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Background: Radiomics, which involves the conversion of digital images 
into high-dimensional data, has been used in oncological studies since 2012. 
We analyzed the publications that had been conducted on this subject using 
bibliometric and visual methods to expound the hotpots and future trends 
regarding radiomics in evaluating lymph node status in oncology.

Methods: Documents published between 2012 and 2023, updated to August 
1, 2024, were searched using the Scopus database. VOSviewer, R Package, and 
Microsoft Excel were used for visualization.

Results: A total of 898 original articles and reviews written in English and 
be related to radiomics for evaluating lymph node status in oncology, published 
between 2015 and 2023, were retrieved. A significant increase in the number 
of publications was observed, with an annual growth rate of 100.77%. The 
publications predominantly originated from three countries, with China leading 
in the number of publications and citations. Fudan University was the most 
contributing affiliation, followed by Sun Yat-sen University and Southern Medical 
University, all of which were from China. Tian J. from the Chinese Academy 
of Sciences contributed the most within 5885 authors. In addition, Frontiers in 
Oncology had the most publications and transcended other journals in recent 
4 years. Moreover, the keywords co-occurrence suggested that the interplay of 
“radiomics” and “lymph node metastasis,” as well as “major clinical study” were 
the predominant topics, furthermore, the focused topics shifted from revealing 
the diagnosis of cancers to exploring the deep learning-based prediction of 
lymph node metastasis, suggesting the combination of artificial intelligence 
research would develop in the future.

Conclusion: The present bibliometric and visual analysis described an 
approximately continuous trend of increasing publications related to radiomics 
in evaluating lymph node status in oncology and revealed that it could serve as 
an efficient tool for personalized diagnosis and treatment guidance in clinical 
patients, and combined artificial intelligence should be  further considered in 
the future.
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1 Introduction

Lymphatic metastasis is a common pathway for the spread of 
malignant tumors, and has significant implications for prognosis and 
treatment selection. The lymph node status is a crucial indicator for 
assessing the prognosis and treatment outcomes of clinical cancer 
patients (1–4). Traditional imaging assessment methods have 
limitations in evaluating tumor lymphatic metastasis and lymph node 
status (5), fortunately, in recent decade, radiomics, combined with 
machine learning and artificial intelligence (AI) algorithms, has 
shown great potential in this field (6–8). Through radiomics, a more 
accurate assessment of the risk of tumor lymphatic metastasis, 
prediction of the status of lymph node metastasis, and provision of a 
more reliable basis for individualized treatment planning are 
achievable (9, 10).

Radiomics is a burgeoning field in medical imaging that focuses 
on extracting and analyzing numerous quantitative features from 
radiological images. These features encompass a wide range of data, 
including shape, intensity, texture, and wavelet features, among others, 
providing valuable insights into the underlying pathophysiology of 
diseases (6, 11). By leveraging advanced computational techniques 
and machine learning algorithms, radiomics aims to transform 
standard medical images into high-dimensional data for improved 
disease characterization, prognosis, and treatment response 
assessment (12–14). The application of radiomics has shown 
promising potential in various types of cancer, such as colorectal 
cancer, breast cancer, lung cancer, papillary thyroid cancer, et cetera, 
offering a non-invasive and personalized approach to medical 
diagnosis and treatment evaluation (8, 9, 15, 16).

Bibliometric analysis has become an essential tool for research 
evaluation, knowledge mapping, and trend analysis in various 
academic disciplines. By quantitatively analyzing publication data, 
citation patterns, and collaboration networks, bibliometric analysis 
provides valuable insights into the research landscape (17). In recent 
years, the visualization of bibliometric data has gained prominence, 
with tools including VOSviewer, or R software, enabling researchers 
to create interactive and informative visualizations (18–20). 
VOSviewer, a popular software tool for constructing and visualizing 
bibliometric networks, allows users to explore keyword co-occurrence, 
and collaboration networks in a user-friendly interface (21). 
Meanwhile, R software package, with its diverse range of packages and 
libraries, offers flexibility in customizing visualizations and conducting 
advanced bibliometric analysis (22).

This bibliometric analysis aimed to delve into the global 
application of radiomics in evaluating the lymph node state of tumors, 
showcasing its capabilities in uncovering research trends, identifying 
key players in the field, and mapping knowledge domains. By 
exploring the visualization features of VOSviewer and R software 
packages, researchers can gain deeper insights into the scholarly 
landscape and make informed decisions based on data-driven analysis.

2 Methods

2.1 Data sources and search strategies

The present study collected data from the Scopus database, with 
the search period setting between 2012 and 2023, updated on August 

1, 2024. The search terms were as follows: TITLE-
ABS-KEY = (“radiomic” OR “radiomics”) AND TITLE-
ABS-KEY = (“lymph” AND “node”) AND TITLE-
ABS-KEY = (“tumor” OR “cancer” OR “carcinoma”OR “oncology”) 
AND PUBYEAR > 2012 AND PUBYEAR < 2024. Among the diverse 
types of documents (articles, book chapters, conference papers, 
conference reviews, editorials, letters, notes, reviews, and short 
surveys), only articles and reviews written in English were included. 
In total, 758 articles and 140 reviews were retrieved for further 
analysis. The strategy for enrolling and retrieving the documents was 
shown in Figure 1.

