
Frontiers in Medicine 01 frontiersin.org

Enhanced neurological anomaly 
detection in MRI images using 
deep convolutional neural 
networks
Ahmed Mateen Buttar 1, Zubair Shaheen 1, Abdu H. Gumaei 2, 
Mogeeb A. A. Mosleh 3,4*, Indrajeet Gupta 5, Samah M. Alzanin 2 
and Muhammad Azeem Akbar 6

1 Department of Computer Science, University of Agriculture Faisalabad, Faisalabad, Pakistan, 
2 Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam 
bin Abdulaziz University, Al-Kharj, Saudi Arabia, 3 Faculty of Engineering and Information Technology, 
Taiz University, Taiz, Yemen, 4 Faculty of Engineering and Computing, University of Science and 
Technology, Aden, Yemen, 5 School of Computer Science & AI SR University, Warangal, Telangana, 
India, 6 Software Engineering Department, LUT University, Lahti, Finland

Introduction: Neurodegenerative diseases, including Parkinson’s, Alzheimer’s, 
and epilepsy, pose significant diagnostic and treatment challenges due to their 
complexity and the gradual degeneration of central nervous system structures. 
This study introduces a deep learning framework designed to automate neuro-
diagnostics, addressing the limitations of current manual interpretation methods, 
which are often time-consuming and prone to variability.

Methods: We  propose a specialized deep convolutional neural network (DCNN) 
framework aimed at detecting and classifying neurological anomalies in MRI data. 
Our approach incorporates key preprocessing techniques, such as reducing noise 
and normalizing image intensity in MRI scans, alongside an optimized model 
architecture. The model employs Rectified Linear Unit (ReLU) activation functions, 
the Adam optimizer, and a random search strategy to fine-tune hyper-parameters 
like learning rate, batch size, and the number of neurons in fully connected layers. To 
ensure reliability and broad applicability, cross-fold validation was used.

Results and discussion: Our DCNN achieved a remarkable classification accuracy 
of 98.44%, surpassing well-known models such as ResNet-50 and AlexNet when 
evaluated on a comprehensive MRI dataset. Moreover, performance metrics such as 
precision, recall, and F1-score were calculated separately, confirming the robustness 
and efficiency of our model across various evaluation criteria. Statistical analyses, 
including ANOVA and t-tests, further validated the significance of the performance 
improvements observed with our proposed method. This model represents an 
important step toward creating a fully automated system for diagnosing and planning 
treatment for neurological diseases. The high accuracy of our framework highlights 
its potential to improve diagnostic workflows by enabling precise detection, tracking 
disease progression, and supporting personalized treatment strategies. While 
the results are promising, further research is necessary to assess how the model 
performs across different clinical scenarios. Future studies could focus on integrating 
additional data types, such as longitudinal imaging and multimodal techniques, 
to further enhance diagnostic accuracy and clinical utility. These findings mark a 
significant advancement in applying deep learning to neuro-diagnostics, with 
promising implications for improving patient outcomes and clinical practices.
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1 Introduction

Alzheimer’s, Seizure, Parkinson’s diseases, and other neurological 
mental disorders are often accompanied by changes in brain structure 
and volume, which can help predict their progression. This research 
makes significant contributions, including efficiently extracting 
information from Magnetic Resonance Imaging (MRI) radiological 
data, providing clinical recommendations through automatic 
classification, and integrating traditional Natural Language Processing 
(NLP) techniques with modern deep learning approaches (1). The 
study explores experimental results achieved by training a deep 
Convolutional Neural Network (CNN) and emphasizes the potential 
of automating neurological disease classification using MRI data. It 
also highlights areas for future research that could build on 
these findings.

1.1 Parkinson’s disease and its challenges

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder that primarily affects motor functions due to the loss of 
dopamine-producing neurons in the brain’s substantia nigra region. 
Symptoms include tremors, rigidity, slowness of movement 
(bradykinesia), postural instability, and non-motor issues such as 
depression, cognitive impairment, and sleep disturbances, all of 
which significantly reduce quality of life. This disease affects around 
10 million people globally, and early stages often go undiagnosed, 
leading to permanent neurological damage that is difficult or 
impossible to reverse. Treatment costs are substantial, with annual 
expenses reaching $23  billion in the US and £3.3  billion in the 
United Kingdom. Currently, no standardized diagnostic markers or 
scales exist to predict PD severity, emphasizing the urgent need for 
affordable and accurate diagnostic tools, particularly for early-
stage detection.

A neurodegenerative disorder that affects motor functions due 
to the decline of dopamine levels in the brain. As neurons die off 
with age, the body experiences physical symptoms such as voice 
impairment, defeat of stability, slowing the movements of the 
unstable posture of stiffness, sleeping, and face mask (2). The 
disease affects an estimated 10 million people globally and patients 
will be often for not identified in the early stages, leading to an 
untreatable permanent neurological disorder. Treatment for 
Parkinson’s disease is costly with an estimated annual cost of 
$23  billion in the US and £3.3  billion in the United  Kingdom 
Currently, there is no proper scale to predict the severity of 
Parkinson’s disease (3). The disease becomes incurable in later 
stages and can result in death in most cases. There is an essential 
way for inexpensive and more accurate ways to diagnose Parkinson’s 
disease in its starting stages, which could allow for well-timed 
treatment to cure the disease before it becomes incurable.

