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Background: Sepsis is a systemic inflammatory response syndrome, with sepsis-
associated acute kidney injury (SA-AKI) being a common complication. Insulin 
resistance (IR) is closely related to the stress response, inflammatory response, 
and severity of critical illness. The triglyceride-glucose body mass index (TyG-
BMI) is a valuable tool for assessing IR. However, the relationships between TyG-
BMI and clinical outcomes in patients with SA-AKI remain unclear.

Methods: We conducted a retrospective analysis of ICU patients with SA-AKI 
using data from the MIMIC-IV database. The Boruta algorithm was employed to 
select significant features for predicting short-term mortality in SA-AKI patients. 
Multivariate Cox proportional hazards regression, sensitivity analysis, restricted 
cubic spline (RCS) models, and Kaplan–Meier (K–M) survival analysis were used 
to assess the relationship between TyG-BMI and short-term mortality in SA-
AKI patients. Subgroup analyses considered the effects of age, sex, ethnicity, 
comorbidities and septic shock.

Results: This study included 3,349 patients, with males accounting for 60.5% of 
the patients. The Boruta analysis identified the TyG-BMI as an important clinical 
feature. Higher TyG-BMI values were significantly associated with reduced 
short-term mortality rates (28, 90, and 180 days) in patients with SA-AKI; for each 
standard deviation increase in TyG-BMI, the risk of all-cause death decreased 
by 0.2% (p < 0.0001). Kaplan–Meier analysis demonstrated that patients with 
high TyG-BMIs had significantly lower mortality rates than did those with low 
TyG-BMIs. The RCS model revealed an L-shaped nonlinear relationship between 
the TyG-BMI and mortality. Sensitivity analyses indicated that the association 
remained significant even after excluding patients with myocardial infarction, 
congestive heart failure, or those who were hospitalized in the ICU for less than 
2 days. Subgroup analyses revealed a significant interaction effect on short-
term mortality in CRRT patients (p < 0.05).

Conclusion: The relationship between the TyG-BMI and short-term mortality in 
ICU patients with SA-AKI is significant, indicating its potential value for early risk 
assessment and clinical intervention.
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Introduction

Sepsis is defined as life-threatening organ dysfunction resulting 
from a dysregulated host response to infection (1). Despite significant 
advancements in understanding sepsis pathogenesis and developing 
clinical interventions, the incidence and mortality rates have shown 
only modest reductions (2, 3). Among the organs most severely 
impacted by sepsis are the kidneys, with studies indicating that 
45–70% of acute kidney injury (AKI) cases are associated with this 
condition (4–7). Moreover, sepsis-associated acute kidney injury 
(SA-AKI) is closely linked to adverse clinical outcomes, such as 
prolonged hospital stays, increased cardiovascular events, and 
increased mortality rates (8, 9). Therefore, the early identification of 
patients at risk for SA-AKI, along with the timely implementation of 
appropriate interventions, is crucial for mitigating further 
renal damage.

The mechanisms underlying acute kidney injury induced by sepsis 
are multifaceted, and understanding these mechanisms is crucial for 
the timely identification and intervention of affected patients (9–11). 
First, sepsis is often associated with hypotension and organ 
hypoperfusion, which directly lead to renal tubular ischemia. Second, 
cytokines released during the systemic inflammatory response 
contribute to the damage of renal tubular cells and exacerbate 
inflammation, thereby intensifying kidney injury. Moreover, sepsis-
induced immune dysfunction compromises the kidney’s protective 
mechanisms, further aggravating the development of AKI (5, 7, 9). In 
this context, identifying patients at risk for insulin resistance (IR) is 
particularly important for improving outcomes in septic individuals. 
The triglyceride-glucose (TyG) index has been proposed as a reliable 
marker for assessing IR, offering new insights into the clinical 
management and prognosis of patients with sepsis.

Insulin resistance, characterized by decreased sensitivity of 
peripheral tissues to insulin, is common among sepsis patients. 
However, researchers currently lack effective methods to assess IR 
precisely. The TyG index has emerged as a promising biomarker for 
evaluating IR (12). Given the strong association between IR and 
obesity (13), recent studies suggest that the TyG-BMI may serve as a 
valuable tool for assessing IR (14–16). Notably, however, the 
relationships between TyG-BMI and clinical outcomes in patients 
with SA-AKI have not been reported. This study aimed to investigate 
the association between TyG-BMI and the prognosis of patients with 
SA-AKI, thus addressing a significant gap in the literature.

