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Introduction: Thymoma classification is challenging due to its diverse

morphology. Accurate classification is crucial for diagnosis, but current methods

often struggle with complex tumor subtypes. This study presents an AI-assisted

diagnostic model that combines weakly supervised learning with a divide-

and-conquer multi-instance learning (MIL) approach to improve classification

accuracy and interpretability.

Methods: Weapplied themodel to 222 thymoma slides, simplifying the five-class

classification into binary and ternary steps. The model features an attention-

based mechanism that generates heatmaps, enabling visual interpretation

of decisions. These heatmaps align with clinically validated morphological

di�erences between thymoma subtypes. Additionally, we embedded domain-

specific pathological knowledge into the interpretability framework.

Results: The model achieved a classification AUC of 0.9172. The generated

heatmaps accurately reflected the morphological distinctions among thymoma

subtypes, as confirmed by pathologists. The model’s transparency allows

pathologists to visually verify AI decisions, enhancing diagnostic reliability.

Discussion: This model o�ers a significant advancement in thymoma

classification, combining high accuracy with interpretability. By integrating

weakly supervised learning, MIL, and attention mechanisms, it provides an

interpretable AI framework that is applicable in clinical settings. The model

reduces the diagnostic burden on pathologists and has the potential to improve

patient outcomes by making AI tools more transparent and clinically relevant.

KEYWORDS

thymoma,multi-instance learning, histopathology, interpretability, artificial intelligence

1 Introduction

Thymoma is a rare epithelial tumor originating from the thymus, and it is the most

common thymic tumor. According to morphology, thymoma can be classified into five

subtypes: A, AB, B1, B2, and B3 (1). Among these subtypes, types A and AB have a better

prognosis, followed by type B1, while types B2 and B3 have a relatively poor prognosis (2).

In the diagnostic task of thymomas, pathologists are required to integrate the structural

features at both the histological and cellular levels to make determinations. These features

include histological characteristics such as lobular architecture and vascular clefts, as

well as cellular characteristics. Notably, the primary focus in determining tumor type
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and biological behavior remains on the tumor cells themselves.

For instance, in type A thymomas, tumor cell nuclei exhibit

mild spindle or oval shapes, while type B thymomas demonstrate

increasing nuclear pleomorphism (from mild irregularities to

moderate), or increasing prominence of nucleoli, accompanied by

a gradual enhancement in nuclear clustering (1).

However, there is currently a lack of specific molecular

pathological markers for the classification of thymomas, which

hinders the diagnosis and classification process (2). As a result,

pathological diagnosis mainly relies on morphological features.

Thymomas exhibit diversity in morphology and varying degrees

of histological heterogeneity (3). The complexity of pathological

morphology poses significant challenges for pathologists,

often requiring further immunohistochemical staining and

the integration of clinical presentations and imaging results to

obtain a diagnosis. These processes are time-consuming and

labor-intensive, leading to increased economic costs for patients.

The reproducibility of thymoma diagnosis among pathologists

exhibits inadequacy, particularly concerning Type A, B3, AB, and

B1/B2 types (4, 5). Incorrect interpretation of atypical lesions

may lead to delays in necessary treatments (false negatives),

and could potentially result in incorrect prognostic predictions

for patients (6). This issue stems from multifaceted factors,

encompassing discrepancies in experience and proficiency among

pathologists, thereby fostering subjectivity and individual variances

in classification (7). Furthermore, thymomas manifest diverse

histological structures, notably AB or B1/B2 types, characterized

by abundant lymphocytic infiltration amidst comparatively sparse

tumor cell presence (8). Consequently, observing tumor cells

becomes challenging when their count is low. Additionally, tumor

heterogeneity frequently engenders the coexistence of multiple

mixed subtypes within the same patient or even on the same slide

(3). Pathologists may approach these mixed cases disparately, with

some relying solely on one subtype for diagnostic adjudication

(9). Currently, there is a lack of an effective method to assist

pathologists in efficiently performing qualitative and quantitative

analyses of these complex pathological morphologies.

In recent years, considerable advancements have been

achieved in the domain of pathological diagnosis, primarily

attributable to the advent of artificial intelligence (AI) (10). These

strides encompass tumor cell detection and localization (11),

assisted classification and grading, alongside the formulation

of personalized treatment regimens and prognostic evaluations

(12, 13). Leveraging the distinctive features of pathological images,

AI has demonstrated remarkable efficacy in subtype identification

across a spectrum of cancers, including lung (14), gastric (15), and

colorectal cancers (16).