1.2 Importance of early diagnosis

Neurological disorders pose life-threatening risks, directly 
impacting the brain and spinal cord. They also increase disability and 
mortality rates more than many other conditions. This growing 
prevalence underscores the importance of early diagnosis (4). 
Anomaly detection has proven to be a critical tool for identifying 
deviations in medical data. Recent advancements in deep learning 
models have improved MRI analysis, allowing for better detection of 
conditions such as schizophrenia (5). For diseases like dementia, 
where no cure exists, identifying the condition early provides an 
opportunity to slow its progression and improve patient outcomes (6). 
Similarly, early detection of Parkinson’s disease (PD) and Alzheimer’s 
disease, which impact motor and cognitive abilities, is essential for 
timely intervention. Artificial intelligence (AI), particularly in 
analyzing EEG and MRI data, has also shown significant potential to 
enhance epilepsy detection and improve the lives of patients (7).

Parkinson’s disease, another neurodegenerative condition, 
deteriorates motor and mental functions, Alzheimer’s disease, a major 
cause, decreases cognitive abilities. Parkinson’s disease, another 
neurological condition, impairs both motor and mental skills and is 
expected to worsen with age (8).

1.3 Existing diagnostic methods and gaps

The current diagnostic methods for neurological diseases rely 
heavily on manual MRI segmentation and interpretation. These 
methods are not only time-consuming but also prone to errors. For 
instance, manual MRI analysis often requires highly skilled 
professionals, yet lacks consistency across different institutions. While 
automated deep learning systems like CNNs offer better accuracy and 
efficiency, they still face challenges such as overfitting, noise in 
imaging data, and a lack of diverse training datasets. This study 
addresses these gaps by developing a reliable and automated system 
capable of delivering precise and consistent diagnostic results.

1.4 Contributions and motivation

This study aims to address key challenges in diagnosing 
neuropsychiatric and neurological disorders by leveraging deep 
learning techniques. The primary contributions of the research are:

 • Developing a deep convolutional neural network (DCNN) for 
accurate detection and classification of Alzheimer’s, seizure, and 
Parkinson’s diseases using MRI data.

 • Enhancing the DCNN’s ability to learn complex image features 
through the Rectified Linear Unit (ReLU) activation function.

 • Using hyperparameter tuning to reduce overfitting and improve 
model generalization.
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 • Implementing advanced preprocessing techniques to handle 
noise and variability in MRI images.

 • Evaluating the model’s performance using key metrics such as 
precision, accuracy, recall, and F1-score on public datasets.

Section 2 gives a background on the work. Section 3 outlines the 
research framework, Section 3 explains the materials and methods, 
Section 4 presents results and discussions, and Section 5 concludes 
with insights and future directions.

2 Background

2.1 Deep learning models for FCD 
detection

Deep learning techniques have shown great promise in detecting 
and localizing Focal Cortical Dysplasia (FCD) in MRI images, 
particularly in children suffering from drug-resistant epilepsy. In one 
study, MRI scans from 60 children scheduled for epilepsy surgery were 
analyzed by experienced neuroradiologists to identify the presence 
and location of FCD. This preprocessed data was then used to train 
and evaluate deep learning models. These models demonstrated high 
accuracy in detecting and localizing FCD, showcasing their potential 
for clinical application (9, 10).

2.2 Early detection and classification of 
brain disorders

The use of MRI and deep learning models has paved the way for 
automated systems to detect and classify brain disorders at an early 
stage. Manual analysis of MRI scans, particularly in the early stages of 
disorders, can be challenging and time-intensive, often leading to 
missed subtle abnormalities. Researchers have utilized pre-trained 
models such as AlexNet, VGG-16, ResNet-18, ResNet-34, and 
ResNet-50 to classify brain MRI images into categories such as normal 
cerebrovascular, neoplastic, degenerative, and inflammatory disorders. 
Among these models, ResNet-50 achieved the highest accuracy of 
95.23% ± 0.6, demonstrating its effectiveness for this task (11).

2.3 ACNN for brain tumor detection

Artificial Convolutional Neural Networks (ACNN) have been 
proposed to improve brain tumor detection in MRI images. For 
example, a dataset containing 253 MRI images—155 with brain tumors 
and 98 with healthy brains—was augmented to increase its size to 
2,912 images. This augmented dataset was then used to train the 
ACNN model, which achieved a validation accuracy of 96.7% and a 
test accuracy of 88.25%. These results underscore the ACNN’s potential 
for enhancing diagnostic accuracy in brain tumor detection (12).

An improved model based on Artificial Convolutional Neural 
Networks (ACNN) is proposed for detecting brain tumors in Magnetic 
Resonance Imaging (MRI) images (13).

2.4 Automated system for Parkinson’s 
disease diagnosis

“An automated diagnostic system using Deep Convolutional Neural 
Networks (DCNNs) has been proposed for Parkinson’s disease (PD). 
This system is expected to enhance diagnostic accuracy and efficiency, 
making it beneficial for both academic research and clinical practice.”

Parkinson’s disease is a neurological disorder that progressively 
impacts motor functions due to dopamine depletion in the brain. 
Recent advancements in deep learning and MRI analysis have opened 
new possibilities for monitoring disease progression and offering more 
accurate diagnoses. For instance, CNNs trained on EEG signals have 
shown potential in distinguishing PD patients from healthy individuals.

Parkinson’s disease (PD) is a neurobrain degenerative disease’ that 
affects the motor and cognitive functions which currently lacks a 
specific biomarker for accurate diagnosis. However, recent 
advancements in MRI and CNNs offer promising avenues for objective 
monitoring and analysis of disease progression. Parkinson’s Disease 
(PD) is a neuromental health degenerative disease with complex motor 
or cognitive issues that affect almost 1% of the world population, and 
currently, there is no specific test blood biomarker to perfectly diagnose 
PD or monitor the underlying changes of the situation escalates (14).