Methods

Data source

The data for this study were obtained from the MIMIC-IV 
database (version 2.2) (17, 18), a publicly accessible registry developed 
by the Complex Systems Monitoring Group at Beth Israel Deaconess 
Medical Center (BIDMC) in Boston, Massachusetts. The dataset 
includes comprehensive records for over 50,000 patients admitted 

between 2008 and 2019, including demographic information, 
laboratory results, vital signs, disease diagnoses, and follow-up 
survival data. As the database is anonymized and lacks protected 
health information, the BIDMC Institutional Review Board approved 
a waiver of informed consent and permitted the use of the data for 
research purposes. Data extraction was performed by the 
corresponding author, Heping Xu, who completed the CITI Program 
online training course (Record ID 59568270) using PostgreSQL as the 
data management tool.

Definitions

The TyG index was calculated as ln[(fasting glucose (mg/
dl) × fasting TG (mg/dl))/2] (19). Body mass index (BMI) was 
calculated as body weight (kg)/height2 (m) (20). The TyG-BMI was 
computed according to the equation: TyG index × BMI (14). The 
TyG-BMI index was categorized into three tertiles: T1 (<235.7), T2 
(235.7–294.8), and T3 (>294.8). Sepsis was diagnosed on the basis of 
the Sepsis-3 criteria, requiring an infection with a Sequential Organ 
Failure Assessment (SOFA) score of 2 or more. Septic shock was 
identified as sepsis accompanied by a lactate level exceeding 
2.0 mmol/L and requiring vasopressor treatment (1). According to 
Kidney Disease: Improving Global Outcomes (KDIGO) guidelines, 
acute kidney injury was defined as an increase in serum creatinine 
(SCr) levels of ≥0.3 mg/dL from baseline within 48 h or a urine output 
of <0.5 mL/kg/h for 6 h (21). Baseline creatinine is defined as the 
lowest serum creatinine value within 7 days prior to ICU admission 
for AKI, which serves as the reference point for KDIGO staging. 
Sepsis-associated acute kidney injury is defined as the development of 
new-onset AKI within 7 days of ICU admission in patients with 
sepsis (22).

Inclusion and exclusion criteria

Inclusion criteria

 1 Patients aged 18 years or older.
 2 Patients were diagnosed with sepsis-associated acute 

kidney injury.

Exclusion criteria
 1 Patients with prior ICU admissions were excluded to prevent 

data duplication.
 2 Patients whose survival time was less than 24 h were excluded 

to ensure sufficient evaluation of their clinical status 
and outcomes.

 3 Patients with a history of chronic renal disease were excluded.
 4 Patients missing essential data (serum fasting glucose, 

triglyceride, weight, height) or with incomplete data were 
excluded, as this information is critical for accurate calculation 
of the TyG-BMI.
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Outcome

The primary endpoint was 28-day all-cause mortality, while the 
secondary endpoints were all-cause mortality at 90 days and 180 days.

Data extraction

The dataset extracted for this study included comprehensive 
demographic and clinical variables, such as age, sex, race, weight, 
height, history of myocardial infarction, congestive heart failure, 
chronic pulmonary disease, diabetes, and cerebrovascular disease. It 
also encompasses the initial SOFA score, the Simplified Acute 
Physiology Score II (SAPS II), and the Charlson Comorbidity Index. 
The recorded vital signs included systolic and diastolic blood pressure, 
mean arterial pressure, heart rate, respiratory rate, temperature, and 
pulse oximetry readings. The laboratory parameters included white 
blood cell count, hemoglobin, platelet count, anion gap, bicarbonate, 
chloride, glucose, triglycerides, sodium, potassium, creatinine, blood 
urea nitrogen, calcium, and prothrombin time. The monitored clinical 
outcomes included septic shock, CRRT, invasive ventilation, AKI, 
hospital mortality, and mortality rates at 28 days, 90 days, and 
180 days. Additionally, the ICU length of stay and total hospital stay 
were recorded. All baseline data were collected within 24 h prior to 
ICU admission to ensure accuracy.

Statistical analysis

In this study, continuous variables are presented as the means 
(standard deviations) or medians (interquartile ranges), whereas 
categorical variables are expressed as percentages. Baseline 
characteristics across different TyG-BMI categories were assessed via 
the chi-square test for categorical data, one-way ANOVA for normally 
distributed continuous data, and the Kruskal–Wallis H test for 
nonnormally distributed continuous data.

To identify important features predictive of short-term mortality 
in SA-AKI patients, the Boruta algorithm was used to evaluate the 
significance of the TyG-BMI as a predictor. This algorithm determines 
feature importance by comparing the Z value of each real feature to 
the maximum Z value of the corresponding “shadow feature.” A 
feature is marked as “important” (green area) if its Z value is 
significantly higher than the maximum Z value of the shadow features 
across multiple independent tests; otherwise, it is marked as 
“unimportant” (red area) and excluded from the feature selection 
process. The Boruta algorithm’s default parameters included a 
significance level of p = 0.01 and a maximum of 100 iterations (23).