The current study (17) for thymoma classification used the

slide and patch labels to classify the pathological information by

fusing the 40×, 20×, and 10× scales with different self-attention

and convolution modules. According to the result of classification,

several transformer modules were used to realize the classification

of thymoma. However, the study faces several issues that warrant

consideration. Firstly, the annotation work is time-consuming

and labor-intensive. The approach utilizes patch-level analysis,

but detailed region annotation on the slides requires a significant

amount of time and human resources. Secondly, the interpretability

is insufficient. The current approach lacks adequate interpretability.

Since the classification is based on patches, it is uncertain whether

the model accurately captures cell features highly correlated with

the classification.

To address the aforementioned challenges, we used only the

slide-level labels for the multi-instance classification of the five

subtypes of thymoma tumors. Given the high number of classes

in a direct five-way classification task, achieving high model

accuracy can be quite challenging. Therefore, we adopt a divide-

and-conquer approach, which is shown in Figure 1. First, we group

the morphologically similar subtypes (1, 18, 19), such as classifying

A type and B3 type into one category, and the lymphocyte-rich AB

type, B1 type, and B2 type into another category. This simplifies the

five-class task into a binary classification problem. After completing

this initial binary classification, we then perform separate binary

and ternary classifications on the internal samples of each of the

two main categories. This stepwise strategy allows us to ultimately

achieve the full five-way classification of the thymoma subtypes.

Concurrently, we used a multi-instance learning algorithm based

on an attention mechanism, which employs weak supervision to

classify the thymic tumor slides. By combining the divide-and-

conquer strategy and the attention mechanism algorithm, we were

able to improve the classification accuracy.

To demonstrate the interpretability of the classification model,

we conducted visualizations and feature analyses. We used its

attention scores to predict patch categories across the slide,

generating a visualization heatmap. We then segmented cells

by patch, extracted morphological features, and compared them

to clinical standards. This revealed that there are significant

differences in tumor cells within different histologic subtypes.

These clinically-consistent findings validate the reliability and

interpretability of our heatmap analysis, demonstrating the model’s

good interpretability.

This study highlights the value and significance of leveraging

advanced AI techniques for the classification of thymoma

subtypes. By employing a multi-instance learning algorithm and an

attention mechanism, the study effectively addresses the challenges

associated with the morphological diversity and histological

heterogeneity of thymomas. The divide-and-conquer approach

simplifies the complex five-way classification task, improving

model accuracy and reliability. The validation of the heatmap

analysis against clinical guidelines ensures the robustness and

clinical relevance of the findings. These advances significantly

benefit pathologists in improving diagnostic accuracy and

efficiency. The model can be visualized for clinical interpretation,

reducing the time needed for pathologists to locate key features,

and is easily accepted by pathologists.

2 Materials and methods

In this task, we have a collection of whole-slide images(WSIs)

that belong to five categories (A, AB, B1, B2, and B3). Figure 2A is

the overall flow chart. We adopt the idea of divide and conquer,

first use HIPT method (20) to divide into two categories, and

then use ABMIL (21) to internally subdivide these two categories

to achieve five classifications. As shown in Figure 2B, there are

three steps for multi-instance learning classification: whole-slide

image preprocessing, tile feature extraction, and attention-based

Frontiers inMedicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2024.1501875
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2024.1501875

FIGURE 1

We used a divide-and-conquer approach to the five subtypes of thymoma. Firstly, the similar subtypes were classified into one category, and the

classification with big di�erence was distinguished. Then these large categories are further subdivided, and finally achieve the detailed classification

of five subtypes. Based on this, we plotted patch heatmap, and segmented and classified the cells. Next, we analyzed the characteristics of the cells

in di�erent patch categories to verify the correctness and interpretability of patch heatmap analysis.

slide classification. In order to improve the performance of the

model on thymoma data, an iterative strategy based on pseudo-

labels was used to continuously optimize the feature extractor.

Figure 2C shows the process of verifying the interpretability of the

model. We draw heatmaps according to the type of patches, and

analyse cell features within different kinds of the slides.

