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Human immunodeficiency virus (HIV) infection is the cause of acquired 
immunodeficiency syndrome (AIDS). Combination antiretroviral therapy (cART) 
has successfully controlled AIDS, but HIV-associated neurocognitive disorders 
(HANDs) remain prevalent among people with HIV. HIV infection is often associated 
with substance use, which promotes HIV transmission and viral replication and 
exacerbates HANDs even in the era of cART. Thus, the comorbid effects of substance 
use exacerbate the neuropathogenesis of HANDs. Unraveling the mechanism(s) of 
this comorbid exacerbation at the molecular, cell-type, and brain region levels may 
provide a better understanding of HAND persistence. This review aims to highlight 
the comorbid effects of HIV and substance use in specific brain regions and cell 
types involved in the persistence of HANDs. This review includes an overview 
of post-translational modifications, alterations in microglia-specific biomarkers, 
and possible mechanistic pathways that may link epigenomic modifications to 
functional protein alterations in microglia. The impairment of the microglial 
proteins that are involved in neural circuit function appears to contribute to 
the breakdown of cellular communication and neurodegeneration in HANDs. 
The epigenetic modification of N-terminal acetylation is currently understudied, 
which is discussed in brief to demonstrate the important role of this epigenetic 
modification in infected microglia within specific brain regions. The discussion 
also explores whether combined antiretroviral therapy is effective in preventing 
HIV infection or substance-use-mediated post-translational modifications and 
protein alterations in the persistence of neuropathogenesis in HANDs.
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1 Introduction

Recent advances in combined antiretroviral therapy (cART) have visibly reduced the levels 
of HIV infection, replication, and HIV/AIDS progression. Moreover, these advances have 
contributed to gaining a better understanding of central nervous system (CNS) viral invasion, 
persistence, and neuropathogenesis (1–4). It is evident that while cART can control viral 
replication, a cure for HIV/AIDS remains elusive due to the persistence of the HIV-1 latent 
reservoir in microglia and monocytes/macrophages, as well as the limited penetration of cART 
across the blood-brain barrier (BBB) and its confinement within the restricted skull cavity 
(5–8). However, it has been shown that there is a direct correlation between ART 
concentrations and HIV-1 viral load in the brain (9), which indicates that cART can penetrate 
the BBB and enter the brain. Penetration of cART into the brain has been shown to cause 
adverse effects, including neurological complications (10–12). An equally important concern 
regarding HIV infection is the multifaceted complications fueled by substance use, such as 
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cocaine, amphetamine, alcohol, and opioids. Opioids alone consist of 
several drugs of abuse, such as morphine, heroin, buprenorphine, 
oxycodone, fentanyl, methadone, and nalorphine (12). The 
interactions of these drugs with HIV-1 and their mechanisms of 
action are different for each drug. This review focuses on the role of 
long-term substance use that could contribute to the development and 
progression of HANDs arising from immune cell suppression, 
neuroinflammation, and neurodegeneration. Although these risk 
factors contribute to the development of HANDs, there are currently 
limited discussions regarding the interactive role of substance use that 
may contribute to risk factors of HIV transmission, infection, and 
non-adherence to cART regimens.

One of the common factors in substance use that contributes to 
neuro-AIDS development is undoubtedly damage to the BBB, which 
promotes the infiltration of infected cells into the brain for the 
progression of HANDs (2). Substance use, such as alcohol, is indeed a 
risk factor for HIV infection (13, 14) that contributes to the reduction 
in CD4+ T cells in HIV patients (15, 16). The comorbid effects of 
substance use in HANDs include depressive symptoms (17), memory 
loss (18), increased neuropathy (19), and an elevated mortality rate 
among HIV/AIDS patients (20). Thus, the BBB disruption, oxidative 
stress, cytokine release, and neuroinflammation mediated by HIV 
infection and substance use are thought to be due to the persistence of 
HANDs (21–24). Moreover, the cure/prevention of this fatal disease is 
hampered by the persistence of the HIV reservoir. The stability of the 
latent HIV-1 reservoir is harbored in the central memory CD4+ T cell 
genotype, and the integrated HIV DNA is harbored in the transitional 
memory CD4+ T cell genotype (25, 26). Together with these CD4+ T 
cells, the persistence of HIV-1 latency and HIV reservoirs in microglia, 
macrophages, and inflammatory monocytes within the restricted skull 
cavity appear to play a crucial role in the recurrence of HIV-1 self-
renewal, reinfection upon cART withdrawal (27–29), and perhaps the 
chronic prevalence of HANDs. In fact, the use of highly suppressive 
cART has significantly controlled HIV/AIDS into a manageable 
chronic disease (2), but the prevalence of HANDs remains at 40–50% 
among people with HIV (30–32). In addition to the neuropsychological 
diagnosis of HANDs, it is also crucial to delve deeper into the specific 
brain region harboring the cell types that are explicitly linked to HIV 
resurgence and neuropathogenesis of HANDs. Understanding this 
knowledge gap could pave the path for uncovering the underlying 
molecular and cellular mechanisms and facilitate successful viral 
purging, thus making the cell types linked to HIV resurgence more 
accessible targets for cART.