2.2 Data acquisition and bibliometric 
analysis

Text data were downloaded, and bibliometric indicators, such as 
the H-index, were utilized to evaluate the scholarly achievements of 
individuals, along with the impact factors of relevant academic 
journals. Bibliometric and visual analyses were conducted using 
VOSviewer and the R package. Microsoft Office Excel 2019 was used 
as a supplement to create the statistical charts. To better show the 
co-occurence, the keywords were combined, including “lymph nodes 
AND lymph node,” “neoplasm staging AND cancer staging,” “breast 
tumor AND breast cancer,” “breast neoplasms AND breast cancer,” 
“nomograms AND nomogram,” “fluorodeoxyglucose f 18 AND 
18F-FDG-PET,” “lung neoplasms AND lung tumor,” “tomography, 
x-ray computed AND x-ray computed tomography,” “humans AND 
human,” “nuclear magnetic resonance imaging AND magnetic 
resonance imaging,” “retrospective studies AND retrospective study,” 
and “positron emission tomography-computed tomography AND 
positron emission tomography computed tomography,” respectively.

3 Results

3.1 Main information

Based on the study flow diagram illustrated in Figures 1, 898 
documents published between 2015 and 2023 were retrieved, 
containing 19,756 citations with an average of 22 citations per paper. 
The annual growth rate was 100.77% and the average age of the 
documents was 2.55. In total, 248 journals, 61 countries, 3657 
affiliations, and 5,885 authors contributed 4,317 keywords plus 
were included.

3.2 Annual trends in the number of 
publications

In general, there were 99.8 annual publications between 2015 and 
2023. As depicted in Figure 2, the number of publications in this field 
continued to sostenuto, especially with a dramatic increase from 2020, 
manifested as the number of publications (NP) exceeding 100 and the 
cumulative number of publications doubling every 1 or 2 years. The 
curve of the cumulative number of publications fitted the quadratic 
function curve with a goodness-of-fit R2 of 0.9957, indicating that the 
total number of publications will grow steadily in the coming years.
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3.3 Countries and areas analysis

The analysis of publications, citations, and collaboration for various 
countries and areas indicated the degree of importance in the research 
field of the countries as well as the degree of effect. As depicted in 
Figure 3A, the top 10 contributing countries were mainly from Asia, 
such as China (502, 4694), South Korea (24, 187), and Japan (21, 211); 
North America, such as the USA (62, 590) and Canada (22, 210); and 
European countries, including Italy (76, 905), Germany (25, 312), the 
Netherlands (16, 176), France (14, 98), and the UK (12, 81). The former 
referred to documents based on the corresponding author, while the 
latter referred to documents based on every co-author. The disparity in 
the numbers within one country was mainly due to international 
collaboration among authors, as the data showed that the co-authors 
per document was 8.92, taken account to totally 6 publications with 
single-author. Among these countries, China had the highest 
contribution based on the number of publications, followed by the USA 

and Italy. For the international collaboration depicted in Figure 3B, 
within the top  10 contributing countries, the most single-country 
publications (SCP) were from China (461, 51.33%), followed by Italy 
(57, 6.35%), and the USA (32, 3.56%), while the most multiple-country 
publications (MCP) were from China (41, 4.57%), followed by the USA 
(30, 3.34%), and Italy (19, 2.12%). Moreover, for the ratio of MCP and 
NP, the prominent country among the top 10 countries was Netherlands 
with the number of 62.5%, indicating higher international 
collaboration, while, the prominent countries among all the included 
countries were Brazil, and India, with the number of 66.7%, mainly due 
to only 3 documents published for each country. The detailed 
parameters of the top  24 countries, including the number of 
publications, SCP, MCP, Frequency (%), and MCP Ratio were listed in 
Supplementary Table 1. The VOSviewer overlay map in Figure 3C 
showed that 36 countries and areas had cooperated with others to 
publish at least two documents. Among them, China cooperated with 
13 countries and areas, including the USA, Japan, Australia, the Russian 

FIGURE 1

Study flow diagram.

FIGURE 2

Trends of publications between 2015 and 2023.
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Federation, the UK, Italy, the Netherlands, Switzerland, Canada, 
Germany, South Africa, Hong Kong, and Taiwan; the most significant 
link was between China and the USA. The second-largest contributing 
country, representing a larger glaucous node, was the USA. Compared 
to China, the USA had more co-authorship countries. In total, 24 
countries and areas were involved, including South Korea, Egypt, Israel, 
Romania, Denmark, Singapore, Austria, Mexico, Brazil, Spain, 
Thailand, Slovenia, and France, which had no collaboration with 
China. Similarly, China was the most crucial cooperative country in the 
USA. The yellow nodes, represented by Norway, Hong Kong, Singapore, 
the Russian Federation, and Greece, were emerging as novel 
contributing countries. As another crucial indicator, the cited times 
depicted in Figure 3D showed that China had the highest total citations, 
followed by the USA and Italy, mainly because of their higher number 
of publications. Therefore, the average number of article citations 
showed a better evaluation of the scientific influence of each country. 
Among the countries involved, the USA (35.8) had the highest average 
article citations, followed by the UK (29.6) and China (23.5). Apart 
from these 10 countries, Norway (30.0), Switzerland (27.4), and 
Australia (25.3) had higher average article citations. The detailed 
parameters of the top 25 countries, including the total citations and 
average article citations, were listed in Supplementary Table 2.

3.4 Affiliations and authors analysis

The top 15 affiliations with the most publications were shown in 
Figure  4A. Almost all affiliations were from China, except for the 

Memorial Sloan Kettering Cancer Center in the USA, which was ranked 
12th. Additionally, all had published at least 50 documents, and four 
affiliations had published more than 100 documents. Among the top 
three affiliations, Fudan University ranked 1st published its first 
document in 2015 (23), with an annual publication reaching 15, while 
it published 45 in 2020 and 43 in 2023. Sun Yat-Sen University ranked 
2rd published its first document in 2017 (24), with an annual publication 
of 17, while it published 39 in 2021. Southern Medical University ranked 
3th in its first document in 2016 (9), with an annual publication of 14.