2.1 Dataset and pre-processiong

We analyzed 222 thymoma pathological slides and successfully

classified them into five different categories. To ensure the accuracy

of data annotation, we first removed all original labels from the

slides. Then, three pathologists with different levels of experience

independently diagnosed the slides. A category was confirmed

when at least two pathologists agreed on the result; if all three

opinions differed, a more experienced pathologist made the final

determination. This process integrated views from pathologists

with diverse expertise, effectively reducing individual biases and

enhancing the accuracy and reliability of the diagnoses. According

to this method, the slides were ultimately classified as Type A (21

cases), Type AB (83 cases), Type B1 (48 cases), Type B2 (49 cases),

and Type B3 (21 cases).

To ensure the completeness and validity of our results,

we rigorously divided the dataset into three distinct sets:

training, validation, and testing. The training set included 141

slides for model training; the validation set consisted of 42

slides for verifying the model’s performance after each training

round; the testing set comprised 39 slides used to evaluate the

model’s ability to classify unseen data at the end of training.

This segmentation strategy helped us more accurately assess
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FIGURE 2

(A) Illustrates the implementation of the divide-and-conquer idea of the five-classification algorithm. Using the multi-instance learning method, the

five classes are divided into two classes, and then further subdivided in the second step. (B) Presents the concrete implementation schematic

diagram of the multi-instance learning algorithm. It consists of three steps: whole-slide image preprocessing, tile feature extraction, and

attention-based slide classification. In addition to a simple iterative process, pseudo-label processing and continuous optimization of the feature

extractor are also carried out. (C) Is a flowchart for analyzing cell characteristics. The HoverNet model is used to segment and classify cells, and then

the characteristics of cells in di�erent categories of slides are analyzed.

the model’s performance and ensured the reliability of our

research results.

Additionally, we meticulously annotated 571 square patch

images derived from effective tissue areas of the slides, each

measuring 256 pixels in size. The annotation process began with an

initial cell location identification using an open-source pre-trained

HoverNet model, followed by a pathologist reviewing the results to

ensure the accuracy of the annotations. This step not only enhanced

the credibility of the data but also improved the subsequent model

training outcomes.

Our study is approved by the Institutional Review Board (IRB)

of the First Affiliated Hospital of Xi’an Jiaotong University (IRB

Approval No. KYLLSL-2020-054). The IRB granted a formal waiver

of informed consent for the use of these specimens. All collected

data have been de-identified and do not contain any personal

health information or identifiable labels. We, the authors, consent

to the publication of this study and affirm that it meets the ethical

standards required for publication.

2.2 Multiple instance learning

2.2.1 Feature extraction
The feature extraction module is used to encode the extracted

image patches as features. In the framework of multi-instance

learning, the feature extraction module for pathological slide

classification is usually decoupled from the feature aggregation

module (22). This decoupling design primarily addresses

memory constraints, as pathological slides often have high

resolution, necessitating significant computational resources for

feature extraction.

Therefore, separating the feature extraction module allows for

more flexible control over memory usage. We consider the input

slide X as a collection containing numerous instances and employ

a convolutional neural network denoted as E(·) to extract features

from individual small images. Representing the entire set of small

images as X = {x_i}_i = 1N , with x_i signifying the i-th small

image within the slide, the features encapsulated within the bag are

represented as Z = {z_i}_i = 1N . Notably, N denotes the number

of small images within the slide, while the size of the tissue in the

slide remains uncertain, thus constituting a variable value.

Additionally, the initialization of weights in the feature

extraction module is an important consideration. Some studies

adopt weights pre-trained on large-scale datasets such as ImageNet

(23–25), while others opt for self-supervised learning techniques

to initialize weights (20, 26). Due to the substantial computational

resources required for using self-supervised weights, in this

experiment, we utilized weights pre-trained on ImageNet for the

ResNet50 network. Considering the significant differences between

natural images and pathological images, we retrained the feature

extraction model using pseudo-labeling, which will be detailed in

Section 2.2.3.
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2.2.2 Feature aggregation
The role of the feature aggregation module is to obtain the

overall feature representation of the entire bag by aggregating the

instance features obtained from the feature extraction. In the slide

classification tasks, each slide has a known label Y ∈ {1, ...,C},

where C represents the number of classes. Additionally, each patch

within a slide has an unknown label y ∈ {1, ...,C,C + 1}, where

C + 1 represents the background class (e.g., non-tumoral regions).