2 Brain region affected in HANDs

Despite advancements in antiretroviral therapy (ART), the 
prevalence of HIV-associated neurocognitive disorders (HAND) and 
grey matter atrophy remains concerningly high among people with 
HIV (PWH), even with effective viral suppression and restored CD4+ 
counts (30, 32). Grey matter atrophy predominantly affects regions 

such as the frontal and temporal cortices, hippocampus, and basal 
ganglia. These changes are driven by viral proteins (e.g., Tat, gp120), 
chronic neuroinflammation, oxidative stress, and neuronal 
dysregulation. Substance use disorders (SUDs) further exacerbate these 
effects, intensifying neurodegeneration in vulnerable brain regions.

Understanding the specific brain regions and cell types affected by 
HAND and SUDs is critical for developing targeted therapies. 
Neuroimaging studies using powerful magnetic resonance imaging 
(MRI), computed tomography (CT) scanning, and positron emission 
tomography (PET) scans have demonstrated a strong correlation 
between regional brain atrophy and cognitive impairments, offering 
valuable insights into the pathophysiology of HAND. This complex 
interplay underscores the urgent need for a deeper understanding of 
the mechanisms driving selective grey matter atrophy and its 
interactions with comorbid SUDs. Such knowledge is essential for 
designing effective therapeutic interventions to mitigate HAND and 
its associated cognitive deficits.

Neuroimaging techniques have claimed to have the advantage of 
confirming the diagnosis of HANDs because they can exclude other 
diseases that can mimic them (33), but it is reasonable to state that 
the integration of information gathered from neuropsychiatric 
testing, CSF analytical markers, and neuroimaging findings is 
expected to provide a better diagnosis. Neuroimaging techniques 
have observed brain atrophy in all brain regions in PWH, which 
include the frontal, subcortical, temporal, parietal, occipital, and 
cerebellum, as shown by the various studies cited below. However, 
there are also some conflicting results, particularly regarding the 
effects of HIV infection on the brain volume of PWH. The findings 
include a reduced brain volume (34, 35), an increased brain volume 
(36), and no change in brain amygdala volume (37–39). To this end, 
Israel et al. (40) identify two distinct patterns of grey matter atrophy 
in HIV: frontal and anterior cingulate cortex (ACC) atrophy, which 
is associated with disease progression, and caudate/striatum atrophy, 
which is linked to neurocognitive impairments. These regions play 
distinct roles in the development of HIV-associated neurocognitive 
disorders (HANDs). Furthermore, this model generates several 
testable predictions and provides a framework for understanding 
HANDs within the broader context of behaviorally based models in 
people with HIV. A consistent finding is frontal or subcortical 
atrophy, observed in HIV-1 infection with/without substance use, 
such as cocaine, methamphetamine, alcohol, or opioid drugs in 
HANDs/SUDs (37, 40–46). Most neuroimaging studies have 
employed image- or coordinate-based MRI meta-analyses (47, 48). 
The former used full statistical maps and the latter used the reported 
coordinates of peak locations from the available original studies. The 
regions-of-interest-based colocalization likelihood estimation (CLE) 
approach was introduced to quantify atrophy at specific brain regions 
in PWH and people without HIV, which improves the limitations of 
these two voxel-based approaches (40). These studies showed that the 
two distinct atrophied brain regions affected in adults infected with 
HIV were the frontal subcortical and caudate/striatum, which were 
clearly differentiated from those without HIV-infected controls. The 
hallmark of frontal subcortical atrophy was attributed to the early 
development of HANDs, while caudate/striatum atrophy was 
attributed to the progression of neurocognitive impairment in 
HANDs. These findings were in line with those of other MRI-based 
findings that showed that HIV infection selectively damaged the 
cortex, even during the period in which patients received cART (49). 

