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Pneumonia is still amajor global health issue, so e�ective diagnosticmethods are

needed. This research proposes a newmethodology for improving convolutional

neural networks (CNNs) and the Visual Geometry Group-16 (VGG16) model by

incorporating genetic algorithms (GAs) to detect pneumonia. The work uses a

dataset of 5,856 frontal chest radiography images critical in training and testing

machine learning algorithms. The issue relates to challenges of medical image

classification, the complexity of which can be significantly addressed by properly

optimizing CNN. Moreover, our proposed methodology used GAs to determine

the hyperparameters for CNNs and VGG16 and fine-tune the architecture to

improve the existing performance measures. The evaluation of the optimized

models showed some good performances with purely convolutional neural

network archetyping, averaging 97% in terms of training accuracy and 94%

based on the testing process. At the same time, it has a low error rate of 0.072.

Although adding this layer a�ected the training and testing time, it created a new

impression on the test accuracy and training accuracy of the VGG16model, with

90.90% training accuracy, 90.90%, and a loss of 0.11. Future work will involve

contributing more examples so that a richer database of radiographic images

is attained, optimizing the GA parameters even more, and pursuing the use of

ensemble applications so that the diagnosis capability is heightened. Apart from

emphasizing the contribution of GAs in improving the CNN architecture, this

study also seeks to contribute to the early detection of pneumonia to minimize

the complications faced by patients, especially children.

KEYWORDS

pneumonia, deep learning, convolutional neural network, genetic algorithm, visual

geometry group-16

1 Introduction

Over the last few decades, integrating machine learning and deep learning into medical

imaging has initiated a revolution in healthcare (1, 2). As the diagnostics of various

diseases largely rely on X-rays, CT scans, and MRIs, the amounts of data produced by

these machines require further analysis with the help of complex tools and methods (2, 3).

Routine diagnostic approaches requiring hand analysis are prone to limitations posed by

human factors such as fatigue and variation of deftness. In this regard, the deep learning

approach, especially CNNs, has been well-established to support the diagnostic process
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by automating and improving it. Such approaches help optimize

healthcare practitioners’ work and enhance diagnostic capabilities

and velocity, potentially saving people’s lives (4, 5).

CNNs are intended to learn feature hierarchies and extract

spatial features from the input images as the network depends

flexibly on the dimensionality of the input and is primarily

employed for image-related tasks (6). Their architecture imitates

the features of the human vision system to recognize multiple

structures and patterns present in medical images. This capability

has made CNNs especially helpful in identifying many medical

conditions; pneumonia, for instance, is still prevalent and affecting

the world today (7, 8). Diagnosing pneumonia through imaging

is important since the disease can be well-managed if diagnosed

early. Recent developments in CNN architecture, including the

VGGmodel 16, mean that the performance of such systems is even

higher because deeper networks can understand more complex

representations of images (8). However, the problem of CNN

optimization emerged as a rather costly affair, even though CNNs

have capable features to deal with such a problem. However,

the performance of a CNN depends on architectural design,

parameters, and the quality of training datasets. Hence, anything

that improves these parameters can be recommended for the best

possible accuracy, as seen in the pneumonia detection tasks (9).

The application of traditional optimization methods is effective.

Still, the process frequently involves experimentation and domain

knowledge, which can be highly time-consuming andmay involve a

massive deployment of resources. This is where genetic algorithms

(GAs) are of great interest as they offer strategies to help achieve the

above goal (10). A characteristic feature of GAs as adaptive search

algorithms based on heuristics is their ability to effectively search

the space of CNN architectures and hyperparameter combinations

that have not been comprehensively studied before. Using selection,

crossover, and mutation, GAs can find ideal or near-ideal solutions

much faster than the traditional approach and at a minimum cost.

The use of GAs to enhance the performance of CNNs, including

the VGG-16, concerning the prediction of pneumonia is a desirable

innovation that could be pursued by Kör et al. (11). The use of

gas in this area can subsequently enhance the model under test,

thus causing a better distinction of pneumonia from radiographs or

CT images. This is especially so considering the increasing number

of studies showing that the applications of a machine learning

model may outperform human specialists in precise diagnostic

duties. Also, while optimizing, we can control overfitting, which is a

common problem in deep learning, and thus ensure that themodels

are more generalized in new datasets (11, 12). This is important

for the practical use of the developed method for detecting disease

since differences in patient characteristics or imaging conditions

may cause variations in the results. Moreover, the fact that

CNNs may be tuned via GAs opens the discussion toward the

increased popularity of individualized approaches to patient care

and diagnostic or therapeutic management strategies. In using GAs,

medical professionals can benefit from DL while simultaneously

overcoming the problems arising from various diseases and patient

datasets (12). Such customized improvement may improve the

dependence of clinical operations on sophisticated programmed

learning procedures and lead to increased acceptance among

healthcare industry members. In addition to new technologies, the

global aspects of pneumonia as the third cause of death overall and

of childhood and elderly mortality, in particular, stress the need for

developing better diagnostics (13). TheWorld Health Organization

says that pneumonia kills many people every year, and hence, there

is a need for effective diagnostic methods. Incorporating refined

deep learning models as work-horse systems in clinical workflow

could dramatically change how care is delivered to patients with

pneumonia to improve their health status (14).