To investigate the relationship between the TyG-BMI and 
all-cause short-term mortality in SA-AKI patients, multivariable Cox 
proportional hazards regression analysis was conducted. The Boruta 
algorithm identified 31 important features, including the 
TyG-BMI. Four models were developed, each progressively adjusted: 
Model 1 was the unadjusted baseline model; Model 2 adjusted for age, 
ethnicity, cerebrovascular disease, Charlson Comorbidity Index, 
SOFA score, SAPS II score, invasive ventilation, CRRT, and shock-
related variables; Model 3 further adjusted for systolic blood pressure, 
diastolic blood pressure, mean arterial pressure, heart rate, respiratory 
rate, temperature, and SpO2; Model 4 additionally adjusted for white 

blood cell count, hemoglobin, platelet count, anion gap, bicarbonate, 
sodium, potassium, creatinine, blood urea nitrogen, calcium, 
chloride, prothrombin time, glucose, and triglycerides on the basis of 
Model 3.

Subgroup analyses were performed on the basis of age (<65 years 
and ≥ 65 years), sex, race, history of myocardial infarction, congestive 
heart failure, cerebrovascular disease, chronic pulmonary disease, 
diabetes, CRRT and septic shock. Sensitivity analyses included Cox 
proportional hazards regression analyses excluding patients with 
myocardial infarction and those with both myocardial infarction and 
congestive heart failure to further validate the results. Analyses were 
also conducted by excluding patients with an ICU stay of less than 
2 days to ensure the robustness of the findings.

To determine the nonlinear relationship between the TyG-BMI 
and short-term mortality in SA-AKI patients, restricted cubic spline 
curves were plotted for visualization. Kaplan–Meier survival analysis 
was used to compare survival rates among ICU patients with SA-AKI 
stratified by TyG-BMI and to assess the impact of TyG-BMI on short-
term mortality in SA-AKI patients. All data analyses were performed 
via R version 4.2.1 and Stata version 18.0. Missing values (<2%) were 
imputed using the median. Statistical tests were two-sided, and a 
p-value of less than 0.05 was considered statistically significant.

Results

Baseline characteristics of the participants

In this study, a total of 3,349 patients met the inclusion criteria, 
with 11,353 patients excluded due to missing TyG-BMI data, as shown 
in Figure 1. Table 1 presents a comprehensive summary of the baseline 
characteristics of these patients, stratified by TyG-BMI. The mean age 
was 64.1 years (SD = 15.5), with approximately 60.5% of the 
participants being male. The TyG-BMI was categorized into three 
tertiles: T1 (<235.7), T2 (235.7–294.8), and T3 (>294.8).

Boruta algorithm

We employed the Boruta algorithm to identify features associated 
with short-term mortality in patients with sepsis-associated acute 
kidney injury, as shown in Figure 2. In the Boruta analysis, variables 
in the green zone were classified as important features, whereas those 
in the red zone were deemed nonessential. The results indicate that 
the TyG-BMI was consistently identified as a significant predictive 
factor for mortality risk at 28, 90, and 180 days through the 
Boruta algorithm.

Associations of the TyG-BMI with the 
clinical outcomes of SA-AKI patients

The relationships between the TyG-BMI and clinical outcomes 
are detailed in Table 2. Patients were categorized into three groups on 
the basis of TyG-BMI. We utilized four different Cox proportional 
hazards regression models to assess the independent effect of the 
TyG-BMI on mortality in ICU patients with sepsis-related acute 
kidney injury. Cox proportional hazards regression analysis revealed 
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a negative correlation between the TyG-BMI and mortality risk at 28, 
90, and 180 days. After all the clinical covariates were adjusted, each 
unit increase in the TyG-BMI was associated with a reduction in the 
risk of all-cause death decreased by 0.2% at 28, 90 and 180 days, 
respectively (p < 0.0001). Using the lowest TyG-BMI group as a 
reference, the analysis of TyG-BMI as a categorical variable (by 
quartile) revealed that mortality rates at 28, 90, and 180 days 
decreased with increasing TyG-BMI (p < 0.05).

Additionally, we conducted further Cox regression analyses to 
assess the impact of including BMI and TyG as covariates in four 
models (Supplementary Tables S1, S2). When BMI was included as a 
covariate, the hazard ratios (HR) for 28-day, 90-day, and 180-day 
mortality decreased to 0.990 (95% CI: 0.982–0.998, p = 0.019), 0.994 
(95% CI: 0.986–0.999, p = 0.002), and 0.993 (95% CI: 0.986–1.000, 
p = 0.024), respectively. In contrast, when TyG was included as a 
covariate, the HRs for 28-day, 90-day, and 180-day mortality remained 
largely unchanged. This suggests that the effect of TyG-BMI on 

mortality in ICU patients with sepsis-associated AKI may primarily 
be driven by BMI, rather than TyG alone.