Abbreviations: HIV, Human immunodeficiency virus; SUDs, Substance use disorders; 

HANDs, HIV-associated neurocognitive disorders; cART, Combined antiretroviral 

therapy; BBB, Blood-brain barrier; PET, Positron emission tomography; CNS, 

Central nervous system; NAT, N-terminal acetyltransferase.
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Further, coordinate-based MRI meta-analysis showed that caudate/
striatum atrophy in HANDs correlated with a decrease in cortical 
thickness and impairment of neurocognitive function (48–50). 
Although most brain regions are affected by HANDs/SUDs, it is 
reasonable to state that frontal subcortical and caudate/striatum may 
be the prominent brain regions selectively affected and atrophied by 
HANDs/SUDs. Supporting these neuroimaging observations, 
neuropathological examinations of postmortem brain tissues from 
individuals with HIV infection and substance use have confirmed 
significant brain damage in the frontal cortex, substantia nigra, and 
cerebellum. This damage is characterized by synaptic and dendritic 
density loss and pronounced neuroinflammation (51–53). Further 
studies have corroborated these findings, noting an increased 
number of infected macrophages and microglia in the perivascular 
space and the presence of multinucleated giant cells—hallmark 
features of HIV-associated neurocognitive disorders (HANDs) 
(54, 55).

3 Specific cell types in affected brain 
regions

It is pertinent to identify whether microglia, astrocytes, or 
infiltrated monocytes/macrophages actively participate in promoting 
the propagation and progression of atrophy in HANDs in these two 
distinct brain regions affected by HIV infection and substance use. 
Together with the role of astrocytes and oligodendrocytes, microglial 
cells are considered one of the key players in maintaining brain 
homeostasis and protecting the well-being of neuronal function in the 
context of HIV infection. Microglia are the brain’s resident innate 
immune cells that act as immune surveillance, phagocytose the 
unhealthy dying cells, and scavenge dead cell debris or toxic proteins 
for the healthy maintenance of the brain environment. As such, 
microglial cells are well fortified with immune defense mechanisms, 
well-orchestrated neurotransmitter molecules, receptors for cellular 
communication, and xenobiotic sensors for the elimination of toxic 
molecules in the brain (56). Microglia and infiltrating inflammatory 
monocytes/macrophages are likely key drivers of neuroinflammation 
and neurodegeneration in the context of HIV infection and substance 
use disorders. HIV infection disrupts microglial function, and these 
effects are exacerbated by substance use, resulting in the release of 
various inflammatory cytokines and subsequent neuroinflammation, 
ultimately contributing to neurodegeneration. It is now well 
established that without the direct involvement of oligodendrocytes 
(57), the HIV-infected microglia, astrocytes, and monocytes/
macrophages serve as the viral reservoir, viral latency, and viral 
resurgence cells in the CNS (30, 31, 58, 59). These factors serve as a 
roadblock to the eradication of HIV/AIDS and effective prevention of 
HANDs; therefore, microglia and monocytes/macrophages have 
attracted considerable interest in the study of the persistence of 
HANDs in substance use disorders. The rationale is that HIV-infected 
innate immune cells have been shown to increase the production of 
inflammatory cytokines TNF-α, IL-1β, IL-4, L-6, IL-2, IFN-γ, and IL-8 
(60–64) in addition to the release of neurotoxic HIV proteins (65–67). 
Similarly, the role of microglia in the brain emerged as novel targets 
in opioid use research because microglia play an important role in 
shaping neural circuitry (68). Thus, identification of the impaired 
neurotransmitter molecules in the infected microglia is likely to afford 

a better strategy to protect these neurotransmitters for improved 
microglia-neuron communication in HIV/SUDs.

On the question of whether substance use impacts HIV infection, 
neuropathogenesis, and latency reversal, there seem to 
be contradictory reports, mostly on the use of opioids. Opioids such 
as morphine, fentanyl, and methadone facilitate HIV infectivity by 
suppressing antiviral genes and altering immune responses, 
particularly in CD4+ T cells and monocyte-derived macrophages 
(MDMs). This includes the upregulation of pro-inflammatory 
cytokines like TNF-α and IL-6, which promote a microenvironment 
conducive to HIV replication (69–71). Methadone, commonly used 
in opioid replacement therapy, compromises T cell responses, 
weakening host resistance to HIV (72, 73). Additionally, opioids 
modulate CXCR4, a co-receptor for HIV-1 entry, enhancing viral 
susceptibility in CD4+ T cells (74). Chronic opioid use increases latent 
HIV reservoirs, with studies showing higher viral loads and latency 
reversal, particularly in heroin users who inject drugs (70, 75, 76). 
These clinical and epidemiological findings were also supported by 
in vitro studies that demonstrated that HIV reactivation was observed 
mostly in opioid users (77).