The primary objective of multiple instance learning lies in fitting

a function M(·) utilizing the instance feature Z of the entire bag

as input to predict the label Y of the bag. Conventionally, the

approach entails learning a feature aggregation function denoted as

F(·), which aggregates the features O from all instance feature sets

Z. Subsequently, a classification function C(·) is utilized to derive

the final predicted category Y ′. Formally, the process is defined as

follows:

M = C (F (E (X))) . (1)

This paper utilizes an attention-based feature aggregation

module, formalized as follows:

F =
∑N

i=1 aizi, (2)

ai is a learnable weight for zi. In this module, attention scores are

assigned to all patch features obtained through feature extraction

for each category. Subsequently, the attention scores are multiplied

by the weighted features and summed to obtain the feature

representation of the bag for each category.

2.2.3 Pseudo-label assignment
Pseudo-labeling is used to retrain the feature extraction model.

Within the original multiple instance learning framework, we

utilized an auxiliary ResNet50 model with the same structure for

image patch classification, sharing weights with the original feature

extraction network. Initially, the image patches are unlabeled. We

selected a subset of the image patches and assigned pseudo-labels

to them. These pseudo-labeled image patches are then used to train

the feature extraction model.

For the selection of patches, we initially assign a confidence

score to each patches. Given a patch xn, a confidence score sn is

assigned to each patch following the rules below:

sn = acin · p
ci
n , (3)

where ci is the i-th category of the patch, ci ∈ {0, 1, ...,C}. a
ci
n

represents the attention score of patch xn for category ci, obtained

through the feature aggregation part of the current best model’s

multi-instance learning classification head. p
ci
n denotes the category

score of patch xn for category ci, which is the classification score

for category ci on the current best patch classifier. Then, we select

patches suitable for optimizing the feature extractor and assign

pseudo-labels to them. We sort the set of patches based on the

confidence values corresponding to the slide’s categories from

highest to lowest, select the top k patches with confidence scores,

and label the category of these patches as the corresponding slide

category. We then select the bottom k patches with confidence

scores and label the category of these patches as the background

category C + 1.

2.3 Interpretability verification

First, we draw visual heatmaps for every slide. Traditional

multiple instance learningmethods use the distribution of attention

scores to generate a visualization heatmap distribution of image

patches, but they can only display binary results on the original

image. We use the prediction results of an auxiliary classifier

to generate the heatmap. The predicted patch categories use the

ResNet50 module in Figure 2B. All the patches in a single slide

can be combined to generate a heatmap, as shown in Figure 4.

Different category results correspond to different colors. There

may be multiple types of patches in a slide. To demonstrate the

interpretability of the heatmap, we used a HoverNet model (27) to

segment cells in all patches within the original slides and classify

them. And we extracted the morphological features of the cells and

statistically analyzed.

The HoverNet model is trained and tested by the annotated

images. We apply the trained model to segment all patches in the

entire set of WSIs. Based on the segmentation results, we calculate

various features for each patch, categorized by different classes,

including tumor cell pixel size, major and minor axis lengths,

elongation ratio, solidity, mean curvature, and color intensity, and

so on. Additionally, we also compute 12 cell features in each

slide like the proportions and average sizes of tumor cells and

inflammatory cells.

Based on the analysis of different cellular characteristic data,

we counted the cell features across all slides according to

the various thymoma subtypes, followed by statistical analysis.

Our data includes five types of tissue subtypes and two types

of cell types, totaling ten groups. Among the 10 groups, we

selected five tumor cell groups for comparison and calculated

the differences between these five groups. When calculating the

differences between groups, we first performed the Kruskal–

Wallis test, obtaining the chi-squared value, degrees of freedom

(df), and p-value. The chi-squared value serves as the test

statistic for the Kruskal–Wallis test, measuring the degree of

median differences among groups. A larger chi-squared value

indicates more significant inter-group differences. The degrees

of freedom are calculated using the formula: number of groups

−1. The p-value indicates the probability of observing the

results or more extreme results under the null hypothesis.

If the p-value is <0.05, it usually means that the original

assumption (that the medians are equal in each group) is

rejected and indicates that at least one group has a significantly

different median.

To further identify between-group differences, we performed

pairwise comparisons of these five sets of data and applied Dunn’s

test as a post hoc test after the Kruskal–wallis test to determine

which specific group pairs showed significant differences. For each

pair, we computed the Z statistic (Z-value), the unadjusted p-value

(p.unadj), and the adjusted p-value (p.adj). The Z-value reflects the

degree of difference between the two groups, with larger absolute

values (whether positive or negative) indicating more significant

intergroup differences. A positive Z-value indicates that the median

of the first group is higher than that of the second group, while a

negative Z-value indicates the opposite. p.unadj is used to assess the

significance of differences between groups, with smaller p-values

indicating significant differences. p.adj is the p-value adjusted for
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multiple comparisons, controlling the false discovery rate using the

Benjamini-Hochberg method. We set the cut-off value at 0.05, so if

p.adj is <0.05, it can be concluded that there is a significant median

difference between the two groups. The significance grading criteria

are as follows: p-values <0.05 are marked with ∗, <0.01 with ∗∗,

<0.001 with ∗∗∗, and <0.0001 with ∗∗∗∗.