With increasing trends of quick and accurate diagnostic

medical solutions, so is the importance of automated systems

such as CNNs bolstered by inventive optimization methods

such as GAs. Integrating these state-of-the-art approaches solves

many current healthcare problems and forms the foundation of

what is to come in medical imaging and diagnostics (15). The

envisioned research study focuses on this integration process

and investigates to what extent CNN architectures can be

enhanced for pneumonia detection via the genetic algorithms

application, thus advancing the discussions on using artificial

intelligence in healthcare. Furthermore, the application of genetic

algorithms for the optimization of CNN, specifically VGG-16,

to detect pneumonia is a unique, innovative idea in this area

of integration of artificial intelligence in healthcare. Figure 1

shows the proposed framework, whereby genetic algorithms are

used to enhance both the CNN model and VGG-16 structure

in the detection of pneumonia. This approach optimizes the

identification of highly appropriate hyperparameters, improving

classification and avoiding overtraining, especially in medical

imaging applications.

The following are the contributions of this study:

• Enhanced model performance: The findings show that the

proposed technique is robust in enhancing the performance of

pneumonia detection by tuning CNN architecture and VGG-

16 with genetic algorithms and improving doctors’ diagnostic

tools.

• Automated hyperparameter tuning: The study presents an

effective method for hyperparameter optimization using

genetic algorithms. This method saves time and training

mandates necessary to set up complicated neural network

architectures and thus enhances the model development

procedure.

• Robust feature selection: This study focuses on the use of

feature selection in the genetic algorithm form and identifies

essential features that can boost the model’s capacity to

distinguish between pneumonia and healthy status, thus

eradicating poor clinical decisions.

• Scalability and generalization: The current study’s results

show that the optimized models generalize well-across

different datasets, a characteristic imperative for application

in numerous clinical settings.

• Contribution to medical imaging research: This study

contributes to the extant literature in the medical imaging

domain by presenting a novel approach that combines genetic

algorithms with a deep learning method. This approach

points out potential directions for future research focused

on automating and enhancing diagnostic procedures in

healthcare.
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FIGURE 1

Framework of optimization of convolutional neural network and Visual Geometry Group-16 using genetic algorithms for pneumonia detection.

The rest of the study is organized as follows: Section 2 provides

a literature review on the topic. Section 3 outlines the procedure for

detecting pneumonia. Section 4 describes the experimental results,

and Section 5 provides an extensive discussion of the results. Last

of all, Section 6 is the conclusion of the study, reflecting upon

its limitations and opening the possibility for further research

studies. Such structure allows for a comprehensive analysis of

pneumonia identification methods and indicates the proposed

approach’s advantages.

2 Literature review

In medical image analysis, CNNs have attracted immense

interest, especially in detecting pneumonia from chest X-ray

images. CNN architectures have been at the forefront of enhancing

diagnostic accuracy, and numerous investigations have considered

diverse approaches to enhancing these frameworks. Among the

techniques utilized, genetic algorithms (GAs) turn out to be a

promising way to improve the performance of CNNs through

the regulation of their hyperparameters and architectures. This

literature review will also visualize all the different research papers,

techniques, and datasets associated with pneumonia detection and

the possibilities of GAs to enhance the CNNs, especially the VGG-

16.

Mabrouk et al. (16) worked on an ensemble learning model-

based model that incorporates DenseNet169, MobileNetV2, and

Vision Transformer to utilize the ImageNet dataset. Such drug

repurposing results are promising as they substantiated the high

accuracy statement of 93.91% and F1-score of 93.88%. However,

they agreed that their ensemble method could incorporate some

biases and variance, which stated that hyperparameters must

be meticulously tuned and pre-trained. This issue highlights a

common challenge in CNN optimization: the problem of model

complexity and the problem of model generalization. Likewise,

Lamia and Fawaz (17) created a smartmobile application supported

by the neural network, whichwas trained using a database involving

more than 5,000 real images. Validation results in 97% accuracy, but

the current accuracy in the test amounts to 86%. This means that

there are some weaker points in the model, and the most significant

of them can be clearly seen if the model is used in a mobile

environment, where there are many limitations to computational

power and model size. These difficulties highlight the need for

other optimization strategies to enhance the proposed model’s

consistency across the platforms. Moreover, Sharma and Guleria

(18) dealt with the inconsistency in X-ray interpretations by using

VGG16 in combination with neural networks in two different

datasets of Kaggle. Both of them achieve the accuracy rates of 92.5

and 95.4%, respectively. However, having noticed objective and

subjective variability in the results of X-ray interpretation, they

emphasized that it had high effectiveness of the method but could

cause discrepancies in the diagnosis. This volatility indicates that

although deep learning can lead to increased diagnostic efficiency,

it cannot eliminate human evaluation and indicates that there is

a need for the development of models that incorporate machine

learning with expert feedback. The study Pranaya et al. (19) , where
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the authors worked on ∼5,863 chest X-ray images from Kaggle,