The 10 topmost authors with the highest number of publications 
were illustrated in Figure 4B, along with their publications over time. 
Zhang J. ranked 1st participated in 54 publications, who had 
published since 2020 (25), followed by Wang X. with 47 publications. 
Among the top 10 authors, Tian J. published the first document in 
2016 (9), which had the highest number of citations to date. As 
shown in Table 1, Tian J. made a prominent contribution due to his 
highest total citations (3330), the highest average citations per article 
(87.63), and the highest average citations per year (416.25). In 
addition to Wang X., Li J., Zhang Y., and Zhang X. published their 
first documents in 2019 (26–28), Wang Y. and Li X. published their 
first documents in 2018 (29, 30). Moreover, some of them had relative 
collaboration to publish, such as Wang X. and Zhang Y. published 
their first documents in 2019 (26). Additionally, the co-authorship 
network was also explored in Figure 4C. Among the 5885 authors, 90 
met the thresholds, setting the minimum number of documents of 
an author as five, and the largest set of connected items consisted of 
58 items, instead of all involved items, because some of the 90 items 
were not connected to each other. Collaboration among authors 

FIGURE 3

Countries analysis. (A) Global geographic map. The color shading indicated the amount of publications, with the label of top 10 counties. (B) International 
collaboration of top 10 countries. The yellow color represented the single country publication (SCP), and the blue color represented the multiple country 
publication (MCP). (C) Overlay map of co-authorship of the dominating countries. The size represented the amount of publications, and the yellow color 
represented documents published mainly from 2022. (D) The citations of top 10 countries. The blue columns represented the total citations, and the red 
curve represented the average article citations.
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showed weak relationships among collaborators, suggesting the need 
for greater collaboration in the future.

3.5 Journals and keywords analysis

The R software package was used to analyze the journals 
published in these documents to explore and identify the most 
prominent and productive journals. These documents were published 
in 248 well-reputed academic journals. The 10 highest-ranking 
journals in terms of the NP were listed in Table 2. Among them, five 

journals were categorized as radiology, nuclear medicine, and 
medical imaging; four were categorized as oncology; and the 
remaining one was categorized as medicine, general, and internal. 
Among these, six were ranked Q1, three were ranked Q2, and one 
was ranked Q3. The open-access journal Frontiers in Oncology 
occupied the top position with 160 publications, followed by and 
Cancers and European Radiology with 51 and 41 publications, 
respectively. An analysis of the publications in each journal over time 
showed that four journals initially published in 2018, such as Frontiers 
in Oncology, European Radiology, Journal of Magnetic Resonance 
Imaging, and European Journal of Radiology, meanwhile, Abdominal 
Radiology published their first documents in 2021. Additionally, a 
dramatic increase in the number of publications on Frontiers in 
Oncology had been observed, especially in 2021 and 2022.

Totally 65 keywords of these publications (including Author 
Keywords and Index Keywords) were analyzed and visualized based 
on keyword co-occurrence and burst detection (Figure 5). The results 
showed that four clusters were divided based on the strength of their 
relationship (Figure 5A). In brief, Cluster 1 (red) mainly concentrated 
on the study of the diagnosis combined radiomics and pathology 
focusing on breast cancer, with the prevalent keyword being 
“histopathology,” “breast cancer,” and “diagnostic test accuracy,” Cluster 
2 (green) focused on the prognosis based on CT/PET-CT mainly for 
lung cancer assessment, with the prevalent keyword being “cancer 
prognosis,” “cancer survival,” and “lung tumor,” Cluster 3 (blue) focused 
on the predictive value especially on uterine cervix cancer and CA19-9 
elevating related cancers, with the prevalent keyword being 
“prediction,” “retrospective study,” and “CA 19–9 antigen,” while 
Cluster 4 (yellow) mainly focused on the comparative studies of 

FIGURE 4

Visualization of affiliations and authors. (A) Top 15 affiliations analysis. (B) Top 10 authors’ publications over time. (C) Collaboration analysis among authors.

TABLE 1 Top 10 authors with high impact.

Authors H-index TC NP ACPA PY_
start

ACPY

Tian J 25 3330 38 87.63 2016 416.25

Li J 17 1128 43 26.23 2019 225.60

Wang Y 17 1861 43 43.28 2018 310.17

Zhang J 16 681 54 12.61 2020 170.25

Zhang L 16 891 31 28.74 2018 148.50

Li H 15 862 24 35.92 2015 95.78

Wang X 15 749 47 15.94 2019 149.80

Li Y 14 1111 36 30.86 2017 158.71

Liu Z 14 1003 23 43.61 2018 167.17

Zhang X 14 563 34 16.56 2019 112.60
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lymphatic metastasis on aged patients. The keywords were color-coded 
into different types according to the average year of publication using 
VOSviewer (Figure 5B). Research areas, such as radiomics, lymph node 
metastasis, major clinical studies, and retrospective studies illustrated 
around 2021 were the primary topics. Moreover, the keywords related 

to the AI, such as “deep learning” and “machine learning,” rapidly rose 
compared to inchoate “ROC curve,” and suggested the increasingly 
concerted efforts in pushing artificial intelligence technology to clinical 
use and to impact future directions in cancer care. Twenty keywords, 
burst intensity, burst duration, and burst time, were also assessed 

TABLE 2 Top 10 most contributing journals.