3 Results

For the experiments, the Adam optimizer is chosen. The multi-

instance learning classifier is trained using a batch size of 1, an

initial learning rate of 1 ∗ 10−4, and a decay factor of 0.5 every 10

epochs. Meanwhile, the slide block classifier is trained with a batch

size of 64, an initial learning rate of 5 ∗ 10−5, and a decay factor of

0.5 every 10 epochs.

3.1 Experiment results

Three methods is utilized to analyze the experimental results,

comprehensively evaluating the algorithm’s performance and

providing a basis for future work. First, we employed confusion

matrices and ROC curves to assess the accuracy and precision

of the classification results. Meanwhile, we plotted interpretability

heatmap to visually demonstrate the distribution of patch

categories within each slide. Furthermore, we adopted statistical

analysis to calculate the differences in characteristics of cells

from different categories, and visualized these differences using

violin plots.

3.1.1 Classification result
To evaluate the model’s performance on five thymic tumor

subtypes, we generated confusion matrices and ROC curves. In

Figure 3A, the confusion matrix shows the five-class classification

accuracy is 0.7179, indicating the model can effectively distinguish

the five thymic tumor subtypes. The ROC curve analysis further

reveals strong discriminative power, with a macro-average AUC of

0.9425 in Figure 3B. This high AUC value demonstrates the model’s

ability to accurately classify the different thymic tumor subtypes.

The high accuracy and AUC values indicate themodel is well-suited

for reliable subtype differentiation, which is helpful for guiding

personalized treatment strategies for thymic tumor patients.

To further demonstrate the effectiveness of pseudo-label

assignment, we conducted an ablation experiment. Under the

strategy of divide and conquer, the model achieved a five-class

accuracy of only 0.55 and an AUC of 0.8609, thereby demonstrating

the effectiveness of the pseudo-labeling strategy. The divide and

conquer strategy enabled the model to acquire preliminary class

discrimination capabilities. Pseudo-labels, derived from themodel’s

existing discriminative information—specifically the attention

distribution—further optimized the feature extraction network.

This optimization allowed the model to learn the typical features

distinguishing different classes, thereby enhancing the overall

classification performance.

3.1.2 Interpretability result
The interpretability heatmap is shown in Figure 4. Different

color areas correspond to different patch categories, and the patch

distribution in a heatmap of different categories is different. It is

worth mentioning that there is more than one type of patch in

a slide, as in a heatmap with a slide class, there are also patches

predicted to be B3 classes. To verify the interpretability of themodel

heatmap, we conducted a follow-up analysis.

We employed the HoverNet model to segment and classify

the cells within each patch. We trained the model using the

annotated patches, allowing it to provide precise cell coordinates

and classifications. We then applied the trained HoverNet model to

segment and classify the cells in all original patches. From this, we

extracted 12 features for both tumor cells and inflammatory cells,

and generated violin plots to analyze the significant differences. As

shown in Figure 5, the comparison results reveal distinct differences

in the characteristics of inflammatory cells vs. tumor cells across

the different slides. This detailed analysis sheds light on the unique

signatures of these cell types, which is crucial for accurate subtype

identification. Additional comparative analysis of other cell features

is shown in the Appendix.

To ensure the reliability of the subsequent cell analysis,

we calculated relevant metrics for both the segmentation and

classification aspects of the HoverNet model. The effects are shown

in Tables 1 and 2. For segmentation, the Dice coefficient was 0.9393,

indicating strong similarity between the segmentation and ground

truth. The FAST AJI score was 0.7694, with an improved FAST

AJI+ of 0.8044. The DQ and SQ metrics were 0.8832 and 0.8906

respectively, yielding a DQ*SQ of 0.7880. Turning to classification,

the overall F1 score was 0.9136 and the accuracy was 0.7529. The

Micro-average F1 score was 0.8152, with 0.8427 for tumor cells

and 0.7388 for inflammatory cells. These excellent segmentation

and classification metrics confirm the HoverNet model’s robust

performance, providing a reliable foundation for the subsequent

cell-level analysis and comparison across different slides.