used CNN for feature extraction through convolutional layers

with ReLU activation and max pooling. Their proposed approach

achieved 91% accuracy as a result; however, they noted that in

practice, hyperparameter tuning and expert assessment would be

required for accurate diagnosis. We take this as an indicator of

the need for further speed improvement and optimization in deep

learning models to improve diagnostic ability. Another important

study was produced by Reshan et al. (20) who performed the

chest X-ray image analysis using datasets containing 57,573 and

60,515 images, over 117,000 images, utilizing the MobileNet-based

deep learning model. For this, they found that their proposed

approach had an accuracy of 94.23 and 93.75% for the respective

datasets. However, they found that differences in the methods of

acquiring X-ray scans could also affect the algorithm, suggesting

that there is a need for dataset compliance with a myriad of

imaging conditions. Moreover, Aljawarneh and Al-Quraan (21)

used another dataset of 5,863 chest X-ray images, using VGG19

and ResNet 50 with improved CNNs. With this improved CNN

model, the authors claimed an accuracy of 92.4% in correctly

identifying the animals but cautioned that restricted choice of

subjects could hinder model transferability. These are consistent

limitations that point to absolutely crucial research directions in

the future, primarily related to the fact that the dataset could and

should be more diverse, and its expansion would bring the best

results and would help to build a model that works effectively in

various populations and with various types of images.

Furthermore, Miguel et al. (22) had a different approach

whereby they developed a neural network that was trained with

an evolutionary algorithm and was applied to histological images.

Their model obtained up to a 0.71 AUC score, defining the

moderate classification model efficacy. This study also points

toward the future application of incorporating evolutionary

algorithms into the training of a model, specifically the inclusion

of additional performance metrics beyond basic accuracy rates.

Similarly, Ismail et al. (23) enhanced a more specific approach

of layer pruning with genetic algorithms to optimize CNN-

based models in considering CT scans and ECG data connected

with COVID-19. Their findings showed they achieved high hit

ratios of 98.48% for MobileNet-V2 and 99.65% for VGG-16. The

presented work of applying genetic algorithms in model pruning

is a breakthrough toward the enhanced optimization of deep

learning architecture for improving computational efficiency with

minimum loss of accuracy. In addition to this, Sitaula and Aryal

(24) made COVID-19 chest X-ray datasets accessible, thereby

implementing the Bag of Deep Visual Words (BoDVW) technique.

The work reported by these authors found accuracy scores in

the range of 82.00–87.92% for different datasets. Nevertheless,

issues such as restricted datasets and possible dataset overfitting

were still prevalent, indicating the significance of creating new

model variations and choosing datasets carefully. In addition, to

counteract dataset biases, Balamurugan and Balamurugan (25)

used the DARUNDNN model with the Dingo Optimization

Algorithm on several real datasets, Montgomery as well as

Shenzhen. They established that their results had very high

specificity levels and near an accuracy of 99%. However, similar to

previous experiments, the problem of biases in the datasets used

for training and generalization problems also continued, which

indicates the requirement for more precise and diverse datasets.

Furthermore, Shuaib et al. (26) also zoomed into the ChestXray14

dataset and embarked on work to build a web application for

pneumonia detection. They pointed out that relying strictly on

frontal radiographs, as some of them have indicated, may lead

to a reduction of diagnostic accuracy due to the need to obtain

lateral views in some cases. Their model reached an 84% accuracy,

and the authors pointed out that the utilized approach shows the

limitation of the current methodological frameworks and stresses

the necessity of strict imaging protocols. Last of all, Venu (27)

used transfer learning on 5,856 Chest X-ray image datasets and

got an outstanding accuracy of 98.46%. However, they failed to

compare their results with the overfitting problem or specific

dataset information. This void also emphasizes the need to conduct

enduring evaluation frameworks for machine learning programs.