Journals IF Category 2018 2019 2020 2021 2022 2023

Frontiers in Oncology 3.5 Q2 (107/322) 1 7 27 77 134 160

Cancers 4.5 Q1 (78/322) 0 0 6 21 34 51

European Radiology 4.7 Q1 (22/204) 1 7 13 25 32 41

Journal of Magnetic Resonance 

Imaging 3.3 Q1 (42/204) 1 9 13 14 17 22

Academic Radiology 3.8 Q1 (38/204) 0 0 3 5 11 19

British Journal of Radiology 1.8 Q3 (113/204) 0 1 4 13 15 19

European Journal of Radiology 3.2 Q1 (46/204) 1 5 8 12 16 18

Diagnostics 3.0 Q1 (58/325) 0 0 1 4 10 17

Abdominal Radiology 2.3 Q2 (85/322) 0 0 0 4 10 16

Cancer Imaging 3.5 Q2 (107/322) 0 2 8 9 12 14

FIGURE 5

Co-occurrence network analysis of keywords. (A) The keywords were divided into four categories according to different colors: category 1(red), 
category 2(green), category 3(blue), and category 4(yellow), with the size of the nodes indicated the frequency of occurrence; (B) Visualization of the 
keyword co-occurrence overlay according to the average years of publication. Keywords colored yellow represented appearing later than those dark 
blue; (C) Top 20 keywords for burst detection each year.
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(Figure 5C). In the original stage, “neoplasm metastasis,” “neoplasm 
staging,” and “ROC curve” were the focus of research; however, in 
recent years, “artificial intelligence,” and “dynamic contrast-enhanced 
computed tomography” become emerging keywords, suggesting the 
clinical use of novel technology and methods.

3.6 Global citation score analysis

Based on the analysis of the database, the top 10 cited documents, 
with 3,445 citations, up to 17.44% of the total citations, were depicted 
in Table 3. Among them, only two articles ranked 2rd and 9th were 
published by authors from the USA (31, 32), and the others were all 
published by authors from China. The article “Development and 
validation of a radiomics nomogram for preoperative prediction of 
lymph node metastasis in colorectal cancer” published in Journal of 
Clinical Oncology in 2016 (9), ranked 1st with 1333 citations. For the 
article ranked 2nd, “Predicting response to cancer immunotherapy 
using non-invasive radiomic biomarkers” published in Annals of 
Oncology in 2019 with 366 citations (31). Moreover, the article “Deep 
learning radiomics can predict axillary lymph node status in early-
stage breast cancer” ranked 3rd, published in Nature of 
Communications in 2020 with 343 citations (15). The article “A 
radiomics nomogram for the preoperative prediction of lymph node 
metastasis in bladder cancer”ranked 4th also had citation over 300 
times, which was published in Clinical Cancer Research in 2017 (24). 
No hard to see, these articles were related to various types of cancer, 
including colorectal cancer, lung cancer, breast cancer, and bladder 
cancer, respectively. Additionally, apart from the breast cancer to 
be mentioned time after time (15, 33, 34), among the top 10 cited 
article, others were associated with other types of cancer be apt to 
lymphatic metastasis, such as gastric cancer (35), biliary tract cancer 
(26), and papillary thyroid carcinoma (36). For the radiomics 
nomograms, deep learning was the popular nomogram (15, 34, 36), 
and the transfer learning (36), which also been used in 2020, suggested 
that the development of the algorithms to achieve the goal that 
offering a repertoire of “expert” experiences in disease interpretation.

The top 10 cited publications were analyzed based on their global 
citation scores per year. Nine of the top 10 publications were articles 
related to the relatively high impact and citation count of high-level 
journals. Higher citations range from 2021 to 2023, with 670 to 717 
citations. However, for some articles published earlier, the most cited 
articles were from 2019 to 2022, such as “Preoperative prediction of 
sentinel lymph node metastasis in breast cancer based on radiomics 
of T2-weighted fat-suppression and diffusion-weighted MRI” 
published in 2018 (33). Especially, the article “Radiomic-Based 
Pathological Response Prediction from Primary Tumors and Lymph 
Nodes in NSCLC” published in 2017 (32), showed the same tendency 
of being cited as the 1st ranked article published in 2016.

3.7 Subject areas and funding sponsors 
analysis

As an interdisciplinary field, the documents referred to multiple 
subject areas, mainly medicine (824, 91.76%) and biochemistry, 
genetics, and molecular biology (374, 41.65%), which were ranked 1st 
and 2rd, respectively. The top 10 subject areas were health professionals 

(60, 6.68%), computer science (23, 2.56%), physics and astronomy (23, 
2.56%), engineering (22, 2.45%), multidisciplinary (17, 1.89%), 
immunology and microbiology (14, 1.56%), pharmacology, toxicology, 
and pharmaceutics (12, 1.34%), and dentistry (6, 0.67%). Besides these 
subject areas, all of them were shown in Supplementary Table 3.

A total of 159 global funding sponsors were involved, with the 
National Natural Science Foundation of China (217, 24.16%) ranked 
1st, followed by the Ministry of Science and Technology of the People’s 
Republic of China (43, 4.79%), and the National Institutes of Health 
(43, 4.79%). Apart from these, among the top 10 funding sponsors 
based on the amount, two sponsors were from the USA, including the 
National Cancer Institute (37, 4.12%) and the U.S. Department of 
Health and Human Services (19, 2.12%), while the other five were all 
from China, with detailed information on funding sponsors with 
numbers over 10, as shown in Supplementary Table 4.

4 Discussion

The current status and trends in the development of radiomics-
related research in lymph node state evaluation in oncology were 
analyzed for the first time using a bibliometric analysis. According to 
the Scopus database, the documents had been published since 2015 
(23), which was 1 year earlier than the documents included in the Web 
of Science Core Collection database.