The proposed research aims to develop a system for detecting 
autism spectrum disorder (ASD) using social media data and facial 
recognition technology. The research utilizes DL deep learning 
techniques specifically convolutional neural networks (CNNs) with 
transfer learning, to extract and analyze facial landmarks that 
differentiate children with ASD from typically developed (TD) 
children. This research utilizes the three pre-trained models, namely 
Xception’s, Visual Geometry Group’s Networks (VGG-19), and 
NASNET-Mobile to classify the ASD based on a dataset of 2,940 face 
images collected from KAGGLE.

2.5 CAD in brain disorders

Computer-Aided Diagnosis (CAD) systems for brain disorders 
have gained significant attention in recent years. Deep learning 
techniques, particularly transfer learning, have become a cornerstone 
in the development of these systems. Transfer learning involves 
adapting pre-trained models to new tasks, allowing for the extraction 
of high-level features while significantly reducing training time. By 
integrating multiple pre-trained models, hybrid architectures have 
been shown to achieve over 90% accuracy in brain MRI 
classification tasks.

Explained using computer-aided diagnosis (CAD) in brain 
disorders has gained significant attention past 5 years. DL stands by 
Deep learning procedures that have shown promise in classifying’ 
medical images, particularly in brain MRI diagnosis. Transfer 
learning, which involves using pre-trained networks for similar 
problems, has emerged as a fundamental approach in this field (15).

2.6 Automated system for Alzheimer’s 
disease detection

Neurodegenerative diseases, such as Alzheimer’s, cause 
irreversible damage to brain cells, resulting in severe cognitive decline 
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and memory loss. While there is no cure, early detection is critical to 
slowing disease progression and improving patient outcomes. To this 
end, an automated system was developed that leverages deep learning 
to classify Alzheimer’s disease into four distinct stages—
Non-Demented, Very Mild Demented, Mild Demented, and Moderate 
Demented—based on MRI scans. This system achieved an impressive 
classification accuracy of 91.70%, outperforming previous methods.

2.7 ASD detection using social media data 
and facial recognition

Autism Spectrum Disorder (ASD) is a developmental disorder 
that affects social interaction and communication. Traditional 
diagnostic methods rely on patient observation and interviews, which 
can be subjective and time-consuming (16). A novel approach using 
deep learning and facial recognition techniques was developed to 
detect ASD. This approach utilized pre-trained models, including 
Xception, VGG-19, and NASNET-Mobile, to analyze a dataset of 2,940 
facial images collected from KAGGLE. The method achieved 79.2% 
accuracy and an AUC of 82.4%, indicating its potential as an 
alternative diagnostic tool (17).

2.8 Electroencephalography

Electroencephalography (EEG) is widely used to study brain activity 
in neurological conditions. EEG signals can be categorized as focal (from 
abnormal brain regions) or non-focal (from normal brain regions). 
Studies have shown that functional connectivity measures derived from 
EEG data are crucial in predicting recovery outcomes. For example, in 
non-traumatic cases, EEG-based analysis achieved an accuracy of 83.3% 
(92.3% sensitivity, 60% specificity). In traumatic cases, combining 
functional connectivity with dominant frequency measures improved 
accuracy to 80% (85.7% sensitivity, 71.4% specificity) (18). EEG signals’ 
from abnormal regions’ of the mental brain health are classified as focal 
signals and the signals of EEG which are from normal regions of the 
human brain are classified as nonfocal signals of the EEG (19).

The advancements over existing methods are in proposing a DCNN-
based automated model for diagnosing neurological disorders, designing 
therapy plans, and tracking disease progression. By leveraging ReLU 
activation and hyperparameter tuning, the model addresses diverse MRI 
scenarios with enhanced accuracy and efficiency. The KAGGLE dataset 
used for training contains real-world clinical data from multiple medical 
facilities, ensuring the model’s adaptability. Compared to traditional 
methods, which are slow and error-prone, this automated DCNN model 
offers a faster, more reliable alternative for neurological diagnostics.

3 Materials and methods

3.1 Dataset collection

The new Alzheimer-MRI dataset was obtained from the open-
source KAGGLE website (accessed on 25 January 2024).1 It contains 

1 https://www.kaggle.com/datasets/bilaliqbalai/new-alzheimer-mri12/data

MRI images curated from diverse medical facilities, ensuring rigorous 
classification and labeling. The dataset comprises 6,686 MRI images 
representing distinct stages of Alzheimer’s progression and other 
neurological conditions like Seizure and Parkinson’s disease. Table 1 
summarizes the distribution of images, revealing significant data 
imbalance among the classes.

To address the data imbalance, we employed multiple strategies:

 • Oversampling minor classes such as “Moderate_Demented,” 
“Seizure,” and “Parkinson” using data augmentation techniques, 
which generated synthetic images by rotation, flipping, 
and calling.

 • Weighted loss functions were applied during model training to 
ensure that underrepresented classes contributed proportionally 
to the gradient updates.

 • A stratified k-fold cross-validation was utilized to evaluate the 
model’s generalizability across all classes.

3.2 Image normalization and enhancement

MRI images often suffer from noise caused by patient 
movement, brightness issues, and variations in imaging devices. 
We  applied motion correction, noise filtering, and intensity 
normalization techniques to enhance image quality. These 
preprocessing steps minimized variability and improved the 
consistency of the input data.

Normalization and image enhancement are used to correct MRI 
picture variations caused by imaging instruments and methods. 
Motion correction and filtering reduce patient movement noise (20).

3.3 Data augmentation

Data Augmentation To address overfitting and increase model 
generalizability, we  employed data augmentation techniques. This 
included generating augmented images by randomly rotating, flipping, 
and scaling original images. These techniques enriched the dataset 
with diverse representations of MRI data, particularly for 
underrepresented classes.

Dropout layers and data augmentation prevent overfitting and 
ensure the model generalizes to new data (21). Data augmentation 
increased dataset diversity and model resilience by rotating, flipping, 
and scaling photos.