Chhabra et al. (28) used color masks and stacked autoencoders

with the IIIT-D latent fingerprint dataset with a 98.45%

segmentation accuracy in high-quality images but 14% less in low-

quality images. Furthermore, Sharma et al. (29) applied a GAN-

CNN model for deepfake detection, achieving 98.67% training

accuracy but only 70.08% testing accuracy, showing variation in

the curriculum. Moreover, Jeribi et al. (30) employed DLEF-SM

with CNNs for forecasting of stock markets where the accuracy

rate obtained was above 99%. In conclusion, numerous studies

have established the applicability of CNNs and related approaches

for pneumonia detection; however, multiple issues are still to

be solved, such as the model’s generalization, variation in the

interpretation of the images, or the need for various datasets. Based

on the analysis provided, genetic algorithms seem to offer a feasible

method of solving the optimization problem associated with

CNN architectural designs concerning hyperparameters and model

reduction. There is a need to explore research that implements

GAs more closely to CNNs in the future, along with improvements

to the dataset variety to increase the dependability of the models

when used in medical practice. To overcome these disadvantages,

researchers can assist in developing better and stronger diagnoses

for the fight against pneumonia and many other illnesses. Table 1

shows the list of past references, including datasets, methodology,

limitations of the work, and results.

3 Overview of the proposed approach

The idea of enhancing CNNs and VGG16 models through a

new approach based on GAs for pneumonia detection involves

the application of cutting-edge approaches to improve diagnostic

efficiency. CNNs have made a huge improvement to the type

of image analysis given their capability to map hierarchical

representations of data and thus are effective in tasks such

as object detection and classification. However, several inherent

limitations can reduce their efficiency, such as noisy data sensitivity

and hyperparameter importance. It is crucial to overcome these

challenges, especially while applying them in the medical context

where diagnostics can translate into saving a patient’s life.

Moreover, in the present study, compared with the basic CNN,

we improve pneumonia detection accuracy by making use of GAs,
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TABLE 1 Existing pneumonia detection approaches.

References Dataset Methodology Advantage Limitations Results

Mabrouk et al. (16) ImageNet CNN Ensemble Learning

(EL) using DenseNet169,

MobileNetV2 and Vision

Transformer

Combines multiple

models for improved

performance.

The suggested EL

approach should have a

lot of bias and variance.

Specifying the

pre-trained CNN

techniques’

hyperparameters while

using TL and

fine-tuning.

Accuracy = 93.91%

F1-score = 93.88%

Lamia and Fawaz

(17)

A dataset containing

more than 5,000 real

images

A mobile application

that uses a neural

network

User-friendly mobile

application for diagnosis.

A developed model was

trained with two

categories (normal and

Pneumonia), so any

image was classified into

one of these two groups.

Accuracy = 97% for

validation and 86% for

test. accuracy = 85% on a

mobile platform

Sharma and Guleria

(18)

Two CXR image datasets

were taken from Kaggle

The VGG16 with Neural

Networks

High accuracy in

detecting pneumonia

cases.

Subjective variability in

X-ray interpretation

affects detection

accuracy.

D1 (accuracy = 92.5%,

recall = 0.930, precision

= 0.94, F1-Score = 0.93)

D2(acc = 95.4%, recall =

0.95, precision = 0.954,

F1-Score = 0.95)

Pranaya et al. (19) Approximately 5,863

chest X-ray images from

Kaggle

CNN to extract image

features using

convolution ReLU and

max pooling.

Effective feature

extraction for improved

results.

Hyperparameter settings

and Expert assessment

are still required for

reliable diagnosis

Accuracy of 91%

Reshan et al. (20) Two publicly available

datasets, including

112,120 and 5,856 chest

X-ray images

DL model using

MobilNet

High accuracy across

diverse datasets

Variability in X-ray

acquisition affects

algorithm performance.

Accuracy = 94.23% for

D1 and 93.75% on for D2

Aljawarneh and

Al-Quraan (21)

Approximately 5,863 big

chest XRIs from Kaggle

Enhanced CNN, VGG19,

ResNet-50, and

ResNet-50

Utilizes multiple

architectures for

flexibility.

Limited dataset diversity

may affect model

generalization.

ResNet-50: acc = 82.8%,

enhanced CNNmodel:

acc = 92.4%

Miguel et al. (22) Histological images

stained by

hematoxylin-eosin.

Neural networks are

trained using

evolutionary algorithms.

Evolutionary methods

enhance model training.

AUC values indicate

moderate classification

performance.

Achieved maximum

AUC of 0.71.

Ismail et al. (23) CT-scan images and

ECG recordings of

COVID-19.

Selective layer pruning

with genetic algorithm

for fine-tuning.

Achieves high accuracy

with fine-tuning.

Computational

complexity in optimizing

pre-trained models.

Accuracy of 98.48% for

MobileNet-V2 and

99.65% for VGG-16.

Sitaula and Aryal

(24)

Publicly available

COVID-19 CXR image

datasets (D1, D2, D3,

and D4)

Bag of Deep Visual

Words (BoDVW)

Innovative approach to

image classification.

Limited dataset diversity

and potential overfitting

issues persist.

Accuracy of 82.00% on

D1, 87.86% on D2,

87.92% on D3, and

83.22% on D4)

Balamurugan and

Balamurugan (25)

Montgomery, Shenzhen,

and National Institutes

of Health CXR.