Buprenorphine, a partial opioid agonist, increases HIV infection 
in CD4+ T cells but does not reactivate latent HIV-1 in resting CD4+ 
T cells, likely due to its unique pharmacological profile (78). Opioids 
also exacerbate HIV-associated neuropathogenesis through 
neuroinflammation and glial activation. Astrocytes and microglia are 
key players in these processes, contributing to neuronal injury and 
amplifying neurodegeneration in HIV-infected individuals (70, 77). 
Despite substantial evidence supporting the detrimental effects of 
opioids on HIV, some studies suggest that their immunosuppressive 
properties might reduce inflammation-driven replication, highlighting 
the complexity of these interactions (79). If HIV-infected monocytes 
fail to migrate into the CNS, the virus may remain in peripheral 
circulation, increasing systemic viral load as these cells act as 
reservoirs and release new virions. These monocytes may migrate to 
other tissues, such as the liver, spleen, or lymph nodes, establishing 
reservoirs or causing local inflammation. Reduced migration to the 
CNS may limit reservoir establishment in the brain, potentially 
decreasing direct CNS inflammation but allowing systemic 
inflammation to affect the CNS indirectly. Recent studies indicate that 
opioid use does not directly affect HIV replication, latency, or 
reactivation but indirectly shapes the HIV reservoir, reducing the 
reactivation of HIV latency (80, 81).

On the other hand, methamphetamine is considered mostly 
stimulatory by activating CD4 T cells, which has been suggested to 
be a contributing factor to HIV replication and disease progression 
(82, 83). Notably, methamphetamine exposure contributed to 
enhanced migration of HIV-infected monocytes into the brain for the 
establishment of HIV reservoirs, persistence, and a source of 
inflammation (84). Moreover, poor adherence to cART regimens by 
methamphetamine users contributed to HIV disease progression (85). 
Furthermore, methamphetamine exposure has been shown to 
suppress T cell proliferation by altering the G-phase cell cycle, thereby 
impairing the innate immune system (86). Moreover, 
methamphetamine treatment significantly suppressed the levels of 
IL-2, IFN-γ, IL-10, and MCP-1 production in mice (87, 88).

In contrast, cannabinoid THC has contradictory effects on CD4 T 
cells and intermediate monocytes. The use of THC, which is considered 
anti-inflammatory, in HIV infection is associated with lower T cell 
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activation, a potential protective mechanism against HIV replication 
(89, 90). However, clinical studies have shown a significant increase in 
intermediate monocyte populations and a notable decrease in TNF-α 
levels in these cell types in cannabis users compared to controls (91, 
92). Conversely, a substantial increase in the levels of cytokines IL-6, 
IL-8, TNF-α, and IL-10 has been observed in cannabis smokers (93). 
Nevertheless, cannabis may alter immune responses in ways that are 
not always beneficial, particularly if it affects the immune system’s 
ability to control HIV replication or repair immune dysfunction. 
Cannabis has been shown to reduce T cell activation and TNF-α levels 
in monocytes, potentially providing a protective mechanism against 
HIV replication. However, clinical studies have also reported an 
increase in intermediate monocyte populations among cannabis users, 
highlighting the complex and potentially dual role of cannabinoids in 
modulating immune responses during HIV infection.

4 Identification of cell phenotypes

Neuroimaging techniques have proven to be powerful tools for 
analyzing region-specific brain atrophy and the detection of microglia 
phenotypes in affected regions of the brain in HIV/SUDs. Among these 
techniques, positron emission tomography (PET) and MRI are widely 
utilized for assessing microglial inflammation. PET scanning has 
emerged as a potential technique for investigating neuroinflammation 
resulting from microgliosis. PET enables the identification of microglial 
phenotypes and the assessment of alterations in functional proteins 
within the identified phenotypes at the cellular and molecular levels, 
respectively (94, 95). Precision is achieved via PET by using radiotracers 
that target the proinflammatory M1 phenotype and various biomarkers 
at the cellular and molecular levels, respectively.

Microglia-specific biomarkers used in PET imaging include 
colony-stimulating factor 1 receptor (CSF1R), mitochondrial 18 kDa 
translocator protein, an array of purinergic receptors (such as the P2X7 
receptor, involved in immune signaling and NLRP3 activation), 
cannabinoid receptor type 2, cyclooxygenase-2 (COX-2), and reactive 
oxygen species (ROS). For example, the PET radiotracer [11C] CPPC 
targeting the CSF1R marker in microglia has demonstrated increased 
uptake in murine and non-primate models of neuroinflammation (96), 
murine models of Alzheimer’s disease (AD) (97), AD postmortem 
brain tissues (98), epilepsy seizure imaging (99), and PET imaging of 
microglial activation in patients with multiple sclerosis or cerebellar 
ataxia in HIV infection (100, 101). Similarly, the use of an 11C-CB184 
PET scan revealed elevated uptake of 11C-CB184 in cerebellar microglia 
of a gp120 mouse model of HIV infection (102) and in humans with 
HIV (103). Specifically, CSF1R, TSPO, P2X7, and CB2 are particularly 
relevant for imaging microglial activation in neuroinflammatory 
conditions like HIV. COX-2 and ROS are broader indicators of 
neuroinflammation involving various cell types and activated 
microglia. Identifying the ability of PET imaging to identify neuronal 
cells, astrocytes, oligodendrocytes, and microglial phenotypes is a 
significant achievement, unraveling the cellular mechanisms associated 
with HANDs (46, 94, 95). A recent article emphasized the importance 
of neuroimaging analysis in people with HIV (PWH), suggesting that 
an improved, common neuroimaging approach may enhance our 
understanding of CNS complications in PWH (104), potentially 
refining the characterization of HAND persistence. Emerging 
advancements in PET neuroimaging techniques targeting activated 