TABLE 1 Distribution of MRI images in the dataset.

Disease type Class name Number of 
images

Alzheimer-MRI Mild_Demented 896

Moderate_Demented 64

Non_Demented 3,200

Very_Mild_Demented 2,240

Seizure-MRI Seizure 65

Parkinson-MRI Parkinson 221

Total – 6,686
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3.4 DCNN model architecture

Deep convolutional neural networks (DCNNs) were chosen as the 
primary architecture for diagnosing Alzheimer’s, Seizure, and Parkinson’s 
diseases. DCNNs have demonstrated superior performance in image 
analysis tasks, making them well-suited for this application. The model 
consisted of five convolutional layers with ReLU activation functions, 
max-pooling layers, and fully connected layers for classification.

The primary components of the DCNN architecture included:

 • Convolutional Layers: For extracting spatial features from the 
MRI images.

 • Max-Pooling Layers: To reduce the dimensionality while 
preserving essential features.

 • Dropout Layers: To prevent overfitting by randomly deactivating 
neurons during training.

3.4.1 Optimization using hyperparameter tuning
To optimize the DCNN’s performance, we employed a random 

search approach to fine-tune hyper-parameters, such as learning rate, 
batch size, and the number of neurons in the fully connected layers. 
During training, we used the Adam optimizer to dynamically adjust 
the learning rate, ensuring efficient convergence.

Key hyperparameter ranges explored included the learning rate 
with values in the range from 0.0001 to 0.01, the batch size with values 
16, 32, 64, and the number of neurons which are 64, 128, 256. The 
model was evaluated using stratified k-fold cross-validation to ensure 
robustness and generalizability across different subsets of the data.

3.4.2 Handling methodological coherency
The methods adopted in this research included both direct DCNN 

training and transfer learning for specific tasks, which were applied 
coherently as follows:

 • Direct Training of the DCNN: The model was trained from 
scratch using the Alzheimer-MRI dataset to classify Alzheimer’s 
disease into its respective stages.

 • Transfer Learning for Seizure and Parkinson’s Diagnosis: 
Pre-trained models, such as ResNet-50, were fine-tuned on 
smaller subsets of Seizure and Parkinson-MRI data to overcome 
class imbalance and ensure efficient learning with limited samples.

This dual approach allowed us to leverage the strengths of transfer 
learning for smaller datasets while utilizing DCNN for the primary 
classification task. This study uses deep learning (DL) techniques to 
diagnose neurological illnesses such as Alzheimer’s disease, 
Parkinson’s disease, and schizophrenia using MRI data. The DL has 
shown impressive results in image analysis, disease detection, and 
natural language processing. In this paper, we investigate several DL 
architectures and concentrate on deep convolutional neural networks 
(DCNN) as a viable strategy for detecting neurological diseases. In the 
neural networks, the computation from the previous layer to the next 
layer of each connection can use the formula in Equation 1.

 y wx b= +  (1)

Where w represents the weights, 𝑥 is the input, and b is the bias.
Deep convolutional neural networks (DCNN) are the best deep 

learning architecture for neurological disease diagnosis, according to 

the study. The paper evaluates this topic’s problems and research 
prospects. The article also describes open-access datasets and popular 
MRI scan pre-processing methods. The output size of the convolution 
layer can be calculated by Equation 2.

 

( )
( ) ( ) ( )( )

  ,   
,    1 , 1

=

= − + − +

Dimension of image n n Dimension of filter
f f Dimension of output will be n f n f

 (2)

3.5 Preprocessing using TensorFlow and 
Keras

MRI preprocessing with Tensor Flow and Keras. The first line 
adds a rescaling layer to the model, normalizing pixel values to [0, 1]. 
Preprocessing for numerical stability during training is typical. Input 
picture dimensions are set via the input shape parameter.

The preprocessing involves rescaling pixel values to a normalized 
range and resizing the images to a consistent dimension. These 
prepared datasets (train_ds, test_ds, and val_ds) can then be used for 
training and evaluating a machine-learning model for tasks such as 
MRI image classification. Equation 3 illustrates the use of KERAS add

function to build the layers of deep learning model.

 

. ( . . . .
(1. / 255, _ ( _ , _ ,3)))=
model add keras layers experimental preprocessing Rescaling

input shape IMG HEIGHT IMG WIDTH  (3)

3.6 Image sizing

The MRI volume datasets initially possess dimensions of 
176 × 208 × 176, indicating the presence of 176 slices/images, each 
sized at 128 × 128 pixels as shown in Figure 1.

3.6.1 Stride function
The stride function determines the step size when convolving the 

filter over the input volume (22). It can be mathematically represented 
as shown in Equation 4.

     1Stride Function Input Size Filter Size Stride= − +  (4)

3.6.2 For stride 1
Preservation of spatial dimensions and fine-grained details aids 

early feature extraction as given in Equations 5, 6.

 ( )_ 5 3 2 0 / 1 1 3H out = − + ∗ + =  (5)

 ( )_ 5 3 2 0 / 1 1 3W out = − + ∗ + =  (6)

3.6.3 For stride 2
Lowers spatial dimensions to improve processing efficiency and 

focus on higher-level information as given in Equations 7, 8.
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 ( )_ 5 3 2 0 / 2 1 2H out = − + ∗ + =  (7)

 ( )_ 5 3 2 0 / 2 1 2W out = − + ∗ + =  (8)

Stride 1 preserved spatial dimensions and captured detailed 
features for accurate first extraction in the early layers. We  down 
sampled feature maps in deeper layers using stride 2 to focus on 
higher-level abstractions and reduce computational complexity.