Pre-processing,

DARUNDNNmodel,

Dingo Optimization

Algorithm application

High accuracy with

optimized algorithm.

Dataset bias and

potential generalization

issues remain

unaddressed.

Shenzhen’s accuracy is

98.92%, Montgomery’s

accuracy is 98.982%, and

there is high specificity.

Shuaib et al. (26) ChestX-ray14, publicly

available

A web application-based

DL utilized to detect

pneumonia

Accessible web

application for

pneumonia detection.

Only frontal radiographs

were used. However, up

to 15% of accurate

diagnoses required the

lateral view. The model

and the radiologists were

not permitted to use

patient history

Accuracy = 84%

Venu (27) Chest X-ray dataset of

5,856 chest X-ray images

Transfer learning to

reduce the neural

network training

Reduces training time

with effective results.

Dataset details and

potential overfitting not

addressed explicitly

Accuracy = 98.46%,

precision = 98.38%,

recall = 99.53%, F1-score

= 98.96%

Chhabra et al. (28) IIIT-D database of latent

fingerprint images.

Hybrid approach using

color masks and stacked

autoencoders.

High segmentation

accuracy through

enhanced feature

extraction.

Performance may

decline on poor-quality

fingerprint images.

Achieved 98.45%

segmentation accuracy

on good-quality images.

(Continued)
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TABLE 1 (Continued)

References Dataset Methodology Advantage Limitations Results

Sharma et al. (29) Diverse deep fake images

for training and testing.

GAN-CNNmodel using

generative replay for

detection.

Minimizes catastrophic

forgetting for robust

deep fake detection.

Performance varies with

different types of deep

fakes.

Achieved 98.67%

training accuracy,

70.08% testing accuracy.

Jeribi et al. (30) Historical stock market

data for S&P500 and

DAX.

DLEF-SM uses CNNs,

optimization algorithms,

and reinforcement

learning.

High forecasting

accuracy with advanced

pre-processing and

selection.

Complexity may hinder

implementation for

smaller datasets.

Achieved 99.562%

accuracy for S&P500-S,

98.235% for S&P500-L.

which are optimization algorithms that mimic the natural selection

process. GAs work by emulating the evolution process, which is

preceded by a selection of solutions that will be bred until ideal

settings are realized. In relation to CNNs, GAs can be used to

fine-tune hyperparameters such as learning rate, kernel size, and

dropout in addition to tuning the overall architecture of the model.

In so doing, CNNs can effectively learn from training data as well

as from new examples.

It is important to note a major strength of using GAs: the

facility they offer to search for solutions in large spaces. In its

application, GAs can find out the most optimal configurations of

certain parameters, such as the number of CNN layers, size and

number of filters, and pooling strategies. These parameters are

very important to the model when extracting quality features that

define specific images. When the above parameters are encoded

into chromosomes, GAs can thus tend to evaluate much more top

configurations within one run compared to time-honored practices

such as grid or random search methods. Furthermore, there is

much advantage in incorporating GAs with CNNs, especially in

handling the challenges posed by medical imaging data. In the

case of pneumonia detection, noisy images cause misclassification,

wherein the model fails to distinguish between pneumonia in

healthy lungs and normal lungs in lungs infected with pneumonia.

The sizes of the filters and general structure are optimized by

GAs, making the final model less sensitive to changes in the

input data. Such flexibility is necessary in environments where

performance differs significantly between specialized imaging

radiology departments and clinical facilities.

To apply this approach, we first specify the fitness function,

which directs the operation of the GA. The fitness function also

measures the final abilities of each candidate model according to

the typical quantification standards such as accuracy rate, precision,

recall, and F1-score, and particularly the capacity to detect

pneumonia. We are further able to identify models that have high

accuracy on the training dataset and guarantee high generalization

capacity on validation datasets. Moreover, the genetic algorithm

starts with a population of individuals, each of which consists

of paths for layers and nodes for the CNN architecture and is

randomly initialized. The GA optimizes the population in several

generations through selection, crossover, and mutation. Selection

occurs when the models that do well can take their parameters

forward to the next generation, whereas crossover involves picking

two good-performing models and crossovers between them to

produce better models. Mutation introduces genetic variation

through the random change of some parameters to create new

configurations that could potentially be better than older ones

introduced by crossover. While using the GA, we have the GA

performance evaluated against the fitness function as the GA

progresses. This allows iterative evaluation of the model, which

helps us narrow down the right configuration that suits the goal

of detecting pneumonia. Even more crucially, the GA enables

breaking out of the algorithm’s local minimum, which is an issue

typical for classical optimization methods. Instead, it encourages

the search for an optimum parameter vector across the whole

solution space more comprehensively.

