNet152V2 model.

Class name Precision (%) Recall (%) F1-Score (%) Support/validation

Fractured 92 91 92 1,036

Not fractured 92 93 92 1,079

Accuracy 92 2,115

Macro_Avg_over system 92 92 92 2,115

Weighted_Avg_over system 92 92 92 2,115

FIGURE 9

Performance of the ResNet152V2 model in terms of (a) accuracy and (b) loss.
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positives and false negatives. Additionally, the model’s sensitivity of 
97.78% indicates its strong ability to consistently detect actual fracture 
cases, while its 97.06% specificity reflects its effectiveness in reducing 
false positives.

The VGG16 model also performed notably well, with an accuracy 
of 96.55% and an F1-score of 96.64%. With a specificity of 95.98%, 
VGG16 showed relatively poor performance, indicating a significantly 
elevated incidence of false positives. Although the model demonstrated 
superior efficacy in fracture recognition (97.31% sensitivity) compared 
to DenseNet201, its specificity for fractures was much lower.

ResNet152V2 underperformed compared to the other models, 
with an F1-score of 92.35%, accuracy of 92.15%, and sensitivity of 
92.86%. Its relative inability to adequately minimize false positives 
rendered its specificity of 91.84% unsuitable for this specific task.

Table  8 distinctly highlights the performance metrics of the 
DenseNet 201, ResNet152V2, and VGG16 models in terms of 
accuracy, F1-score, sensitivity (recall), and specificity (precision). 
While all three models demonstrated the capability to identify bone 

fractures, DenseNet201 was the most reliable and precise, exhibiting 
superior balance across all critical performance metrics. VGG16 
followed closely in second place, while ResNet152V2, despite its 
functionality, was less suited for medical image classification in this 
context, exhibiting limitations in both accuracy and recall. We provide 
a comprehensive performance analysis encompassing all 
three versions.

Figure 15 depicts a receiver operating characteristic (ROC) curve 
used to assess the efficacy of a DenseNet201 classification model for 
bone fracture diagnosis. The graph presents the true positive rate 
(TPR) in relation to the false positive rate (FPR) across various 
threshold configurations. The orange line represents the ROC curve 
of the model, showcasing its ability to differentiate between classes. 
The model scored of 0.99, indicating exceptional performance in 
accurately classifying fractures.

DenseNet201 outperformed ResNet152V2 and VGG16 mainly 
due to its dense connectivity structure, which connects each layer 
to all preceding layers. This architecture allows for more efficient 

FIGURE 10

Confusion matrix of the ResNet152V2.

TABLE 6 Results for diagnosis bone fractures using VGG16 model.

Class name Precision (%) Recall (%) F1-score (%) Support/validation

Fractured 97 96 96 1,036

Not fractured 96 97 97 1,079

Accuracy 97 2,115

Macro_Avg_over system 97 97 97 2,115

Weighted_Avg_over system 97 97 97 2,115
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feature reuse and better gradient flow, helping the model capture 
both fine details and larger patterns. In the context of medical 
images like X-rays, where subtle fractures may be  difficult to 
detect, this enhanced feature extraction made DenseNet201 
particularly effective. Moreover, DenseNet201 uses fewer 
parameters compared to the other models, despite its depth. This 
efficiency reduces the risk of overfitting, which is crucial when 
working with medical image datasets that can be limited in size. 
The ability to maintain high performance with fewer parameters 
gave DenseNet201 a clear advantage in our experiments. Table 9 

shows comparison of diagnosis system based on DL models for 
detecting and classifying bone fracture.

6 Limitations and future work

Despite the promising results achieved in bone fracture detection, 
several limitations warrant acknowledgment. The primary constraint 
lies in our dataset’s composition, which, while substantial, could 
benefit from greater diversity in fracture types to enhance model 

FIGURE 11

Performance of the VGG16 model in terms of (a) accuracy and (b) loss.

FIGURE 12

Confusion matrix of the VGG16 model.
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FIGURE 14

Confusion matrix of the DenseNet201 model.

TABLE 7 Results for diagnosis bone fractures using DenseNet201 model.

Class name Precision (%) Recall (%) F1-score (%) Support/validation

Fractured 98 97 97 1,036

Not fractured 97 98 97 1,079

Accuracy 97 2,115

Macro_Avg_over system 97 97 97 2,115

Weighted_Avg_over system 97 97 97 2,115

FIGURE 13

Performance of the DenseNet201 model.
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generalizability. Furthermore, our current approach’s exclusive focus 
on X-ray imaging modalities, though practical, may limit the system’s 
broader clinical applicability. To address these limitations and advance 
the field, we  propose several directions for future research. First, 
architectural enhancements to ResNet152V2 and VGG16 could 
incorporate transformer-based attention mechanisms, potentially 
improving the detection of subtle fractures and focusing on critical 
regions within X-ray images. We also suggest exploring alternative 
architectural designs for deeper feature extraction and efficient 
processing, aiming to optimize the balance between model complexity 
and performance. Image processing improvements represent another 
promising avenue. Implementing advanced enhancement techniques, 
including contrast adjustment and noise reduction, could significantly 
improve fracture visibility and, consequently, detection accuracy. 
Additionally, integrating segmentation techniques could enable 
precise isolation of fracture regions, enhancing both model precision 
and diagnostic utility. Finally, expanding the scope of imaging 
modalities beyond X-rays to include CT and MRI scans could broaden 
the system’s clinical applications. This multi-modal approach, 

combined with a more diverse dataset, would strengthen the model’s 
generalizability and practical value in various medical settings.

7 Conclusion

Fracture patients often present as emergencies and can 
be inaccurately diagnosed using radiologic imaging. A growing body 
of research employs AI methodologies to assist in fracture 
identification and complement physician diagnoses. DL methods have 
been established as crucial tools in disease detection and treatment, 
and researchers are investigating cutting-edge technologies to improve 
healthcare processes. The automation of bone fracture detection and 
categorization remains a key area of research. Traditional methods for 
evaluating lower leg bone fractures have faced challenges in accurately 
detecting and locating fractures.

To address these issues, we proposed a transfer learning model 
utilizing VGG16, ResNet152V2, and DenseNet201 for fracture 
identification and classification. We  assessed this model using a 

TABLE 8 Performance of the DL model.

Model 
name

Accuracy 
(%)

F1-
score 

(%)

Sensitivity 
(%)

Specificity 
(%)

ResNet152V2 92.15 92.35 92.86 91.84

VGG16 96.55 96.64 97.31 95.98

DenseNet201 97.35 97.41 97.78 97.06

FIGURE 15

ROC of DenseNet201.

TABLE 9 comparison results.

References Model Accuracy

Karimunnisa et al. (40) BPNN 91%

Abbas et al. (41) R–CNN 94%

Castro-Gutierrez et al. (42) SVM 80%

Proposed system DenseNet201 97%
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standard dataset of 10,581 images, achieving an overall accuracy of 97% 
in both classification and detection. Our research demonstrates that the 
presented technique is not only simple but highly effective, proving to 
be beneficial for dynamic fracture detection and classification. This 
enables physicians and radiologists to handle a greater number of 
patients while reducing their workload. The proposed strategy 
enhances outcomes, improves runtime performance, and augments 
detection quality compared to state-of-the-art solutions. This article 
offers clinicians valuable insights into recent advancements in 
AI-driven fracture diagnosis by reviewing existing research in the field.
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