Since 2012, the concept of radiomics had been proposed to 
address this problem because of the huge potential for quantitative 
analysis of medical imaging to capture intratumoral heterogeneity in 
a non-invasive manner (6). With the development of automated and 
reproducible analysis methodologies, the annual growth rate of 
relevant original articles published from 2013 to 2018 was 177.82% 
(37). Another research showed that the annual production had 
increased steadily since 2016, and the estimated number of 
publications on radiomics would reach 2700 by the end of 2023 (38). 
As a branch of radiomics in oncology, our analysis found that the later 
beginning, but the similarly dramatic increase in the annual growth 
rate of the research on the evaluation of lymph node status.

Although the leading position of the USA in the global research 
of radiomics had been maintained for several years (37), the 
remarkable increase in scientific research output from China also 
positioned the country at the forefront of various fields, such as 
computer science, technology, and AI (39, 40), leading the way with a 
growing number of publications in the field of radiomics applied to 
evaluate lymph node status in oncology. This trend underscored 
China’s expanding influence and substantial contribution to global 
scientific knowledge. China’s commitment to research and 
development, along with significant investments in scientific 
infrastructure and talent, had propelled the nation to the forefront of 
scientific innovation, especially representing the New Generation 
Artificial Intelligence Development Plan of China (2015–2030) (40). 
The collaborative efforts between academia, industry, and government 
initiatives had created an environment conducive to groundbreaking 
discoveries and advancements, for special performance, sufficient 
funding supporting the research in this field, including multitudinous 
national and provincial funding moving beyond mentioned in our 
analysis, such as the National Natural Science Foundation of China, 
Ministry of Science and Technology of the People’s Republic of China, 
and so on, as shown in Supplementary Table 4. Consequently, China’s 
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TABLE 3 Top 10 cited publications with total and annual citations.

Rank Title Pub. 
year

2016 2017 2018 2019 2020 2021 2022 2023 2024 Sub 
total

1

Development and 

validation of a radiomics 

nomogram for 

preoperative prediction 

of lymph node 

metastasis in colorectal 

cancer 2016 2 34 87 188 219 249 244 196 114 1333

2

Predicting response to 

cancer immunotherapy 

using noninvasive 

radiomic biomarkers 2019 0 0 0 10 58 97 76 83 42 366

3

Deep learning radiomics 

can predict axillary 

lymph node status in 

early-stage breast cancer 2020 0 0 0 0 6 56 87 105 89 343

4

A radiomics nomogram 

for the preoperative 

prediction of lymph 

node metastasis in 

bladder cancer 2017 0 0 7 51 74 62 45 43 26 308

5

Deep learning radiomic 

nomogram can predict 

the number of lymph 

node metastasis 

in locally advanced 

gastric cancer: an 

international multicenter 

study 2020 0 0 0 0 9 53 50 75 48 235

6

Preoperative prediction 

of sentinel lymph node 

metastasis in breast 

cancer based on 

radiomics of T2-weighted 

fat-suppression and 

diffusion-weighted MRI 2018 0 0 6 32 38 37 44 20 18 195

7

Deep learning vs. 

radiomics for predicting 

axillary lymph node 

metastasis of breast 

cancer using ultrasound 

images: do not forget the 

Peritumoral region 2020 0 0 0 0 4 33 63 48 27 175

8

Biliary tract cancer at 

CT: a radiomics-based 

model to predict lymph 

node metastasis and 

survival outcomes 2019 0 0 0 11 29 40 37 27 25 169

9

Radiomic-based 

pathological response 

prediction from primary 

tumors and lymph nodes 

in NSCLC 2017 0 6 13 19 20 36 32 24 14 164

(Continued)
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scientific achievements had shaped the global scientific landscape and 
made significant contributions to various fields, marking a 
transformative era in the country’s scientific endeavors.

Moreover, documents published in China also had the highest 
number of total citations, indicating a relatively high quality of 
publications in this research area and a good reference value. In view 
of another indicator, the average citation per article in the USA was 
better than one tally among the top  10 countries with higher 
publications. The visual analysis of the collaboration between countries 
showed that the collaboration between China and the USA was strong, 
whereas the links among other countries were much weaker. To better 
portray research and assess problems in this field, affiliations and 
scholars from all these countries drew on others’ merits to offset their 
own weaknesses and actively communicate and cooperate. Owing to 
China’s prominent contribution to the number of publications, most of 
the remarkable affiliations and authors were from China. It was worth 
mentioning, based on Figure 4, the Memorial Sloan Kettering Cancer 
Center in the USA also had more publications, including the first article 
published in 2015 (23), indicating that China plus the USA had a 
greater influence in this field. To identify the most prolific authors, the 
top 10 authors with the most publications were analyzed, as shown in 
Table 1. Most of the authors ranked high in the field of radiomics-
related research on evaluating lymph node status published their first 
article during the first half of the decade, except Zhang J, who published 
his first article in 2020 and participated in the majority of publications, 
which was also depicted in Figure 4B. The visual network of the authors 
shown in Figure 4C suggested active collaboration between Tian J and 
other authors, which might had a higher impact, manifested as a higher 
H-index, ACPA, and ACPY. It was suggested that more effective 
academic exchanges between scholars accelerate progress, moving 
beyond the scholar himself but also research in the field.

The sources contributing to the publications in this field were 
counted using the R package, and 248 journals were assessed with the 
publications in Frontiers in Oncology (IF: 3.5, JCR:Q2) ranking 1st, 
which belonged to Frontiers Media. Among the top 10 journals, none 
had an impact factor of over five, mainly due to fewer citations, and 
focus was gained in journals in the categories of radiology, nuclear 
medicine, and medical imaging. In addition, open-access journals 
showed more advantages in the expanding outreach of this research 
field, such as Frontiers in Oncology and Cancers, but they also indicated 
that higher quality and better reference value of the journals should 
be involved in the future.