Moreover, GAs help identify hyperparameters, which are very

important in cases where the set of features is large because

feature selection is also handled by the GAs, which is essential in

giving models fewer dimensions and thus making interpretations

easier. With TWLoss, we can select the greatest number of

distinctive features while discarding those features that might not

be substantially useful; this means that the new CNNmodel will be

more effective and much easier to implement in real-life clinical

practice. The above aspect of the approach correlates with the

current need to develop and apply explainable artificial intelligence

in healthcare. Furthermore, after the optimization, we then test the

optimized CNN model on a new unseen test dataset to determine

the accuracy of the CNN model. This last assessment is important

as it is concerned with the applicability of the proposed model

when it is implemented in practice. Thus, based on such diagnostic

performance characteristics as sensitivity, specificity, and AUC-

ROC, we conclude the model’s effectiveness in differentiating the

pneumonia-affected and healthy lung zones.

This investigated optimized CNN approach for pneumonia

detection does promise significant outcomes; it goes further than

the precise detection of pneumonia cases; it is a revolution in

how we harness the power of technology in diagnostics. Using

GAs to improve CNN structures is an effective way of developing

more accurate diagnostics that can greatly help healthcare experts.

While this incorporation of sophisticated computational methods

is useful in enhancing the effectiveness and efficiency of assessing

and diagnosing pneumonia, its use presents a positive value in

patient care since early detection of pneumonia can help inform

timely treatment. In addition, it is possible to continue using

the proposed methodology for other medical imaging problems,

confirming its applicability and stability. Thus, while medical image

analysis remains an active area of research, future work with GAs

and CNNs has the potential to advance improvement in diagnostic

accuracy and speed.

Therefore, the proposed approach integrates the dynamism

of using GA with the efficiency of CNN to promote optimum

pneumonia detection. The greatest innovation will be to overcome
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FIGURE 2

Proposed model architecture.

the deficiencies of CNNs and harness the evolutionary advantage of

GAs to develop highly efficient diagnostic tools. This new approach

also helps increase the diagnosis of pneumonia and supports the

general trend of increasing the effectiveness of healthcare using

advanced machine learning methods. The successful adaptation

of this technique could revolutionize the diagnostic methodology

in medical imaging; hence, it should be an active area of future

research and development. Our proposed approach is detailed

in Figure 2, which explains the different steps in the proposed

methodology.

3.1 Initialization

As observed in the experiments performed, a methodical

methodology was used to preload the parameters such that the

CNN architecture could be optimized within a bounded area (31).

Some of the factors used to initialize the CNN were the number of

populations, population size, maximum limit of filters, maximum

size of filter, and the number of layers in a CNN architecture. This

initial setup ensured the development of the first pool of solutions

with parameters randomly generated. The solutions developed

during this process formed the first population, from which two

parents with high fitness levels were selected. Next, a defined fitness

function was applied to each chromosome, which is an effective

strategy that determines the ability of that particular chromosome

to solve the problem at a given instance. Furthermore, the fitness of

each chromosome can be represented by a fitness function F:

F =
TP

TP + FP + FN
(1)

where

- FN: False Negatives (missed pneumonia cases).

- FP: False Positives (incorrectly identified pneumonia cases).

- TP: True Positives (correctly identified pneumonia cases).

3.2 The crossover operator

After the initialization phase, a crossover procedure was used

to create the next generation of solutions, also known as children.

A chromosome describes every solution, a set of adjustable
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parameters related to the network listed in the array. The generated

offspring were repositioned to add more diversity to the population

after the crossover phase. Chromosome evaluation ensued next,

and only those with high fitness scores were retained in the evolving

population (32). The selection and evaluation process was repeated

until certain pre-specified stopping criteria were achieved. For the

first time, the introduced approach altered the CNN’s loudness

using the crossover operator, which consists of two sub-operators.

This has been achieved by modifying the number of columns in

each chromosome by the first sub-operator to allow changes in the

network’s filters and filter sizes. This modification meant that the

model architecture could be more easily optimized flexibly. On the

other hand, the second operator was applied to other aspects of

GA optimization without changing the number of columns in each

chromosome.

Moreover, for crossover operation between two parent

chromosomes, P1 and P2:

C =
P1(i) with probability pc

P2(i) with probability 1− pc
(2)

where

- C is the child chromosome.

- pc is the crossover probability.

- i represents the index of the chromosome.

3.3 The mutation operator

Given that the first-generation population may not be

privy to certain critical information, a mutation operator

was incorporated to introduce new filter information. The

construction of the CNN architecture was based on the optimal

solution from each population, the average filtering results,

and regularization coefficients; the model was trained on a

pre-processed training dataset and validated with pre-processed

validation datasets. The importance of such iterative improvement

cannot be underestimated during the development of the

CNN, which was tasked with improving pneumonia detection

capability. As mutation was subsequently applied repeatedly to

the architecture, it saw further complications and mysteriously

enhanced diagnosticity.

M(C) = C + δ (3)

where

- δ is a small perturbation applied to randomly chosen

parameters within the chromosome to introduce new information.