After obtaining stable cellular characteristics, we analyzed the

differences between the cells by selecting three key features: Cell

Proportion, which refers to the ratio of the total number of a specific

cell type in a given slide to the total number of cells across all

222 slides; Cell Area, indicating the average size of that cell type;

and Eccentricity, defined as the ratio of the length of the long

axis to the length of the short axis of the cell. We assessed the

variations among tumor cells across different tissue subtypes using

the Kruskal–Wallis test, which yielded significant results for all

three characteristics: for Cell Proportion, chi-squared = 89.66 (df

= 4, p-value < 2.2E − 16); for Cell Area, chi-squared = 93.17 (df =

4, p-value < 2.2E− 16); and for Eccentricity, chi-squared = 140.76

(df = 4, p-value < 2.2E − 16). All p-values were <0.05, indicating

significant differences in the medians among the different groups.

The specific results of the pairwise post hoc tests are presented in

the Appendix.

Additionally, we created violin plots to visually represent the

data for each group. Figures 5A–C display the characteristics of

cell proportion, area size, and eccentricity, respectively, effectively

illustrating the distribution and median of each group. Each plot

contains data from ten groups, with each group represented by an

inverted violin shape. The white dot indicates the median of the

data for that group, while the width of the violin reflects the density
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FIGURE 3

These two graphs are the result graphs of five classifications, (A) is the confusion matrix and (B) is the ROC curve.

FIGURE 4

Visual heatmap of five thymoma subtypes. The top panel presents hematoxylin and eosin (H&E) stained overview images of each thymoma subtype.

The middle panel provides corresponding visualization heatmaps, highlighting the distinctive features of each subtype. In the bottom panel, an

example of a B1-type thymoma is shown, with the heatmap indicating a B2-type signal in the lower-left corner (yellow triangle). Further review of

H&E sections in this area confirmed a small focus of B2-type thymoma. The yellow arrow in the H&E image marks clustered tumor cells,

characteristic of B2 subtype, in contrast to the scattered, single-cell distribution typical of the B1 subtype (indicated by the arrowhead).

of the data, and the length represents the overall distribution.

On the right side of each plot, we present the significance of

differences in tumor cells among the various thymoma subtypes,

indicating that significant differences exist between the different

slide subtypes.

The result indicates that the observed differences in cell

proportions, area and eccentricity align with known characteristics

and pathological features of each thymoma subtype. This

consistency underscores the accuracy of our explainable results and

the validity of the analysis.

3.2 Comparative test

In order to verify the effectiveness of the proposed method,

we conducted a comparative experiment of four machine learning
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FIGURE 5

Three inverted violin plots show the data distribution of thymic tumor cells across three characteristics: (A) the proportion of two cell types, (B) cell

area size, (C) cell eccentricity. The white dot represents the median value of the data, while the width of each violin indicates the density of the data

points. Wider sections correspond to a higher density of observations and the length reflects the overall distribution of the data across each group.

The red violin plots represent tumor cells, while the blue ones represent inflammatory cells. We analyzed the two cellular characteristics within five

subtypes of thymic tumors, with each plot containing data from ten groups. We assessed intergroup di�erences among tumor cells, using an asterisk

(*) to denote significant di�erences; if two groups are connected by an asterisk, it indicates a significant di�erence in the distribution of tumor cells

within those tissue types.

TABLE 1 Testing metrics for segmentation by HoverNet.

Metrics Value

Dice coefficient 0.9393

Fast AJI 0.7694

Fast AJI+ 0.8044

DQ 0.8832

SQ 0.8906

DQ*SQ 0.7880

TABLE 2 Testing metrics for classification by HoverNet.

F1 score Value

Micro-average F1 score 0.8152

Tumor cell 0.8427

Inflammatory cell 0.7388

methods and threemulti-instancemethods without the divide-and-

conquer idea. And the calculation formula for various performance

metrics is as follows:

Acc =
TP + TN

TP + FP + TN + FN
, (4)

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F1 = 2 ∗
Precision ∗ Recall

Precision+ Recall
. (7)

Four machine learning methods specifically refer to Random

Forest, Logistic Regression, Support Vector Machine (SVM),

and K-Nearest Neighbors (KNN). Due to the large size of

the WSI, it is more expensive to directly use the full-slide

image as input for machine learning training. Therefore, we

utilized the information extracted from HoverNet for tumor cells,

inflammatory cells, and endothelial cells in machine learning

training. Specifically, we used the size, number, density, and row

spacing of these cells as characteristic parameters in our machine

learning classification experiments.