Unlike other studies, the studies involved in our analysis were 
mainly related to clinical patients, not animal or in vivo research, as 
shown in Figure 5A, with the keywords of “major clinical study,” and of 

“retrospective study.” Therefore, the “human” became the top occurrence 
keyword, even though it was not depicted in the figure, to reduce the 
heterogeneity of the occurrence numbers among the keywords. This 
research attempted to develop and verify the effectiveness of nomograms 
in clinical trials, which was a method of analyzing tumor characteristics 
by extracting quantitative features from medical images and had shown 
potential in the study of lymphatic metastasis across various tumor 
types, including lung, colorectal, head and neck, and pancreatic cancers. 
Moreover, the applicability of different types of imageological 
examinations for various types of cancers was discrepant, such as the 
prediction of lymph node metastasis by ultrasound and DWI in breast 
cancer (33, 34), and CT in colorectal cancer and gastric cancer (9, 27).

As shown in cluster 1, radiomics had made significant strides in 
advancing the understanding of lymphatic metastasis in breast cancer 
(33, 34). As breast cancer was prone to lymph node metastasis, the 
development of radiomics in the diagnosis and outcome prediction of 
breast cancer had been remarkable. To identify radiomic features for 
predicting lymph node metastasis in breast cancer, Liu et  al. (41) 
successfully identified specific radiomic features that were highly 
predictive of lymph node metastasis in patients with breast cancer, 
allowing for more accurate diagnosis and treatment planning. They 
found that the DCE-MRI-based radiomics signature in combination 
with MRI ALN status was effective in predicting the LVI status of 
patients with invasive breast cancer before surgery (41). For risk 
stratification, novel radiomics-based models had been developed to 
stratify breast cancer patients based on their risk of lymph node 
metastasis, enabling personalized treatment strategies and improving 
patient outcomes (42). For the validation of radiomics in large-scale 
clinical studies, a multicenter clinical study by Yu et al. (43) validated 
the efficacy of radiomics in predicting lymph node metastasis in breast 
cancer, demonstrating its potential as a reliable and non-invasive 
diagnostic tool. Moreover, they found that significant changes in key 
radiomic features after neoadjuvant chemotherapy might be explained 
by changes in the tumor microenvironment, and the association 
between MRI radiomic features and tumor microenvironment features 
may reveal the potential biological underpinning of MRI radiomics 
(43). For integration of radiomics with molecular biomarkers, it had 
shown to enhance the predictive power of lymph node metastasis in 
breast cancer, providing a comprehensive approach to patient 
management. Pinker et al. (44) reviewed numerous studies about the 
radiogenomics in breast cancer, which might provide voxel-by-voxel 
genetic information for a complete, heterogeneous tumor or, in the 
setting of metastatic disease, set of tumors and thereby guide tailored 
therapy (44). As shown in cluster 2, in lung cancer, included lung 
adenocarcinoma, and non-small cell lung cancer, studies had 

TABLE 3 (Continued)

Rank Title Pub. 
year

2016 2017 2018 2019 2020 2021 2022 2023 2024 Sub 
total

10

Lymph node metastasis 

prediction of papillary 

thyroid carcinoma based 

on transfer learning 

radiomics 2020 0 0 0 0 0 25 39 49 44 157

Total 

citation 2 40 113 311 457 688 717 670 447 3445
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demonstrated that imaging features could predict lymph node 
metastasis, with deep learning models improving prediction accuracy 
from CT images (45, 46). Zheng et al. (47) performed a systematic 
review, and found that the pooled AUROC of six studies that 
determined whether patients had lymph node metastases was 0.74, 
which suggested the models based on deep learning or radiomics had 
the potential to improve diagnostic accuracy for lung cancer staging 
(47). As shown in cluster 3, in CA-199 elevation related uterine cervix 
cancer, the results demonstrated MRI based radiomics signature could 
be  used as a prognostic biomarker or non-invasive biomarker for 
preoperative assessment of lymph node status and potentially influence 
the therapeutic decision-making in early-stage cervical cancer patients 
(48, 49). The presence of pelvic and para-aortic lymph node metastases 
had a prognostic significance, and its detection was paramount to 
define the best treatment option. By extracting texture features from a 
polygonal ROI drawn on the primary lesion at baseline pelvic MR, 
they found that higher skewness or kurtosis in the main tumor was 
associated with lymph nodes involvement (50). As shown in cluster 4, 
there was no specific type of cancer that was mentioned. However, it 
emphasized the combination of radiomics and pathology. Yan et al. 
(51) constructed a comprehensive model based on clinicopathology, 
ultrasound, PET/CT, and PET radiomics, which could effectively 
improve the diagnostic efficacy of axillary lymph node metastasis in 
breast cancer (51).

Moving beyond the high frequency of co-occurrence keywords, 
other types of cancers had also been studied worldwide. For colorectal 
cancer, radiomics features had been utilized to assess the risk of 
lymphatic spread, effectively differentiating patients with and without 
metastasis through MRI analysis (52, 53). For head and neck cancer, 
the extraction of imaging features had been closely associated with 
lymphatic metastasis incidence and prognosis, with PET/CT images 
helping to identify high-risk patients (54, 55). In pancreatic cancer, 
radiomics had been used to evaluate the likelihood of lymphatic 
involvement, with CT image analysis providing insights into 
metastasis risk (56, 57). Up to date, by extracting and analyzing 
quantitative features from medical imaging, radiomics had improved 
risk stratification, enabled personalized medicine, and enhanced 
tumor characterization. These advances had provided valuable 
insights into lymphatic involvement and disease progression. While 
current research results are promising, further large-scale clinical 
trials are needed to validate the effectiveness and address challenges, 
such as data standardization and model interpretability, emphasizing 
the importance of multi-center collaborations and data sharing for 
advancing the integration of radiomics into clinical practice. However, 
challenges related to the data quality and interpretability of complex 
artificial intelligence-driven models persisted, highlighting the need 
for further development in these areas to fully leverage the potential 
of radiomics in clinical practice.