3.4 Uniform crossover and mutation
operators

Two specific operators were employed to optimize the

structural parameters of the CNN architecture, including the

number of layers: MOEA uses a uniform crossover operator and

a mutation operator. These techniques allowed the architectural

design changes to be done efficiently (33). In addition, a similar

process of evaluating the trained model was conducted using test

data along with important parameters such as network accuracy

and error rate. Positive returns that follow the evaluation of these

metrics helped to understand the general efficiency ofmodifications

occurring during crossover and mutation stages.

3.5 Database pre-processing

Image processing proved to become one of the essential sub-

tasks of image analysis, especially after the dataset selection. Pre-

processing optimizes the model by considering the impact of

external circumstances on the model. In the previous experiments,

input images were normalized to have similar formats and sizes

throughout the dataset. Furthermore, the images were rearranged

according to the format requirements set by the model used in this

research. To reduce the problem of overfitting and to increase the

model’s ability to generalize, data augmentation was performed on

the training dataset. These techniques facilitated the branching of

data samples, allowing the model to generalize from a wider range

of examples, enhancing overall efficiency.

For the augmented dataset D′:

D′ = D ∪ {f (Di) | Di ∈ D} (4)

where

- D is the original dataset.

- f (Di) represents augmentation functions (such as flipping or

zooming) applied to each image Di.

3.6 Data increase

The biggest challenges of training a CNN on a limited dataset

include Overfitting is always a danger, especially when training a

CNN. To reduce this problem and increase the amount of training

data, several approaches to data augmentation were used. This

approach proved useful in expanding the kinds of information

that went into the model through augmented versions of the

training images. Despite the growing interest in CNNs for disease

classification tasks, there is a need to make sure that these models

are trained in big data. In the experiments described in the work,

the training dataset was expanded using certain techniques while

minimizing the exposure to the problem of overfitting. To optimize

the CNN architecture based on the number of layers L and

filters F:

Cost(L, F) = αL+ βF + γE (5)

where

- α, β , and γ are weights reflecting the importance of layers,

filters, and error rates E, respectively.

Augmentation techniques used in this study involved flipping

the images and zooming the images. All these strategies were used

on the processing and test sets to perform an accurate assessment

of the performance of the developed model.

Finally, the final system permits the integration of an X-

ray image and the classification of it as normal or Pneumonia,
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FIGURE 3

Our final system.

as shown in the intended model layout in Figure 3. In addition

to increasing diagnostic reliability, this system aims for high-

performance results, which could prove constant development

in machine learning applied to diagnostics. Using initialization,

crossover, mutation, and data pre-processing, the model shows

that it comprehensively understands the challenges of diagnosing

Pneumonia from X-ray images.

4 Dataset

Similarly, in the field of medical imaging, especially employing

machine learning algorithms to detect Pneumonia from chest

radiography, the quantity and quality of data used are critical

in improving the corresponding algorithm. The dataset used

in this [29] study encompasses a strong set of frontal chest

radiography images specifically collected for pneumonia screening

and detection. This description will examine the nature of this

dataset, how it is categorized, and the challenges of augmenting

it, especially for use in training CNNs and visual geometry group

architectures. Figure 4 shows the characteristics of our database.

4.1 Overview of the dataset

The dataset includes 5856 frontal chest radiography images,

which are prerequisites for the training and validation of machine

learning models for detecting Pneumonia. The images in Figure 5

appear at different resolutions, which are 712 × 439 and 2,338

× 2,025, respectively. This variability in resolution is important

since it covers a large range of possible image qualities, which

will be beneficial when the models are being built. The images

are categorized into three distinct subsets: training, testing, and

validating; these popular sections help the model have a rigid

process for its creation and evaluation.

• Training set: The first set contains 4,192 images intended for

model training. This vast number of images enables the model

to learn many features that identify Pneumonia and normal

states, helping it generalize on unseen data.

• Testing set: The testing subset has as many as 624 images.

This set is important in the testing phase of the model after

training. The dataset is important in the testing phase of the

trained model. It allows one to determine the model’s ability

to correctly classify images they have never seen before, which

is very important while deciding its feasibility for practical use

in clinics.

• Validation set: This subset, comprising 1,040 images, acts as

a buffer to fine-tune the model’s hyperparameters and avoid

overtraining. This set helps researchers periodically validate

the model to check that it has not simply memorized the data

used for its training yet but recognizes patterns that can be

safely generalized.

4.2 Image categorization

Each of the three subsets contains images categorized into

two primary groups: normal and Pneumonia. This binary

classification is very important in constructing the simple form

of supervised learning models in which the algorithm is trained

to make this distinction. Specific features differentiated images

labeled Pneumonia from normal images, including opacities and

consolidations in the lung fields.

Notably, the analysis found that pneumonia images had more

pixels than normal images most of the time. This is noticeable

since the pixel density can affect the nature of the model’s training.