Restricted cubic spline

We established the threshold for the TyG-BMI via restricted 
cubic splines (RCSs) to illustrate the nonlinear relationship between 
the TyG-BMI at ICU admission and mortality at 28, 90, and 180 days. 
As shown in Figure  3, the TyG-BMI demonstrated a nonlinear 
correlation with mortality risk in patients with SA-AKI (p < 0.001), 
following an L-shaped curve. Specifically, when the TyG-BMI was 
less than 261.7, the risk of mortality at 28, 90, and 180 days increased 
sharply as the TyG-BMI decreased. Conversely, When the TyG-BMI 
exceeds 261.7, its impact on short-term mortality no longer shows 
significant variation. Overall, higher TyG-BMI values at ICU 
admission are associated with reduced short-term mortality.

FIGURE 1

Flow chart of patient selection for analysis.
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TABLE 1 Baseline characteristics and outcomes of patients with sepsis-associated acute kidney injury stratified by TyG-BMI.

Characteristics TyG-BMI

Total (N = 3,349) T1 (N = 1,117) T2 (N = 1,116) T3 (N = 1,116) p

TyG-BMI 277.6 (83.5) 201.3 (25.5) 263.2 (17.1) 368.5 (75.3) <0.0001

Demographic

  Age, years 64.1 (15.5) 67.3 (16.4) 64.3 (15.3) 60.6 (13.9) <0.0001

  Sex (male, n) 2025 (60.5) 672 (60.2) 734 (65.8) 619 (55.5) <0.0001

  Ethnicity (white, n) 2,233 (66.7) 745 (66.7) 774 (69.4) 714 (64.0) 0.027

Comorbidities

  Myocardial infarction 557 (16.6) 192 (17.2) 192 (17.2) 173 (15.5) 0.463

  Congestive heart failure 735 (21.9) 245 (21.9) 236 (21.1) 254 (22.8) 0.655

  Chronic pulmonary disease 797 (23.8) 264 (23.6) 221 (19.8) 312 (28.0) <0.0001

  Diabetes 881 (26.3) 194 (17.4) 262 (23.5) 425 (38.1) <0.0001

  Cerebrovascular disease 548 (16.4) 201 (18.0) 181 (16.2) 166 (14.9) 0.136

Severity scores

  Charlson comorbidity index 5 (3–6) 5 (4–7) 5 (3–6) 5 (3–6) 0.0003

  First day of SOFA 7 (5–10) 7 (4–10) 7 (4–10) 8 (5–11) <0.0001

  SAPSII 40 (31–50) 40 (32–50) 39 (31–50) 40 (32–50) 0.112

Vital signs

  SBP, mmHg 112.0 (104.5–122.0) 111.2 (103.1–121.0) 112.0 (104.9–122.1) 112.8 (105.1–123.4) 0.003

  DBP, mmHg 60.7 (55.1–67.3) 60.3 (54.7–657.0) 60.7 (55.0–67.2) 61.1 (55.6–67.8) 0.032

  MBP, mmHg 75.7 (70.4–82.3) 74.9 (69.7–81.1) 75.8 (70.6–82.7) 76.1 (70.8–82.8) 0.0016

  Heart rate, beats/min 86.3 (76.6–98.6) 85.1 (75.4–97.3) 85.5 (76.3–97.1) 88.2 (78.2–101.2) <0.0001

  Respiratory rate, beats/min 19.3 (16.9–22.5) 19.1 (16.6–22.4) 18.7 (16.7–21.7) 20.1 (17.6–23.5) <0.0001

  Temperature, °C 36.9 (36.6–37.3) 36.9 (36.6–37.2) 36.9 (36.6–37.2) 36.9 (36.7–37.4) <0.0001

  SpO2, % 97.3 (95.8–98.6) 97.6 (96.0–98.9) 97.5 (96.0–98.7) 97.1 (95.5–98.3) <0.0001

Laboratory parameters

  WBC, cell/mm3 12.4 (9.2–16.3) 11.8 (8.8–15.6) 12.3 (9.0–16.0) 13.0 (9.7–17.2) <0.0001

  Hemoglobin, mg/dL 10.6 (9.3–12.2) 10.5 (9.1–12.1) 10.6 (9.3–12.1) 10.9 (9.4–12.4) 0.0003

  Platelet, cell/mm3 177.5 (127.5–241) 180.5 (130–251.5) 170.5 (119–232.2) 180.5 (133.5–243.8) 0.004

  Anion gap, mEq/L 14.0 (12.0–16.5) 14.0 (12.0–16.5) 14 (12.0–16.2) 14.5 (12.0–17.5) 0.0004

  Bicarbonate, mEq/L 22.5 (20.0–25.0) 22.5 (20.0–25.0) 22.5 (20.0–25.0) 22.5 (19.8–25.0) 0.959