microglia contribute to a better understanding of neurochemical-
stimulated neurophysiological alterations in HANDs (46).

In addition, the advancement in capturing the presence of 
macrophage/microglia M1/M2 phenotypes, CD8+ T cell CD4dim 
CD8bright T cell phenotypes, and astrocyte A1/A2 phenotypes in the 
restricted skull cavity, perivascular, and meningeal space provides an 
important predictor of HIV infection/invasion in the brain. This 
comprehensive assessment may contribute to the understanding of 
neuroinflammation, neurodegeneration, and persistence of HANDs 
in PWH. In the context of HIV and substance use disorders, increased 
expression of M1 macrophage or microglia phenotypes, the astrocyte 
type A1 subset, and CD8+ T cells in these brain regions would suggest 
HIV/SUD-induced neuroinflammation in HANDs and other 
neurological diseases (105, 106). In contrast, elevated expression of 
M2 microglia or macrophage phenotypes (107, 108), the astrocyte 
type A2 subset (109, 110), and the CD8+ T cell CD4dim CD8bright subset 
(111–113) would indicate an anti-inflammatory response to HIV 
neuro-invasion.

While HIV primarily infects and activates proinflammatory cell 
phenotypes in microglia and monocytes/macrophages, the question of 
astrocyte infection has been debated. Earlier studies demonstrated HIV 
infection in astrocytes by observing the integration of HIV-1 DNA in 
the astrocyte genome (114, 115). Most recent studies have concluded 
that astrocytes are not directly infected by HIV-1 in the brain but are 
activated by the virus. HIV infection in the brain occurs primarily in 
microglia and migrated monocytes/macrophages (116). It was 
previously believed that HIV infects only differentiated macrophages, 
not monocytes (117–119); however, recent findings have demonstrated 
that HIV can infect monocytes, which also act as reservoirs in the brain 
(120, 121). In light of these findings, it is safe to assert that neuroimaging 
techniques, particularly those utilizing PET radioligand binding 
methods, play a crucial role in assessing glial and monocyte 
inflammatory phenotypes during neuroinflammation (29, 122, 123). 
Therefore, delving into the underlying molecular mechanisms involved 
in inflammatory phenotypes becomes essential, which may offer 
insights into the supportive infection of bystander neuroimmune cells 
and potentially contribute to the severity of HANDs.

5 Molecular events in HIV/SUDs

While noninvasive neuroimaging techniques offer insights into 
immune cell response and longitudinal tracking in specific brain 
regions, understanding the molecular mechanistic events that may 
occur within the infected cells or activated cells surpasses the 
capabilities of neuroimaging techniques. It is well established that 
infected microglia or activated astrocytes produce a cascade of 
inflammatory cytokines, chemokines, ROS, and toxic HIV proteins 
(60–67). Concurrently, a decrease in anti-inflammatory cytokines and 
interferons is observed in both HIV infection (124, 125) and substance 
use disorders, such with alcohol, opioids, cannabinoids, and other 
drugs of abuse (126–128). Consequently, the production of 
proinflammatory agents outweighs the retention of anti-inflammatory 
molecules in HIV-infected or substance-exposed microglia. Therefore, 
it is crucial to understand the balance of these functional molecules 
within these affected cells during the inflammatory process.

Microglia, the brain’s innate immune cells, are equipped with 
immune surveillance, phagocytic scavenging capabilities, and 
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functional receptor proteins that are essential for various 
neurophysiological functions. Some of these molecules that are 
predominantly expressed in microglia include ATP-dependent 
ionotropic purinergic receptor (P2X7R) (129, 130), metabotropic 
purinergic receptor (P2Y12R) (131, 132), colony-stimulating factor 1 
receptor (CSF1R) (96, 133), cyclooxygenase-1/2 (134, 135), triggering 
receptor expressed in myeloid cells (TREM1) (136–138), cannabinoid 
type 2 receptor (CB2R) (139, 140), and γ-aminobutyric acid type B 
(GABA-B) receptors (141, 142). These biomarker receptors are mostly 
expressed in microglia and regulate cell proliferation, survival, 
differentiation, activation, and neurotransmission, and they also serve 
as sensors for apoptotic cell death. It should be noted that the above-
cited biomarkers are not just limited to microglia; they are also 
expressed in other brain cell types, including monocytes/macrophages.