Undoubtedly, radiomics had shown significant progress in the 
clinical assessment and management of lymphatic metastases using 
ultrasound, CT, PET-CT, and MR. Although ultrasound imaging had 
been widely used for tumor evaluation, its application in radiomics for 
lymphatic metastasis in clinical oncology remains an emerging area 
of research. However, preliminary studies had demonstrated the 
potential of ultrasound-based radiomics for lymph node assessment 
in various cancers, including breast and thyroid cancer. These studies 
had indicated that certain ultrasound-derived radiomic features might 
have a predictive value in identifying lymphatic involvement. 

Radiomics models were valuable in predicting axillary lymph node 
metastasis in breast cancer, and for both CNNs and radiomics models, 
combining intratumoral, and peritumoral regions achieved 
significantly better performance (34). Cao et  al. (58) presented a 
comprehensive overview that leveraging artificial intelligence with a 
focus on traditional machine learning (ML) algorithms and DL 
algorithms in thyroid cancer could help radiologists achieve more 
accurate and efficient imaging diagnosis and reduce their workload 
(58). As the field continues to evolve, further research and validation 
are needed to fully establish the role of ultrasound-based radiomics in 
the clinical assessment and management of lymphatic metastasis in 
cancer patients. Continued exploration in this area could potentially 
expand the scope of radiomics applications and contribute to a more 
comprehensive and multimodal approach to cancer evaluation and 
treatment. CT-based radiomics analysis had enabled the identification 
of imaging characteristics associated with lymph node metastasis in 
lung cancer, with machine learning algorithms improving the 
accuracy of convolutional neural network predicting metastatic spread 
(16, 45, 46). Additionally, CT imaging had been effectively utilized to 
assess the risk of lymphatic involvement in pancreatic cancer through 
the extraction of radiomics features (56, 57). Similarly, PET-CT 
imaging had been instrumental in identifying high-risk patients for 
lymph node metastasis in head and neck cancer, showcasing the 
potential of radiomics in refining treatment strategies (54). Radiomics 
involved extracting quantitative imaging features from MRI scans, 
which could provide valuable insights into tumor characteristics and 
behavior. For instance, studies had demonstrated that specific 
radiomic features derived from MRI could effectively differentiate 
between patients with and without lymph node metastasis in 
colorectal cancer and aid in accurate staging and treatment planning 
(9, 25, 52). Additionally, radiomics had been applied to assess 
lymphatic spread in other tumor types, such as breast and prostate 
cancers, and MRI had been used to identify subtle imaging biomarkers 
associated with metastasis (33, 41, 58). These advancements 
highlighted the promising role of radiomics in leveraging imaging 
data to enhance the evaluation and prediction of lymphatic metastasis, 
thereby contributing to more effective clinical decision-making and 
personalized treatment approaches.

CT, MRI, and ultrasound imaging had commonalities and 
differences in the application of radiomics for the assessment of 
lymphatic metastasis in clinical oncology. They all involved extracting 
quantitative features to evaluate tumor characteristics and lymph node 
involvement. These imaging modalities aimed to provide personalized 
medical care by offering more precise risk assessment and 
treatment planning.

In terms of differences, CT provided high spatial resolution and 
contrast, making it suitable for detecting small lymph node metastases. 
MRI exceeded in soft-tissue contrast and anatomical detail, making it 
suitable for evaluating deep-seated lymph nodes. Ultrasound, on the 
other hand, offered real-time imaging and radiation-free advantages, 
but had a relatively lower resolution. Additionally, ultrasound was cost-
effective and easily accessible compared to computed tomography (CT) 
and magnetic resonance imaging (MRI), which were more expensive 
and typically used for detailed evaluations and complex cases.

Regarding to tumor types, CT was well-suited for assessing 
lymphatic metastasis in tumors that require high-resolution imaging, 
such as lung cancer, and gastrointestinal tumors. MRI was suitable for 
tumors that require better soft tissue contrast and anatomical details, 
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such as breast cancer and head and neck tumors. Ultrasound was 
appropriate for assessing lymph node metastasis in superficial tumors 
such as thyroid cancer and serves as a routine screening tool.