  Chloride, mEq/L 105.0 (101.0–108.0) 105.0 (101.0–108.0) 105 (102–108.5) 104.5 (100.8–107.5) 0.0003

  Sodium, mEq/L 138.5 (136.0–141.0) 138.5 (136.0–141.0) 138.5 (136–141) 138.5 (136.0–141.0) 0.624

  Potassium, mEq/L 4.2 (3.85–4.6) 4.15 (3.8–4.5) 4.2 (3.85–4.58) 4.25 (3.9–4.65) <0.0001

  Calcium, mg/dL 8.25 (7.8–8.6) 8.25 (7.8–8.6) 8.25 (7.8–8.6) 8.25 (7.8–8.6) 0.505

  Creatinine, mg/dL 1.0 (0.75–1.4) 0.9 (0.7–1.3) 0.95 (0.75–1.35) 1.05 (0.8–1.6) <0.0001

  BUN, mg/dL 19.0 (14.0–29) 19.0 (13.0–30.0) 18.5 (13.5–27.0) 20.0 (14.5–31.0) 0.0004

  PT, sec 14.6 (13.0–17.3) 14.6 (13.0–17.3) 14.5 (13.1–17.3) 14.5 (13.0–17.1) 0.258

  Glucose, mg/dL 133.5 (116.4–161.6) 125.5 (107.7–145.7) 132.6 (118.2–159.2) 145.2 (124.7–182.5) <0.0001

  Triglycerides, mg/dL 126 (86–189) 96 (69–137) 127 (88–182) 171 (116–267.5) <0.0001

Outcome

  CRRT 383 (11.4) 79 (7.1) 124 (11.1) 180 (16.1) <0.0001

  Invasive ventilation 1,373 (41.0) 429 (38.4) 456 (40.9) 488 (43.7) 0.038

  Septic shock 2,132 (63.7) 682 (61.1) 725 (65.0) 725 (65.0) 0.086

  LOS ICU 5.3 (2.6–11.1) 5.2 (2.7–10.0) 5.1 (2.4–10.8) 5.9 (2.6–12.8) 0.008

(Continued)
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Kaplan–Meier analysis

The study population was divided into three groups based on 
TyG-BMI tertiles: T1, T2, and T3. Kaplan–Meier survival analysis was 
conducted to evaluate short-term mortality rates in patients with 
SA-AKI. As illustrated in Figure 4, the survival curves for the T1 
groups were significantly lower than those for the T2 and T3 group 
(log-rank test, p < 0.0001). No statistically significant difference was 
observed between the T2 and T3 groups (p > 0.05), which indicates 
that a lower TyG-BMI at admission is associated with higher short-
term mortality rates.

Subgroup analysis

To explore potential clinical heterogeneity, we  conducted 
interaction and stratified analyses (Figure  5). We  assessed the 

relationships between the TyG-BMI and short-term mortality across 
different subgroups stratified by age (<65 years and ≥ 65 years), sex, 
ethnicity, history of myocardial infarction, congestive heart failure, 
cerebrovascular disease, chronic pulmonary disease, diabetes, CRRT 
and septic shock. Significant interaction effects were observed only 
within the CRRT subgroup (p < 0.05) for the 28-, 90-, and 180-day 
mortality rates. No significant interactions were found in the other 
subgroups. The results showed that a higher TyG-BMI value was 
associated with a reduced risk of short-term death in the 
non-CRRT group.

Sensitivity analysis

The results of the sensitivity analysis are presented in Table 3. After 
excluding patients with myocardial infarction, the hazard ratios (HRs) 
for 28-, 90-, and 180-day mortality were 0.998 (95% CI: 0.997–0.999), 

TABLE 2 Association between the TyG-BMI index and all-cause mortality in SA-AKI according to different models.

TyG-BMI Model1
HR (95% CI) p value

Model2
HR (95% CI) p value

Model3
HR (95% CI) p value

Model4
HR (95% CI) p value

28-day mortality 0.999 (0.998,0.999) 0.003 0.998 (0.997,0.999) <0.0001 0.998 (0.997,0.999) <0.0001 0.998 (0.997,0.999) 0.001

  Tertile1 Ref Ref Ref Ref

  Tertile2 0.651 (0.544,0.778) <0.0001 0.625 (0.521,0.748) <0.0001 0.656 (0.547,0.787) <0.0001 0.679 (0.564,0.818) <0.0001

  Tertile3 0.729 (0.613,0.867) <0.0001 0.657 (0.549,0.785) <0.0001 0.641 (0.535,0.770) <0.0001 0.687 (0.561,0.840) <0.0001

  p for trend <0.0001 <0.0001 <0.0001 <0.0001

90-day mortality 0.998 (0.998,0.999) <0.0001 0.998 (0.997,0.999) <0.0001 0.998 (0.997,0.999) <0.0001 0.998 (0.997,0.999) <0.0001