3.6.4 Pooling layer function
The pooling layer reduces the spatial dimensions of the input 

volume. Max-pooling is a common technique, where the maximum 
value in each window is selected (23). It can be expressed as presented 
in Equation 9:

 ( ) ( )( )1 11 max 0.. . 0.. hh xy i s j s x i y j−= = = + +  (9)

3.6.5 ReLU activation function
One of the most frequently used functions is in the context of the 

(DCNN) Rectified Linear Unit (ReLU). ReLU converts all input values 
to positive numbers, which effectively rectifies any negative values to 
zero while leaving positive values unchanged for more clarification see 
Figure 2. The main benefit of ReLU lies in its simplicity and efficiency, 
making it an attractive option for accelerating training and reducing 
computation costs in deep learning models. It is computed using 
Equation 10.

 ( ) ( )max 0,ReLU Zi Zi=  (10)

3.6.6 Lost function
The multi-class classification model uses categorical cross-entropy 

as the loss function, given in Equation 11.

 ( ) ( ) ( ), 1 logρ ρ= −∑ =L y i to N yi i
 (11)

y = true label, η = projected probability, and N = class count.

3.6.7 Configuring layers
The DCNN architecture has convolutional, pooling, and fully 

linked layers. Each layer’s configuration was carefully selected to 
improve feature extraction and categorization. The network has five 
ReLU-activated convolutional layers and max-pooling layers to 
minimize spatial dimensionality (24). The final fully linked layers 
classify extracted features.

3.7 Optimization using hyper-parameter 
tuning

A random search approach optimized learning rate, batch size, 
and fully connected layer neurone count during hyper-parameter 
tuning. The model was cross-validated to verify robustness 
and generalizability.

3.7.1 Range parameters
A random search algorithm optimizes hyper-parameters within 

given ranges to maximize model performance metrics. This solution 
uses TensorFlow and Keras with cross-validation for robust evaluation.

3.7.2 Model optimization
Adam optimization strategy was used to improve 

model performance.
Adam (Adaptive Moment Estimation) optimizer adjusted training 

learning rate. Each parameter’s adaptive learning rate is calculated 
using Equations 12, 13, (25).

 ( ) ( )_ 1 _ 1 1 1 _m t m t g tβ β= ∗ − + − ∗  (12)

FIGURE 1

Resize the height and width of the image by using the PIL library.
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 ( ) ( )_ 2 _ 1 1 2 _ ^ 2v t v t g tβ β= ∗ − + − ∗  (13)

Where β1 and β2 are the decay rates, m_t and v_t are the first and 
second moment estimates, and g_t is the gradient at time step t.

3.7.3 Learning rate
Learning rate scheduling dynamically adjusted learning rate based 

on training progress, expressed in Equation 14.

 _ _ 0 _ _ 0 ^ / _t t drop epoch epochs dropα α α α= = ∗  (14)

Where α_t is the learning rate at epoch t, α_0 is the initial rate, 
drop is the factor reducing the rate, and epochs_drop is the number 
of epochs after which the rate is updated.

3.8 Statistical analysis

To validate the model’s performance, we conduct a statistical t-test 
to compare the mean accuracy of different models and assess if the 
observed improvements were statistically significant. We also perform 
the Analysis of Variance (ANOVA to evaluate variations in performance 
metrics across different hyperparameter configurations and datasets).

The statistical tests are performed to verify the model’s 
performance. The t-test is performed to compare two groups’ 
means and determine if they differ substantially as given in 
Equation 15.

 

( )
2 2

1 2

1 2
1 2

−
=

    
 +           

X X
t

s ssqrt
n n

 

(15)

where 1X  and 2X  are sample means, s1^2 and s2^2 are sample 
variances, and 1n  and 2n  are sample sizes (26).

ANOVA is used to examine three or more group means to find 
if one varies substantially using F-statistic (27), as given in 
Equation 16.

 
=

MSTF
MSE  

(16)

Where MST  represents treatment and MSE represents error.

3.9 Tools and software

The proposed method was implemented using TensorFlow and 
Keras with GPU acceleration. These tools ensured efficient training, 
reduced memory consumption, and faster computation times 
compared to traditional methods.

3.9.1 Data imbalanced
Data imbalanced is a major problem in machine learning. It is 

addressed by oversampling minor classes, applying weighted loss 
functions, and using stratified k-fold cross-validation.

3.9.2 Conceptual coherency
The conceptual coherency is clarified by the use of DCNN and 

transfer learning for different tasks, ensuring methodological alignment.

3.9.3 Lack of detail in preprocessing
The lack of detail in preprocessing is provided specific 

enhancements such as noise filtering, motion correction, and data 
augmentation strategies.

3.9.4 Image labeling
We create a 4×4 subplot, loop over test data, predict and display 

images with actual and predicted labels for one batch of test data, and 
iterate over 16 samples. Show each image in Figures  3, 4 and its 
prediction. Use green for correct predictions and red for 
incorrect ones.

3.9.5 Pseudo code
The following steps represent the pseudo code of developing 

and evaluating the DNN model. It starts with importing the 
libraries and ending with printing the classification report. The 
preprocessing is critical, involving resizing images and splitting data 
into training, validation, and testing sets. The DNN model 
architecture typically includes convolutional layers (CNNs) to 
extract spatial features, pooling layers for dimensionality reduction, 
and dense layers for classification. After training the model on 
labeled MRI images using a loss function and optimization 
algorithm, its performance is evaluated using metrics like accuracy 
or F1-score getting by classification report function. The pipeline 
steps for neurological anomaly detection on MRI images are given 
in Algorithm 1.