Radiomics, a rapidly evolving field in medical imaging, held 
immense promise for enhancing the clinical assessment and treatment 
of tumor lymphatic metastasis. The integration of AI techniques with 
radiomics had revolutionized the analysis of medical images, offering 
a non-invasive and personalized approach for understanding disease 
progression and treatment response. As shown in Figures 5B,C, in the 
analysis of keyword burst intensity, artificial intelligence-related 
keywords such as deep learning and machine learning had emerged 
frequently in recent years. Artificial intelligence algorithms, 
particularly machine learning (ML) and deep learning (DL) models, 
had significantly advanced the analysis of radiomic features extracted 
from medical images to predict and characterize lymphatic tumor 
metastasis. These artificial intelligence-driven approaches enabled the 
identification of subtle imaging biomarkers associated with lymph 
node status and tumor progression, providing valuable insights for 
oncologists in treatment planning and monitoring (57, 58). Moreover, 
artificial intelligence-based radiomics models had shown promising 
results in predicting patient outcomes, such as survival rates and 
treatment responses, based on imaging data, contributing to 
personalized medical strategies (52, 59, 60). Furthermore, artificial 
intelligence tools had facilitated the automation of the whole process 
of radiomics, including image segmentation, feature extraction, 
selection, and classification processes, streamlining the analysis of 
large-scale imaging datasets and enhancing the efficiency of radiomic 
analysis (12, 61, 62). As the critical step, segmentation involved 
delineating regions of interest within medical images. Moreover, 
accurate segmentation was essential, as the quality of extracted 
features directly influenced the reliability of subsequent analyses and 
predictions. It was still controversial that if there was influence in the 
discriminative power of radiomic features among various 
segmentation methods, however, the development of ML and DL 
algorithms provided more possibilities for image segment, in 
particular several open source or commercial tools, such as 
PyRadiomics, and 3D Slicer, could be used to achieve the procedure 
(63–65). As a programming platform, 3D Slicer facilitates translation 
and evaluation of the new quantitative methods by allowing the 
biomedical researcher to focus on the implementation of the algorithm 
and providing abstractions for the common tasks of data 
communication, visualization and user interface development (66). 
Several years later, another architecture PyRadiomics was 
implemented and be used standalone or using 3D Slicer, to address 
the issue that lack of standardized algorithm definitions (67). 
Moreover, for instance, studies had demonstrated that DL models 
could outperform traditional segmentation methods in delineating 
tumors in various imaging modalities, such as U-net, context encoder 
network, Resnet, and attention U-net (68). Convolutional neural 
networks (CNNs) had emerged as a powerful tool for image 
segmentation tasks, and these networks could learn complex patterns 
and features from large datasets, enabling them to perform 
segmentation with high accuracy and consistency (47, 69, 70). 
Therefore, the integration of AI into segmentation processes had 
several advantages. First, it significantly reduced the time required for 
segmentation, allowing for faster analysis and decision-making in 
clinical settings. Second, AI-driven segmentation could minimize 
inter-observer variability, leading to more standardized and 

reproducible results. This is particularly important in radiomics, 
where the extraction of features from segmented regions was critical 
for building predictive models. Third, AI algorithms could be trained 
on large datasets, enabling them to generalize well across different 
populations and imaging conditions. Moving beyond that, the 
integration of artificial intelligence in radiomics had led to the 
development of predictive models that could stratify patients based on 
the risk of lymphatic metastasis and guide clinicians in making 
informed decisions regarding patient management and therapy 
selection (8, 40, 71).

Among the top 10 cited publications, as shown in Table 3, more 
citations occurred from 2021 to 2023, with 670–717 citations, which 
might be related to the increasing number of publications in recent 
years. Moreover, three articles related to DL were published in 2020 
(15, 34, 35), and gained relatively more citations, suggesting that it 
might be  more acceptable than machine learning and other 
algorithms. Nevertheless, with the great interest in the field of 
radiomics, the limitation of the reproducibility and robustness of 
radiomics studies appeared more obviously, due to lack of 
standardization in feature definition and calculation. To address this 
limitation, an international collaboration of 19 teams from 8 countries 
was initiated, named as image biomarker standardization initiative 
(IBSI),1 to establish a comprehensive radiomics workflow description, 
and provide benchmarking of features extraction and image process 
steps, as well as reporting guidelines (72). With the standardization, it 
would accelerate the process that translation of radiomic models into 
clinical practice and bring radiomics closer to clinical deployment. A 
free IBSI-compliant software, developed upon image biomarker 
explorer (IBEX), was assessed to be both easy to use and quantitatively 
accurate (73).

In multidisciplinary research, apart from medicine, biochemistry, 
genetics, and molecular biology, publications were also related to 
computer science and engineering, as shown in Table 3. Moreover, 
some studies had assessed the treatment response (9), and therapeutic 
implications of immune checkpoint blockade (74), which were 
associated with the subject area of immunology and microbiology, 
pharmacology, toxicology (75), and pharmaceutics. The development 
of this area might become more versatile in the future.

5 Conclusion

With the help of the R software package and VOSviewer, a global 
understanding of the research development, hotspots, and future 
trends of radiomics for evaluating lymph node status in oncology had 
been achieved over the past 9 years. The annual growth rate was 
100.77% and the average age of the documents was 2.55. In 
conclusion, while CT, MRI, and ultrasound shared the objective of 
radiomics-based lymphatic metastasis assessment, their differences 
in resolution, contrast, cost, and accessibility made them more 
suitable for specific tumor types and clinical scenarios, and offered 
new opportunities for precision medicine and personalized patient 
care. Researchers in China and the USA contributed more than those 
in other countries did. The Open Access Journal Frontiers in Oncology 

1 https://arxiv.org/abs/1612.07003
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occupied the top position with 160 publications. The keywords with 
high frequency occurrence, in the latest years, “artificial intelligence,” 
and “dynamic contrast enhanced computed tomography”become the 
emerging keywords, suggested the clinical use of novel technology 
and methods. Even though the interpretability of artificial intelligence 
models in radiomics remained a challenge, complex DL algorithms 
often operated as “black boxes,” making it difficult for clinicians to 
understand the underlying rationale behind model predictions. 
Enhancing the explainability and transparency of AI-driven 
radiomics models was essential for fostering trust among healthcare 
professionals and for facilitating the integration of these tools into 
clinical practice. Despite remarkable progress, several challenges had 
hindered the widespread clinical adoption of AI-driven radiomics for 
evaluating tumor lymphatic metastasis. One key limitation was the 
need for large and diverse datasets to train robust artificial intelligence 
models that can be generalized across different patient populations 
and imaging protocols. Ensuring the quality and standardization of 
imaging data was crucial for ensuring the reliability and 
reproducibility of artificial intelligence-based radiomic analyses.
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