  Tertile1 Ref Ref Ref Ref

  Tertile2 0.673 (0.576,0.786) <0.0001 0.653 (0.558,0.764) <0.0001 0.695 (0.593,0.814) <0.0001 0.714 (0.607,0.840) <0.0001

  Tertile3 0.708 (0.607,0.8262) <0.0001 0.648 (0.553,0.759) <0.0001 0.636 (0.541,0.747) <0.0001 0.683 (0.572,0.816) <0.0001

  p for trend <0.0001 <0.0001 <0.0001 <0.0001

180-day mortality 0.998 (0.997,0.999) <0.0001 0.998 (0.997,0.999) <0.0001 0.998 (0.997,0.999) <0.0001 0.998 (0.997,0.999) <0.0001

  Tertile1 Ref Ref Ref Ref

  Tertile2 0.662 (0.571,0.768) <0.0001 0.650 (0.559,0.755) <0.0001 0.693 (0.596,0.805) <0.0001 0.712 (0.610,0.831) <0.0001

  Tertile3 0.681 (0.588,0.789) <0.0001 0.632 (0.543,0.736) <0.0001 0.623 (0.534,0.726) <0.0001 0.673 (0.568,0.797) <0.0001

  p for trend <0.0001 <0.0001 <0.0001 <0.0001

HR, hazard ratio; CI, confidence interval; Model 1: Unadjusted model. Model 2: Adjusted for age, ethnicity, cerebrovascular disease, the Charlson comorbidity index, SOFA score, SAPSII 
score, septic shock, invasive ventilation and CRRT. Model 3: Adjusted for variables included in Model 2 + SBP, DBP, MAP, heart rate, respiratory rate, temperature and SpO2. Model 4: 
Adjusted for variables included in Model 3 + white blood cell count, hemoglobin, platelet count, anion gap, bicarbonate, calcium, blood urea nitrogen, sodium, potassium, chloride, creatinine, 
prothrombin time, glucose and Triglycerides.

Characteristics TyG-BMI

Total (N = 3,349) T1 (N = 1,117) T2 (N = 1,116) T3 (N = 1,116) p

  LOS hospital 11.8 (6.9–19.9) 11.7 (6.9–19.6) 11.7 (6.7–19.7) 12.3 (6.9–20.8) 0.304

  In-hospital mortality 708 (21.1) 271 (24.3) 206 (18.5) 231 (20.7) 0.003

  28-day mortality 726 (21.7) 300 (26.9) 202 (18.1) 224 (20.1) <0.0001

  90-day mortality 938 (28.0) 383 (34.3) 272 (24.4) 283 (25.4) <0.0001

  180-day mortality 1,027 (30.7) 424 (38.0) 299 (26.8) 304 (27.2) <0.0001

Continuous variables are presented as the means (SDs) or medians (quartiles), whereas categorical variables are presented as absolute numbers (percentages). SBP, systolic blood pressure; DBP, 
diastolic blood pressure; MBP, mean blood pressure; SpO2, pulse oxygen saturation; TyG, triglyceride–glucose; SOFA, Sequential Organ Failure Assessment; SAPS II, simplified acute 
physiology score II; WBC, white blood cell; BUN, blood urea nitrogen; PT, prothrombin time; CRRT, continuous renal replacement therapy; LOS, length of stay; TyG-BMI, triglyceride 
glucose-body mass index.

TABLE 1 (Continued)
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FIGURE 2

Feature selection for predicting short-term mortality risk via the Boruta algorithm. The horizontal axis represents the name of each variable, and the 
vertical axis represents the Z value of each variable. The box plot shows the Z value of each variable during model calculation. The green boxes 

(Continued)
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respectively. When patients with congestive heart failure or myocardial 
infarction were excluded, the HRs were 0.998 (95% CI: 0.997–0.999) 
for 28-day, 90-day, and 180-day mortality, respectively. Additionally, 
after patients with an ICU stay of less than 2 days were excluded, the 
HRs remained consistent at 0.998 (95% CI: 0.997–0.999), for 28-, 90-, 
and 180-day mortality, respectively. The trend test across the T1, T2, 
and T3 strata revealed statistical significance (p < 0.0001).

Discussion

This study, which was based on the MIMIC-IV database, analyzed 
the relationship between the TyG-BMI and short-term mortality in 
ICU patients with SA-AKI. The results revealed a significant L-shaped 
nonlinear relationship between the TyG-BMI and short-term all-cause 
mortality, particularly indicating that patients with lower TyG-BMIs 

FIGURE 3

Nonlinear relationships between TyG-BMI and short-term mortality rates in patients with sepsis-associated acute kidney injury.

represent important variables, and the red boxes represent unimportant variables. SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, 
mean blood pressure; SpO2, pulse oxygen saturation; MI, myocardial infarction; CHF, congestive heart failure; CD, cerebrovascular disease; CPD, 
chronic pulmonary disease; CRRT, continuous renal replacement therapy; CCI, Charlson comorbidity index. TyG, triglyceride–glucose; TyG-BMI, 
TyG × BMI; SOFA, Sequential Organ Failure Assessment score; SAPS II, simplified acute physiology score II; WBC, white blood cell; BUN, blood urea 
nitrogen; PT, prothrombin time.