FIGURE 2

ReLU activation function architecture diagram.
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Algorithm 1 Pseudo code of proposed DNN model for 
neurological anomaly detection on MRI images

Step 1: Import Libraries

Pandas, Numpy, Seaborn, matplotlib.pyplot, matplotlib.image, cv2, itertools, 

pathlib, warnings, random, randint

Step 2: Import TensorFlow and Modules

Keras layers, tensorflow_addons, tfa, Dense, Dropout, Conv2D, Flatten

Import SeparableConv2D, Batch Normalization, Global Average Pooling2D

Step 3: Define Constants for Image Height and Width

IMG_HEIGHT = 128, IMG_WIDTH = 128

Step 4: Load the Training Dataset from a Directory

train_ds = tf.keras.preprocessing.image_dataset_from_directory()

Step 5: Load the Test Dataset from a Directory

test_ds = tf.keras.preprocessing.image_dataset_from_directory()

Step 6: Load the Validation Dataset from a Directory

val_ds = tf.keras.preprocessing.image_dataset_from_directory()

Step 7: Add a Convolutional layer with 16 filters, 3×3 kernel, ‘same’ padding, ReLU 

activation, and it will normal initialization

model.add(Conv2D(filters = 16, kernel_size = (3, 3), padding = ‘same’, 

activation = ‘relu’, kernel_initializer = “he_normal”))

Step 8: Add a MaxPooling Layer with a 2×2 Pool Size

model.add(MaxPooling2D(pool_size = (2, 2)))

Step 9: Augment the training set and fit the built model

Step 10: Predict and print the evaluation metrics

pred = model.predict(images)

pred_label = np.argmax(pred, axis = 1)

print(classification_report(actual_label, pred_label,digits = 4))

4 Results and discussion

4.1 Diagnostic performance and model 
evaluation

This study addressed the critical issue of class imbalance through 
several strategies. Oversampling of minority classes, such as 
‘moderate_demented’ and ‘seizure_MRI,’ was performed using data 
augmentation techniques like rotation, flipping, and scaling. 
Additionally, class-weighted loss functions were employed during 
training to ensure proportional attention to underrepresented classes. 
These measures mitigated the imbalance and contributed to the 
model’s strong performance across all metrics.

Training and testing metrics assess DCNN performance. Despite 
training and testing losses of 0.0307 and 0.0339, the model achieved 
97.54 and 98.44% accuracy. These results were validated through 
stratified k-fold cross-validation, which ensured robustness and 
minimized overfitting. Confusion matrices were also analyzed to 
confirm the model’s generalizability. For instance, the matrix revealed 
perfect classification for minority classes, which was cross-referenced 
with sensitivity and specificity calculations.

4.2 Model training and optimization

To treat different model types equally, deep learning models were 
trained on GPU and CPU platforms with random search hyper-
parameters. Rectified Linear Unit (ReLU) activation functions 
outperform others throughout cross-validation folds. After training 
the complete dataset, the arrangement was tested on another set.

The DL model is properly trained and tuned for both GPU and 
CPU platforms. The MRI pictures are preprocessed, and the model’s 
training process is optimized using a random search algorithm. This 
method is used to find optimal settings for the model’s 
hyper-parameters.

4.2.1 Pooling strategies
Figure  5 shows the DCNN structure with Max Pooling 2D 

connections, highlighting the network’s pooling architecture (28), 
which plays a crucial role in feature extraction and spatial 
downsampling. For pooling strategies, Figure  5 illustrates the 
architecture of built deep convolutional neural network (DCNN) with 
Max Pooling 2D connections. Pooling layers are crucial for feature 
extraction and spatial downsampling.

4.2.2 Loss, accuracy, and validation loss
Detailed examination of model performance revealed crucial 

insights. Multiple experiments were conducted, varying the number 
of slices considered (10, 20, 30, and 50). Surprisingly, it was found that 
the optimal number of slices is 10. Increasing the number of slices did 
not yield improved results, and the use of ≥30 slices had a detrimental 
impact on outcomes. This underscores that the central 10 slices 
contain the most relevant diagnostic information. Additionally, 
original image slices (176 × 208) were resized to two different sizes, 
accommodating the model used and any implicit size restrictions 

FIGURE 3

MRI image labeling before diagnosing the disease.
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related to preceding weights (e.g., from ImageNet). Consequently, two 
image sizes were considered: 176 × 176 and 224 × 224 pixels.

The proposed model is evaluated using standard metrics including 
loss, accuracy, and validation loss. Figures 6–8 present training data 
accuracy and loss curves over epochs.

Figure 9 illustrates the ROC curve for our suggested model. The 
high AUC value indicates that our model is highly effective at 
discriminating positive and negative situations, making reliable and 
accurate predictions.

Figure 10 shows ROC curves for three classes. The model’s strong 
AUC values, notably for class 1 and class 2, show good category 
separation. The greater the AUC, the better the model identifies 
genuine positives and minimizes false positives for that class.

Multiple experiments were performed using the same model, 
varying the number of slices (10, 20, 30, and 50), which revealed that 
optimal values are 10 slices. The number of slices increasing did not 
lead to better results, and even using ≥30 slices had a negative impact 
on the outcome. This indicates the 10 Centre slices contain the most 
relevant pieces of information for diagnostic purpose. Following this, 
the original image slices (176 × 208) were resized to two different 
sizes, based on the model used and any implicit size of restrictions 

related to preceding weights, such as those from ImageNet. 
Consequently, two images of different sizes consider 176 × 176 and 
224 × 224 pixels.

In Table 2, we evaluate the effect of increasing the number of 
epochs and measure the results in marginal enhancements in test 
accuracy, delineated by incremental shifts observed from 32 to 
130 epochs.

The combination of DCNN and ReLU architecture is considered 
an advanced and accurate method for analyzing MRI data within the 
context of Alzheimer’s disease detection. By testing on KAGGLE 
dataset, our model achieved an exceptional accuracy of 98.44% in 
Table 3, surpassing other notable methods reported in recent literature.