The outcome metrics for each method are shown in Table 3,

and all methods work poorly except the method in this article.

Logistic Regression is sensitive to outliers, and its accuracy of

0.5507. When faced with high levels of noise in the dataset, Support

Vector Machines may be prone to overfitting, and its accuracy is

0.5797. In high-dimensional datasets, K-Nearest Neighbors may

encounter the curse of dimensionality, which can impact its

accuracy (0.5942). Random Forest’s accuracy remains at 0.6667,

which demonstrates robustness to missing data and outliers.

The three multi-instance learning methods that do not use the
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TABLE 3 Performance comparison of di�erent machine learning methods for thymoma prediction.

Algorithm Accuracy Precision Recall F1 score

Random forest 0.6667 0.7299 0.6545 0.6630

Logistic regression 0.5507 0.5743 0.5881 0.5463

SVM 0.5797 0.5587 0.5324 0.5395

KNN 0.5942 0.4831 0.4910 0.4828

HIPT 0.6000 0.6627 0.5856 0.6027

ABMIL 0.4500 0.4750 0.3439 0.4115

TransMIL 0.5000 0.6167 0.4439 0.4496

Ours without pseudo-label 0.5500 0.5373 0.5556 0.5243

Ours 0.7179 0.7403 0.7179 0.7175

divide-and-conquer approach, HIPT, ABMIL, and TransMIL, have

respective accuracies of 0.6000, 0.4500, and 0.5000.

The results of four machine Learning methods are less effective,

most likely due to the heterogeneity of thymoma histological

patches, a slide may contain regions belonging to multiple different

categories, which results in extracted input information that does

not belong to a single category. As a result, it becomes challenging

to effectively classify the slides based on cell information at the

slide level. At the same time, using HIPT, ABMIL and TransMIL

Multi-Instance Learning methods to predict the five-classification,

the effect is not ideal. This is mainly because there are many

different types of thymoma to be classified, but only 222 WSI

can be used for training. However, this paper adopts the idea of

divide-and-conquer, first divides the samples into two categories

with high similarity, then subdivides the two categories further.

The strategy of hierarchical classification makes the final prediction

more accurate, with an accuracy of 0.7179.

4 Discussion

In this study, we introduce a novel approach to thymoma

histopathology classification that leverages weakly supervised

learning combined with a divide-and-conquer strategy. Unlike

previous studies, our method only requires slide-level labels,

significantly reducing the need for detailed annotations.

Additionally, we have incorporated visualization techniques

that provide interpretable results, which have been clinically

validated to ensure their reliability. Our approach not only

demonstrates improved classification performance but also offers

a potential framework that could inspire further research in the

classification of various types of tumors.

We implemented a weakly supervised learning approach

integrated with a divide-and-conquer strategy, achieving significant

classification performance using only slide-level labels. Traditional

studies in this field require detailed patch-level annotations (17),

which are labor-intensive and time-consuming. The adoption of

the multiple instance learning (MIL) method (28) is motivated

by the high resolution of whole slide images (WSI) and inherent

label uncertainty. MIL effectively addresses the challenges of large-

scale high-resolution image data and achieves reliable predictions

with weak supervision. This pseudo-label-based MIL method

leverages both bag-level and instance-level information, enhancing

classification performance and robustness. Additionally, the use of

pseudo-labels optimizes feature extraction weights, improving the

recognition of critical instances. The divide-and-conquer strategy

has been applied successfully in numerous heterogeneous tumor

segmentation tasks, such as gliomas (29) and hepatic lesions

(30). Experimental results have demonstrated varying degrees of

performance improvement across these tasks. Specifically, our

experimental results show that this strategy significantly enhanced

detection accuracy from 0.4500 to 0.7179. This approach has

proven effective in overcoming the challenges posed by limited data

and multiple tumor categories.

Our visualization technique distinguishes itself by displaying

multiple tumor categories within a single slide, which is

especially valuable in the context of thymoma due to its

inherent heterogeneity. Thymomas often exhibit considerable

histopathological diversity, making accurate diagnosis challenging

and leading to potential inconsistencies among pathologists (3).