FIGURE 2 (Continued)
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FIGURE 4

Kaplan–Meier plots for short-term mortality by ICU admission TyG-BMI strata.
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FIGURE 5

Effect size of the TyG-BMI on short-term mortality in prespecified and exploratory subgroups. The effect size was adjusted for age, ethnicity, 
cerebrovascular disease, Charlson comorbidity index, SOFA score, SAPSII score, Septic shock, invasive ventilation, CRRT, SBP, DBP, MBP, heart rate, 
respiratory rate, temperature SpO2, white blood cell count, hemoglobin, platelet count, anion gap, bicarbonate, sodium, potassium, blood urea 
nitrogen, calcium, chloride, creatinine, prothrombin time, glucose and triglycerides, with the exception of the subgroup variable.
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faced a greater risk of death, with a critical threshold of 261.7. This 
relationship remained significant even after adjusting for multiple 
confounding factors, and sensitivity analyses further confirmed its 
stability across different subgroups, indicating that the TyG-BMI is an 
independent predictor of mortality. This association may be related to 
the “obesity paradox,” providing new insights for risk assessment and 
prevention strategies in patients with SA-AKI.

Previous studies have focused primarily on the relationship 
between TyG-BMI and cardiovascular events; for example, Dou et al. 
were the first to report its negative impact on all-cause mortality 
within 360 days in heart failure patients (24–27). While the 
prognostic value of the TyG-BMI for cardiovascular adverse 
outcomes, particularly all-cause mortality, has been confirmed (28–
31), research on its relationship with SA-AKI is still limited. Notably, 
Fang et al. found that the TyG index was significantly associated with 
an increased risk of SA-AKI and prolonged hospital stays in septic 
patients (32). Additionally, Lou et al. reported that higher TyG index 
levels were associated with an increased risk of both hospital and ICU 
mortality in critically ill septic patients (33). These findings 
underscore the need for further research on how TyG-BMI affects the 
prognosis of patients with sepsis and SA-AKI, as such insights could 
provide valuable guidance for improving patient management in this 
specific population. This study specifically investigated the 
relationship between TyG-BMI and mortality in patients with 
SA-AKI. The results revealed that patients in the higher TyG-BMI 
group (T3) exhibited lower short-term mortality, despite potentially 
having more health issues. Kaplan–Meier survival analysis further 
confirmed that patients with lower TyG-BMIs (T1 group) had 
significantly higher mortality rates. The study revealed a nonlinear 
relationship between TyG-BMI and mortality: when the TyG-BMI 
was less than 261.7, the risk of death increased sharply, whereas above 

this threshold, the risk gradually decreased. Boruta analysis indicated 
that the TyG-BMI is an important predictor of short-term 
all-cause mortality.

In subgroup analyses, a significant interaction was observed only 
in the CRRT group (p < 0.05). The results indicate that in the 
non-CRRT group, higher TyG-BMI values are associated with a 
reduced risk of short-term mortality. These findings underscore the 
potential of the TyG-BMI as a prognostic indicator and individualized 
treatment tool. Future research should further explore the 
applications and mechanisms of the TyG-BMI in high-risk 
populations, providing more targeted guidance for clinical 
treatment decisions.

Most studies indicate that an elevated TyG index is associated 
with increased hospital and ICU mortality in critically ill patients 
(34–36). In ICU patients with sepsis, the TyG index has a U-shaped 
relationship with all-cause mortality (37, 38). The relationship 
between BMI and sepsis has also been well established, with 
individuals with lower BMIs exhibiting higher risks of hospitalization 
and all-cause mortality in sepsis patients, whereas overweight 
patients have lower risks (39–41). Our findings indicate that the 
TyG-BMI is associated with short-term all-cause mortality in SA-AKI 
patients in an L-shaped nonlinear manner, suggesting that the 
TyG-BMI may be a protective factor.

The correlation between the TyG-BMI and all-cause mortality in 
patients with SA-AKI may be  influenced by both BMI and IR, a 
phenomenon known as the “obesity paradox” (42). Several 
mechanisms may explain this paradox: Patients with sepsis-associated 
acute kidney injury are often in a catabolic state, and a low TyG-BMI 
may reflect their malnutrition, resulting in insufficient metabolic 
reserves to cope with acute stressors such as sepsis. Additionally, 
studies have shown that low BMI is associated with poor prognosis 

TABLE 3 Sensitivity analyses.