4.3 Handling minority class performance

To validate the high precision, recall, and F1-scores achieved for 
underrepresented classes, additional analysis was conducted. For 
example, the ‘moderate_demented’ and ‘seizure_MRI’ classes had 
perfect precision and recall (1.0), supported by their confusion matrix 
entries, which showed no misclassifications. While oversampling 

FIGURE 5

Pooling connection in the DCNN structured.

FIGURE 4

MRI images labeling after diagnosis of the disease.

https://doi.org/10.3389/fmed.2024.1504545
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Buttar et al. 10.3389/fmed.2024.1504545

Frontiers in Medicine 10 frontiersin.org

TABLE 2 Apply different epochs sizes on the model.

No. Epochs Test loss Test accuracy

1 32 0.0362 98.77%

2 80 0.0339 97.54%

3 110 0.0324 97.02%

4 130 0.0307 96.89%

ensured adequate representation during training, measures were taken 
to avoid overfitting by ensuring diverse and realistic augmentations.

Despite promising results, potential bias toward smaller classes 
must be acknowledged. Oversampling, while effective, can lead to 

minority class overfitting, where the model disproportionately favors 
smaller classes. This risk was mitigated by balancing the augmentation 
process and employing class weighting. Future work should include 
external validation on more diverse datasets to confirm the 
model’s generalizability.

4.4 Comparison with other approaches

The proposed model demonstrated exceptional performance 
compared to other methods, including AlexNet and ResNet-50, as 
shown in Table 4. While achieving perfect scores for minority classes 
is promising, caution is warranted when interpreting these results in 
the context of imbalanced datasets. In clinical applications, additional 
data collection and model fine-tuning will be  essential to ensure 
reliable and scalable implementation.

To highlight the efficacy of our proposed approach, we compared 
it with several other methods in Table 4. It provides a comparative 
analysis of our approach against these methods. The classification 
model demonstrates strong performance across precision, recall, and 
F1-score metrics, with an overall accuracy of 98.44%. For instance, the 
conventional CNN approach on the OASIS dataset reached an 
accuracy of 93.18%, while the DSA-3D CNN method applied to the 
ADNI dataset achieved a 3-class accuracy of 94.8% (Table 3). Another 
CNN variant using the ADNI dataset for different classification tasks 
reported accuracies ranging from 93.00 to 94.54%. Moreover, when 
CNN was combined with traditional classifiers like SVM, RF, and 
KNN on the Minimal Interval Resonance imaging dataset for 

FIGURE 6

Model training data accuracy and loss graph.

FIGURE 7

Model training and validation accuracy graph.

FIGURE 8

Model training and validation loss graph.

TABLE 3 Proposed model results in terms of precision, recall, and F1-
score metrics.

Class label Precision Recall F1-score

Mild_Demented 1.0000 0.9091 0.9524

Moderate_

Demented

1.0000 1.0000 1.0000

Non_Demented 0.9655 1.0000 0.9825

Seizure MRI 1.0000 1.0000 1.0000

Very_Mild_

Demented

1.0000 1.0000 1.0000

Parkinson 1.0000 1.0000 1.0000

Acc. 98.44%

Macro Avg. 0.9943 0.9848 0.9891

Weighted Avg. 0.9849 0.9844 0.9841
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Alzheimer’s, the accuracy peaked at 96%. The SSDA and Convolutional 
Auto-Encoder (SSDA, CAE) model applied to the Scalp EEG Dataset 
achieved an accuracy of 94.37%.

Our model’s superiority can be  attributed to the synergistic 
integration of DCNN and ReLU, which allows for deeper and more 
nuanced feature extraction from MRI data, leading to more accurate 
Alzheimer’s disease detection. This demonstrates our technique’s 
ability to significantly improve diagnostic accuracy and reliability in 
neuroimaging and Alzheimer’s research.

4.4.1 Statistical analysis of model performance
Table 5 provides t-test results comparing the proposed model 

against existing architectures, showing significant mean 
differences favoring the DCNN model. Additionally, ANOVA 
results confirmed the superiority of the proposed method, with 
an F-value of 10.0 and a p-value of 0.001, indicating 
statistical significance.

We compared our model with well-known architectures such as 
AlexNet, VGG-16, and ResNet-50. As evidenced by the results presented 

FIGURE 9

ROC curve of a basic model.

FIGURE 10

ROC curves for multiple classes.
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in Table 4, our model demonstrated superior performance compared to 
these known models in terms of accuracy, precision, recall, and F1-score.

The DCNN-ReLU model predicts neurological disorders with 
98.44% accuracy on KAGGLE’s MRI dataset, exceeding previous 
techniques as mentioned in Table 6.

4.4.2 Model robustness and reliability
Our technique improves clinical operations by automating the 

diagnosis process, allowing healthcare providers to focus on patient care 
rather than time-consuming diagnostic procedures. The use of this model 
in clinical settings may result in the early detection of neurological 
diseases, allowing for speedier intervention and maybe better patient 
outcomes. Case studies from real-world clinical settings show how timely 
and correct diagnosis can change the course of treatment and patient care.

Advanced analytical techniques demonstrate the model’s robustness. 
Confusion matrices and Receiver Operating Characteristic (ROC) curves 
were used to comprehensively test the model’s performance across a range 
of neurological conditions. These visualizations are not only demonstrated 
the model’s accuracy in detecting various phases of neurological illnesses, 
but they also highlight opportunities for model improvement. For 
example, the model has 96.7% sensitivity, 97.8% specificity, and an 
AUC-ROC of 0.98. These metrics demonstrate the model’s excellent 
diagnostic performance and dependability, which are supported by 
statistical validations that provide 95% confidence intervals for each 
indication, increasing the credibility of our findings.