Previous approaches (23) have typically employed attention score

heatmaps to highlight areas associated with a single classification

output, limiting the ability to convey the presence of coexisting

tumor types within the same image. Our method, in contrast,

provides a more nuanced and comprehensive visualization by

simultaneously depicting multiple tumor categories, allowing

pathologists to recognize and appreciate the heterogeneity within

the sample more effectively. This dual approach not only enhances

understanding of the overall tumor landscape but also reduces

potential diagnostic variability by providing pathologists with a

tool to observe diverse tumor characteristics in a single view.

Furthermore, the multi-instance learning model offers explanatory

heatmaps that go beyond simple classification, offering insights

that are crucial in clinical decision-making and in managing the

diagnostic complexities of thymoma.

To ensure the reliability of our visualizations, we conducted

a detailed clinical validation analysis. This involved measuring

the characteristics of different cell types and comparing them

against histological definitions of thymoma subtypes. Our results

confirmed that our measurements align with the established

morphological criteria, demonstrating fewer lymphocytes in A

and B3 types compared to other subtypes. Additionally, distinct
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differences in tumor cell nuclei sizes and shapes between A

and B3 types and B1 and B2 types were observed, consistent

with pathologists’ observations. Despite similar median sizes of

tumor cells in A and B3 types, the size of the nuclei varied

significantly, indicating greater nuclear atypia in B3 thymomas.

For the differentiation diagnosis between morphologically similar

AB type and B1, B2 types, our results show significant differences

in tumor cell area and curvature, which align with the intrinsic

characteristics of AB type thymoma tumor cells being distinct from

B type tumor cells. This nuanced understanding underscores the

importance of algorithmic interpretability in refining diagnostic

criteria and improving the accuracy of pathological assessments.

Our findings demonstrate that interpretable models foster greater

trust and facilitate the identification and mitigation of biases,

enhancing the robustness and fairness of image-based predictive

systems (31).

The human-slide interaction during slide examination allows

for detailed presentations, such as highlighting the thoroughly

examined focuses that contributed to reaching the precise

diagnosis along with the used magnification levels. This kind

of highlighting could help trainees find initial orientation when

starting to look for abnormalitiess (32). In the real clinical

pathological diagnosis process, professionals can quickly extract

overarching features from an image and construct a nuanced

perceptual representation that swiftly establishes the connection

between visual stimuli and a diagnosis. This aptitude is likely

bolstered by memory patterns formed through prior experiences,

which are activated upon encountering the stimulus. Such

a process requires the accumulation of diagnostic experience

and consumes a considerable amount of time (6). Multi-class

visualization has the potential to assist pathologists in reducing

the time needed to locate key diagnostic areas, thereby enhancing

diagnostic efficiency.

There are several limitations to our study that warrant further

investigation. First, our dataset is derived from a single-center,

whichmay limit the generalizability of our findings. Future research

should include multi-center data to validate and enhance the

robustness of our results. Such an approach would provide a

broader perspective and ensure that the findings are applicable

across different populations and clinical settings. Second, the

clinical significance of classifying thymoma subtypes, especially

those with mixed subtype components, is not fully understood.

This limitation restricts our ability to interpret the behavior

and treatment responses of these mixed subtypes. Exploring the

implications of these classifications is crucial, as it can offer valuable

insights into prognosis and therapy optimization. Third, our study

does not address the diagnostic efficacy of artificial intelligence

(AI) models in comparison to pathologists with varying levels of

experience. This gap in the research prevents a comprehensive

assessment of how AI can be effectively integrated into clinical

workflows. Comparing the performance of AI models with both

novice and expert pathologists is essential to determine their

potential to enhance diagnostic accuracy and efficiency in diverse

clinical environments.

Our future work will further evaluate the impact of

visualization on improving the diagnostic efficiency of pathologists

and explore optimal human-computer interaction modes to

enhance working efficiency for medical professionals.

5 Conclusions

In response to the challenges in classifying thymoma subtypes,

we employed a divide-and-conquer strategy and an attention-

based multi-instance learning algorithm, achieving high accuracy

in limited data volume. Based on our work and medical

knowledge, we analyzed tumor cell characteristics to explore

the model’s interpretability in depth. However, the clinical

significance of mixed subtype classifications remains unclear.

Additionally, the diagnostic efficacy of AI models compared

to pathologists with varying experience levels needs further

investigation. Future research should include more multi-center

data, explore mixed subtype implications, and compare AI

performance with pathologists to enhance clinical integration.
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