TyG-BMI 28-day mortality 90-day mortality 180-day mortality

HR (95%CI) p p for 
trend

HR (95%CI) p p for 
trend

HR (95%CI) p p for 
trend

Excluding participants with myocardial infarction

  Model 0.998 (0.997,0.999) 0.001 0.998 (0.997,0.999) <0.0001 0.998 (0.997,0.999) <0.0001

  Tertile1 Ref Ref Ref

  Tertile2 0.670 (0.545,0.823) <0.0001 0.693 (0.579,0.829) <0.0001 0.697 (0.587,0.828) <0.0001

  Tertile3 0.673 (0.539,0.840) <0.0001 <0.0001 0.649 (0.533,0.790) <0.0001 <0.0001 0.654 (0.542,0.790) <0.0001 <0.0001

Excluding participants with myocardial infarction and congestive heart failure

  Model 0.998 (0.997,0.999) 0.024 0.998 (0.997,0.999) 0.008 0.998 (0.997,0.999) 0.001

  Tertile1 Ref Ref Ref

  Tertile2 0.704 (0.554,0.895) 0.004 0.743 (0.604,0.913) 0.005 0.762 (0.626,0.927) 0.007

  Tertile3 0.717 (0.558,0.902) 0.009 <0.0001 0.696 (0.558,0.869) <0.0001 <0.0001 0.712 (0.577,0.880) <0.0001 <0.0001

Exclude all individuals with LOS ICU less than 2 days

  Model 0.998 (0.997,0.999) <0.0001 0.998 (0.997,0.999) <0.0001 0.998 (0.997,0.999) <0.0001

  Tertile1 Ref Ref Ref

  Tertile2 0.690 (0.570,0.837) <0.0001 0.695 (0.587,0.822) <0.0001 0.686 (0.584,0.806) <0.0001

  Tertile3 0.655 (0.529,0.811) <0.0001 <0.0001 0.659 (0.547,0.795) <0.0001 <0.0001 0.651 (0.544,0.778) <0.0001 <0.0001

HR, hazard ratio; CI, confidence interval; Ref, reference; Adjusted for age, ethnicity, cerebrovascular disease, Charlson comorbidity index, SOFA score, SAPSII score, Septic shock, invasive 
ventilation, CRRT, SBP, DBP, MBP, Heart rate, Respiratory rate, Temperature SpO2, white blood cell count, hemoglobin, platelet count, anion gap, bicarbonate, sodium, potassium, blood urea 
nitrogen, calcium, chloride, creatinine, prothrombin time, glucose and Triglycerides.
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in septic patients (42, 43), which could partly explain the higher 
mortality risk in patients with low TyG-BMI. A higher BMI or obesity 
may indicate greater physiological reserves, potentially leading to 
better outcomes (43). Obesity is associated with elevated glucose and 
fatty acid levels in high metabolic states, which may activate immune 
responses and affect inflammatory reactions, thereby improving 
disease outcomes (44, 45). Additionally, obese individuals typically 
have lower levels of B-type natriuretic peptide (BNP), indicating 
better hemodynamic characteristics, allowing them to better tolerate 
beneficial medications (46, 47). Finally, anti-inflammatory adipokines 
may play a protective role in obese patients.

This study suggests that the association between TyG-BMI and 
short-term mortality in SA-AKI may primarily be influenced by BMI, 
which could provide valuable guidance for clinical practice, although 
further validation is needed. TyG-BMI could serve as a predictive 
indicator for SA-AKI patients, particularly for those with low 
TyG-BMI, who are at higher risk of mortality and require close 
monitoring and early intervention. However, the relationship 
between TyG-BMI and mortality warrants further investigation. 
However, there are several limitations to this study. The retrospective 
design limits the establishment of causal relationships; although 
multivariable adjustments and subgroup analyses were conducted, 
potential confounding factors may still affect the results. The 
retrospective nature of the study may introduce selection bias and 
residual confounding factors, impacting its external validity. 
Additionally, since we only collected patient data within the first 24 h 
of admission, including indicators such as fasting glucose, 
triglycerides, weight, and height, the missing TyG-BMI data could 
impact the results. Furthermore, the study primarily assessed baseline 
TyG-BMI and did not capture dynamic changes in insulin resistance. 
Finally, research based on single-center data needs to be validated 
through multicenter studies to ensure the generalizability of the 
results. Future research should focus on broader samples and more 
rigorous designs to provide stronger evidence supporting the use of 
the TyG-BMI as a predictive indicator.

Conclusion

In summary, this cohort study demonstrated that a higher 
TyG-BMI is strongly associated with reduced all-cause mortality in 
patients with SA-AKI. These findings suggest that the TyG-BMI may 
serve as a potential marker for early risk assessment, but further 
research is needed for validate.
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