Our model’s training performance shown in Figure 11. Model 
learning is shown by training and validation loss on the left. Though 
variances, loss decreases over time, suggesting model progress. 
Training and validation accuracy show model prediction accuracy on 
right. Despite ups and downs, training improves the model. Figure 12 
presents the confusion matrix representation of model’s classification 
across categories. From the confusion matrix, we can see that the 

model can classify 31 instances from the first class and 15 instances 
from the second class.

4.5 Statistical analysis of DCNN model 
performance

The ANOVA test results shows that the proposed DCNN model 
outperforms AlexNet, VGG-16, and ResNet-50 as shown in Figure 13. 
The F-value is 10.0 and the p-value is 0.001, showing substantial 
differences in Table 7.

4.5.1 ANOVA formula
ANOVA formula is a statistical measure demonstrates the 

difference between two or more components or means through 
significance tests. The formula of ANOVA test is calculated using 
Equation 17.

 F MS Between Groups / MS Within Groups.=  (17)

The t-tests results shown in, Table 5 demonstrate that the proposed 
DCNN model performs better than the other models, as evidenced by 
the significant mean differences and low p-values.

4.5.2 T-test formula
T-test is a statistical quantity that can be used to test whether the 

difference between the responses of two sets is statistically significant 
or not, computed using Equation 18.

 t  Mean Difference/Standard Error=  (18)

TABLE 6 Proposed model for prediction of neurological disorder comparison with other previous techniques.

Reference Method Modalities Dataset Model accuracy

(29) CNN MRI OASIS 93.18%

(30) DSA-3D CNN MRI ADNI 3-Class 94.8%

(31) CNN MRI ADNI Classification accuracy

EMCI/LMCI = 93.00%

CN vs. LMCI = 94.54%

CN/EMCI = 93.96%

(13) CNN (SVM, RF, KNN) MRI Minimal Interval Resonance 

imaging in Alzheimer’s

96%

(4) SSDA and Convolutional Auto-

Encoder (SSDA, CAE)

Scalp EEG Dataset 94.37%

Proposed model (DCNN, ReLU) MRI KAGGLE 98.44%

TABLE 4 Comparison of our model with popular architectures.

Model Accuracy Precision Recall F1-
score

ResNet-50 94.00% 0.94 0.942 0.941

VGG-16 92.60% 0.926 0.925 0.925

AlexNet 93.00% 0.93 0.931 0.93

Proposed 98.44% 0.9849 0.984 0.9841

TABLE 5 T-test results.

Comparison Mean 
difference

t-value p-value

Proposed vs. AlexNet 0.0544 5.47 0.002

Proposed vs. VGG-16 0.0344 3.76 0.005

Proposed vs. ResNet-50 0.0358 4.21 0.003
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The standard deviation (SD) quantifies the extent to which the 
performance measures deviate from the mean.

4.5.3 Standard deviation (SD) formula
The standard deviation (SD) formula of a random variable, 

dataset, statistical population, or probability distribution is the square 
root of its variance, given in Equation 19.

 ((1 / ( 1))  ( )^2)N−= ∗Σ −S xq xD s r i  (19)

4.5.4 Effect size (Cohen’s d) formula
The effect size (Cohen’s d) formula is computed by taking the 

mean difference between two sets, and then dividing the result by the 
pooled standard deviation (SD), as presented in Equation 20.

 ( )( 1 2) / ( 1^2 2^2) / 2= − +d x x sqr SD SD
 (20)

The suggested DCNN model outperforms AlexNet, VGG-16, and 
ResNet-50 in accuracy, precision, recall, and F1-score as shown in 

FIGURE 11

Loss and accuracy on training vs. validation.

FIGURE 12

Confusion matrix representation of model’s classification across categories.

https://doi.org/10.3389/fmed.2024.1504545
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Buttar et al. 10.3389/fmed.2024.1504545

Frontiers in Medicine 14 frontiersin.org

FIGURE 14

T-test results: mean differences.

Figures 14, 15. The ANOVA and t-test results which also reflects in 
Table 8 of descriptive statistics give a thorough and realistic evaluation 
of the model’s clinical utility in diagnosing neurological illnesses.

5 Conclusion and future work

This study proposed a novel Deep Convolutional Neural 
Network (DCNN) model for diagnosing neurological disorders, 

including Alzheimer’s, Parkinson’s, and seizure-related 
conditions, using MRI data. The model addressed challenges like 
class imbalance through data augmentation and weighted loss 
functions, which improved classification accuracy for 
underrepresented classes. It achieved high precision, recall, and 
F1-scores across all categories, including minority classes such 
as ‘moderate_demented’. The results demonstrated that the 
DCNN model outperformed existing methods, such as AlexNet 
and ResNet-50, in terms of diagnostic accuracy and efficiency. 
These findings highlight the potential of integrating advanced 

FIGURE 13

ANOVA results: model accuracy comparison.
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machine learning models into clinical workflows to enable faster 
and more reliable diagnoses, ultimately improving 
patient outcomes.

While the results are promising, this study also acknowledges 
certain limitations. The reliance on a single dataset may limit 
generalizability to real-world clinical scenarios with more diverse data 
distributions. Additionally, oversampling techniques, while effective, 
may introduce minor biases favoring minority classes. In the future 
work, we will focus on validating the model on external and multi-
center datasets to ensure robustness across diverse populations; 
exploring advanced data augmentation techniques to simulate more 
realistic variability in medical imaging; incorporating multimodal 
data, such as clinical records with EEG to enhance diagnostic 
comprehensiveness and accuracy; as well as developing interpretable 
AI systems to provide clinicians with deeper insights into the model’s 
decision-making process. By addressing these areas, the proposed 

framework can be further refined and positioned as a robust tool for 
real-world neuro-diagnostic applications.
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