Recent findings highlighted that activation of microglia GABA-B 
receptor and CSF1R by astrocytic GABA release plays an important 
role in the microglia-neuron communication pathway (143, 144). 
While these microglia receptors remain inactive under normal 
physiological conditions, their significant up-regulation occurs during 
HIV-associated neuroinflammation (137, 145, 146). The activation of 
microglia and its receptors undoubtedly plays a vital role in the 
progression of neuroinflammation in HANDs and substance use 
disorders, such as with the long-term use of cocaine, morphine, 
amphetamine, alcohol, and opioids (146–149). Radiotracers that 
target these microglia receptors as biomarkers for inflammatory and 
neurodegenerative diseases have garnered considerable interest in the 
longitudinal visualization of disease progression (96, 128, 132, 135, 
138). Beyond targeting these functional receptors, it is imperative to 
discuss the involvement of epigenomic, genomic, and transcriptomic 
factors in HIV/SUD-activated microglia that may contribute to the 
development of neuroinflammatory diseases.

6 Impact of epigenetics in HANDs

Recent interest has surged regarding research into understanding 
the effects of microglial epigenetic and transcriptomic modifications 
on the pathophysiology and neuropathogenesis of substance use 
disorders (69). Notably, these epigenetic or transcriptomic landscape 
modifications in microglial phenotypes exert control over 
neurophysiological functions and offer potential molecular 
mechanisms in neurological diseases (150, 151). This discussion 
focuses on the epigenetic modifications occurring in brain-resident 
microglia, which appear to exhibit a distinct epigenome, 
transcriptome, and chromatin landscape that differs from engrafted 
parenchymal brain macrophages (150), ex vivo cell cultures (152, 153), 
or microglia during the neurodevelopmental stage (154–156). It is 
rather challenging to distinguish between microglia and migrated 
macrophages in the brain because of the shared lineage and similar 
functional receptors (157, 158). To this end, a recently identified 
microglia-specific biomarker, transmembrane protein 119 
(TMEM119), appears to be a promising authentic microglia-specific 
biomarker for cell phenotyping, as demonstrated by an investigation 
of transcriptional identity and developmental heterogeneity in single-
cell sequencing (159–163). Recently, the chromatin landscape for 
HIV-1 integration determinants in microglia was identified at the 
CTCF-enriched domain (164), and region-specific epigenetic and 
transcriptomic alterations induced by HIV infection and substance 

use disorders in microglia were observed (165). It has been reported 
that HIV infection and substance use can modulate DNA methylation, 
histone modification, and chromatin conformation in microglia, with 
the underlying mechanisms of epigenetic alterations in human disease 
(164–168).

Advancements in various epigenetic modifications have led to a 
new therapeutic approach targeting the inhibition of these alterations 
as a potential cure for HIV/AIDS (169). Strategies include the “shock 
and kill” approach, aiming to shock the provirus into expression and 
then eliminate the cells by the immune system or neutralize them with 
antibodies (170); stimulating latently infected cells and challenging 
them with epigenetic inhibitors of HDACs, DNMTs, or combinations 
(171–173); and the “lock-and-block” approach, which focuses on 
silencing provirus reactivation using inhibitors of Tat (174), mTOR 
inhibitors (175), or inhibitors of an epigenetic reader BRD4 (176).

Epigenetic interventions for an HIV cure primarily revolve 
around the inhibition of lysine methylation or acetylation, given their 
demonstrated requirement for maintaining HIV-1 latency (177, 178). 
The role of N-terminal acetylation, catalyzed by N-terminal 
acetyltransferase (NAT), has been underexplored in HIV infection 
and substance use disorders. However, recent findings highlighted the 
critical role in regulating chromatin function and control of various 
gene expressions that influence functional protein dysregulation (179, 
180). N-terminal acetylation has been implicated in HIV-host 
interactions and mitochondrial epigenetic modification as a cause of 
HIV neuropathogenesis (181). Activation of N-α-acetyltransferase 60 
(NAT60) has been shown to promote influenza A viral infection, 
which inhibited the interferon-α signaling pathway (182), while 
NAT-B-mediated N-terminal acetylation has been shown to inactivate 
influenza virus PA-X and viral polymerase activity (183). Given the 
critical regulatory roles and emerging impact of N-terminal 
acetylation in health and disease, there is undoubtedly considerable 
interest and prospects for research exploring the pivotal role of NAT 
and its inhibitors, in particular, unraveling the epigenetic regulation 
of neurocognitive functional alterations in HANDs/SUDs.

7 Impact of antiretroviral therapy in 
HANDs

The introduction of highly active combination antiretroviral 
therapy (cART) has significantly transformed HIV/AIDS from a fatal 
to manageable chronic disease. However, the impact of cART on the 
prevalence of HANDs remains a subject of ongoing debate. The 
Frascati subclassification of HANDs encompasses asymptomatic 
neurocognitive impairment (ANI), minor neurocognitive disorder 
(MND/HAND), and severe HIV-associated dementia (HAD) (184). In 
the pre-cART era, HAD was associated with high viral loads and CD4 
counts less than 200 cells/μL, while HANDs developed in patients with 
normal CD4 counts (30). In the cART era, there has been a substantial 
reduction in HAD, but the prevalence of HANDs remains noteworthy 
among people with HIV (30–32). Both HANDs and HAD share the 
same root cause, that is, HIV infection followed by chronic 
inflammation and neurotoxicity. The distinguishing factor appears to 
be viremia and CD4 counts, which are effectively managed in the cART 
era. Mild neurocognitive dysfunction in HANDs persists, suggesting 
that while cART effectively inhibits HIV replication, it may not entirely 
counteract the effects of shed neurotoxic viral proteins, secreted 
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inflammatory agents, or ongoing oxidative stress in HIV patients. This 
persistent dysfunction may also be attributed to the “legacy effect,” 
where neuropsychological impairments result from brain damage 
caused by HIV infection during the pre-cART era, adverse side effects 
of cART, or comorbid substance use disorders (185, 186). Despite its 
success, cART has limitations in addressing the multifaceted aspects of 
HANDs. Although it effectively suppresses viral replication, cART 
exerts beneficial and adverse effects on neurocognitive function in 
HANDs. However, during the pre-cART era, HIV infection often led 
to more severe immune system damage, and many people with HIV 
developed neurological impairments such as HANDs due to the lack 
of effective viral suppression (10); however, this did not occur without 
HIV in people with SUDs. We propose that chronic inflammation, 
driven by persistent HIV resurgence and compounded by the adverse 
impact of cART and substance use disorders, contributes to the 
persistence of mild neurocognitive dysfunction in HANDs. However, 
there is limited evidence of neurocognitive effects or brain atrophy 
from PrEP use, as most studies focus on its efficacy for HIV prevention. 
Neurological impacts have been observed in ART users, such as 
cognitive impairments and brain changes, but these findings are not 
well documented in PrEP users without HIV.

Concerns arise from the broad spectrum of adverse effects 
associated with cART, including renal toxicity, mitochondrial 
metabolic impairment, gastrointestinal symptoms, cardiovascular 
effects, hypersensitivity, skin reactions, insomnia, and neuropsychiatric 
symptoms (187–189). These side effects often lead to interruptions in 
cART adherence by people with HIV (190). It is well documented in 
the literature that long-term cART use alone is associated with reduced 
levels of brain-derived neurotrophic factor (BDNF), astrogliosis, and 
increased release of proinflammatory cytokines (IL-1β and TNF-α), 
suggesting potential contributions to HAND development even in the 
absence of HIV infection (191). The co-occurrence of substance abuse 
in HIV infection further complicates cART efficacy and exacerbates 
HAND progression (54). The co-occurrence of substance abuse with 
HIV infection further complicates cART efficacy and exacerbates 
HAND progression (192). Regarding the ability of cART to penetrate 
the blood-brain barrier, evidence suggests that while cART affects 
brain functions, supporting its potential penetration into the CNS, its 
pharmacokinetics vary. Some cART drugs are metabolized quickly 
within the CNS, whereas others, particularly those with high CNS 
penetration effectiveness (CPE) scores, may persist longer. 
Furthermore, cART metabolites or low concentrations of these drugs 
can remain in the CNS for weeks to months post treatment. However, 
their functional effects, such as residual toxicity or viral suppression, 
may differ. Adverse effects on BDNF levels, induction of astrogliosis, 
upregulation of proinflammatory cytokines, and resurgence of HIV in 
microglia upon cART interruption reinforce the complex interplay 
between cART, HIV, and HANDs. The persistence of HIV infection in 
CNS reservoir cells and chronic inflammation may significantly 
contribute to HAND development. To effectively manage HANDs in 
the context of substance use, it is crucial to target HIV reservoir cells 
in the CNS with improved cART to prevent HIV resurgence. HIV 
reservoirs in the CNS primarily include microglia and astrocytes, while 
neurons are indirectly affected by inflammation and viral proteins. 
Improved long-acting cART aims to enhance CNS penetration and 
reduce dosing frequency. However, it faces challenges with HIV latency 
and potential resurgence, increasing the risk of neuroinflammation and 
cognitive decline. Additionally, exploring adjuvant therapeutic 

approaches to mitigate chronic neuroinflammation and neurotoxicity 
resulting from cART adverse effects, toxic viral proteins, secreted 
proinflammatory agents, and continuous oxidative stress remains a 
critical avenue for future research.

Current understandings of CNS HIV reservoirs focus 
predominantly on microglia, but this perspective is limited. 
Astrocytes also play a critical role as reservoirs, contributing to viral 
persistence and CNS dysfunction. While neurons are not directly 
infected, they experience indirect effects such as neurotoxicity, 
inflammation, and oxidative stress. Expanding research beyond 
microglia is essential to fully understand and address the multifaceted 
impact of HIV in the CNS.

8 Concluding remarks and future 
perspectives

In the complex landscape of HANDs, the coexistence of SUDs 
adds layers of complexity to the neuropathogenesis, potentially 
through oxidative stress and prolonged inflammatory processes driven 
by microglia phenotypes and migration of HIV-infected monocytes in 
specific brain regions. In the era of combination antiretroviral therapy 
(cART), it is crucial to delve into the brain-region-specific and cell-
type-specific molecular mechanisms triggering chronic inflammation 
to develop preventive approaches to each of the mechanistic events 
associated with the persistence of HANDs, as described in Figure 1. 
Neuroimaging techniques have provided evidence that frontal 
subcortical and caudate striatum atrophies have been linked to the 
initial development of HIV disease and subsequent neurocognitive 
impairment in HANDs. Neuroimaging methods are believed to have 
the advantage of differentiating HANDs from other diseases that 
might mimic their symptoms, even in the presence of cART. Therefore, 
improvements to combined imaging tools offer hope for the accurate 
identification of specific brain regions affected in HANDs/SUDs and 
the specific types of cells that are involved in the progression of chronic 
inflammation within the identified brain region(s).

Microglia, as brain-resident cells, emerge as key players in CNS 
HIV infection, serving as viral reservoirs and potential sources of 
inflammation for the propagation of chronic neuroinflammation. 
Recent findings showed that substance use exacerbates immune 
activation, neuroinflammation, and mitochondrial dysfunction, and 
increases HIV replication, which are intimately linked to the 
pathology of HANDs. Thus, the identification of inflammatory 
microglia phenotypes in specific brain areas through PET imaging 
and targeting of microglial-specific biomarkers hold promise in 
understanding HAND prevalence in people with HIV. As such, 
microglia are significant contributors to HAND persistence in the 
context of substance use. Thus, exploring the molecular mechanisms 
and the contributing factors of substance use in HAND prevalence 
through microglial epigenetic modifications studies may be  an 
important step to unravel the inflammatory phenotypes for inducing 
neurophysiological defects. The distinct epigenome, transcriptome, 
and chromatin landscape of microglia is of prime research interest. 
In particular, the epigenetic regulation and reprogramming of the 
“innate immunity” of brain-resident cell microglia and monocyte-
differentiated macrophage brain homing cells can address the 
knowledge gap in the development and progression of HANDs. In 
this regard, the focus of research will be  to evaluate whether 
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interruption and re-adherence of cART in chronic HIV infection 
will impact trained/tolerized microglia/macrophages more during 
epigenetic modifications and metabolic switch, which are the two 
pillars of reprogramming innate immunity. Interest in epigenetic 
interventions for a HIV cure, such as inhibiting modifications, 
“shock and kill,” or reprogramming of innate immunity strategies, 
has increased with recent findings that highlight the crucial role of 
mitochondrial N-terminal acetylation in HIV-host interactions.

On the cART front, new antiviral drugs and immune activation 
therapies specifically targeting the latently infected cells (microglia/
macrophages/monocytes that serve as HIV reservoirs) could bridge 
the current knowledge gap. Such drug and therapy advancements 
could include the formulation of improved antiretroviral drugs that 
can easily penetrate the blood–brain barrier, tissue-specific cART 
delivery, and purging of latently infected cells from anatomical HIV 
reservoirs. Despite successful viral load suppression by cART, the 
persistence of latent HIV reservoirs in the CNS impedes the possibility 
of HIV eradication. Chronic neuroinflammation and neurotoxicity 
from both latently infected microglia HIV reservoirs and cART 
adverse effects are suspected to be the factors contributing to HAND 
persistence. In conclusion, until the development of a new, improved, 
and less toxic antiviral drug, there is an urgent need for neuroprotective 
and anti-inflammatory adjuvant therapies along with cART regimens 
to control HAND progression in chronic HIV disease.
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FIGURE 1

Schematic presentation of the molecular mechanisms driving chronic inflammation in brain-region-specific and cell-type-specific contexts: targets 
for preventive approaches.
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