Sometimes, the image quality with Pneumonia can bemuch clearer,

giving more informative features, which helps a lot. This will help

emphasize the need to normalize the data because the model tends

to skew toward a higher resolution class.

4.3 Image augmentation strategies

As a result of the issues mentioned above arising from limited

data size, several image augmentation methods were incorporated

into the study. These techniques are crucial in making the dataset

larger artificially, adding variability, which would help minimize

the rate of overfitting and enhance the model’s flow. The following

augmentation methods were implemented:

• Random rotation: The calibration images for training were

planarly rotated by a random angle of up to 20 degrees. This

technique assists the model in ignoring the orientation of the
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FIGURE 4

Characteristics of our database.

FIGURE 5

Example of the database images.

chest images, creating several angles from which an X-ray

might be taken.

• Random zoom: Some images used for training purposes

included adding a random 10% zoom. This augmentation

enables the model to learn from images of different sizes,

which is crucial when dealing with distance variations between

the X-ray source and the patient.

• Random shifts: Both images were blurred and rotated at

various angles horizontally and vertically by a random

number within a range from (−10% * width) up to

(10% * width) and from (−10% * height) up to (10%

* height). This increased variation in the position of the

anatomical structures within the images, which made the

model immune to slight shiftings that may occur during the

imaging process.

• Horizontal flips: The following random flipping operations

were applied to the training images horizontally. This is

particularly helpful in cases where one has to learn features
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that are vector or similar in the medial images, as is usual with

the human body.

4.4 Importance of the dataset

In the current dataset, the general design and formation are

important in creating CNNs and visual geometry group (VGG-16)

structures used to diagnose pneumonia. Robust image distribution,

exhaustive categorization, and effective data augmentation ensure

that a good platform is created for training stronger models.

The training subset allows obtaining the amount of information

sufficient to observe variation in image characteristics, and

the validation and testing subsets guarantee that the model’s

performance will be assessed comprehensively. The additional

augmentation strategies supplement the dataset by providing more

comprehensive training information and are pivotal in reducing

error margins and increasing prediction accuracy.

Thus, the compiled reference (34) dataset can be considered

an invaluable tool for further developing the pneumonia detection

application with the help of deep learning. Divided into categories

based on diseases and symptoms, this database, with the image

augmentation techniques used, gives researchers and practitioners

all the tools required for designing and applying effective diagnostic

models. As medical imaging changes in the future, these datasets

are set to be a driving force in improving the use of AI in healthcare

and, therefore, positive patient outcomes.

4.5 Optimizing CNNs for pneumonia
detection

It is important to acknowledge that genetic algorithms form a

part of the computation, and considering our work that employed

these optimization algorithms for the pneumonia detection

experiment on both CNNs and VGG-16 architecture, it becomes

crucial to appreciate the computational intensity of this concept.

The training operation of the optimized models that we

employed required significant computational power. Our models

and experiments were trained onNVIDIAGPUs, namely RTX 2080

Ti and A100, because these processors offer GPI, which speeds

up the training process. The data gathered included chest X-ray

images that we further augmented to address issues of variation in

images. The initial training of the CNNs took usually ∼10–15 h to

converge outstandingly depending on the setup Wi-P architecture

and hyperparameters optimized on the genetic algorithm.

Regarding memory usage, we found that with our optimized

models, ∼12–16 GB of GPU memory was needed. This

requirement was necessary for processing the large volumes of data

that are processed during training, particularly because the image

data is high-dimensional. For inference, the models were designed

to be efficient and ran, for instance, under a second on each image

on the same hardware.

We also built a prototype and then performed experiments to

evaluate our approach’s efficiency as a cost-saving strategy. From

the results of the training time and resource consumption of the

trained models derived from hyperparameters optimized through

FIGURE 6

Architecture of the CNN model.

the genetic algorithm, we compared the models to baseline models

to confirm a 30% improvement in training time.

5 Results and analysis

In this study, we used two of the most sophisticated models,

CNN and VGG16, which were further improved using GA to

increase the detection system’s efficiency. The approach adopts

CNN architectures and is advantaged by GA’s optimization ability

to create a strong mechanism for enhancing model proficiency.

5.1 CNN model optimized by GA

The CNN model in Figure 6 was implemented with the help

of the Keras framework and, more specifically, with the help of

the Keras sequential interface, which enabled the creation of a

structure and highly adjustable network. The architecture remains

comprised of six Conv2D layers, six BatchNormalization layers,

three MaxPooling layers, and a flattened layer before it ends with

the output dense layer. It was easy to internalize each layer’s

activities through batch normalization, speeding up the training

period while allowing higher learning rates. This technique was
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TABLE 2 Choice of GA parameters.

Maximum
population size

Number of
generations

Maximum
convolutional layers

Filter size Number of
filters

Maximum
accuracy

5 2 6 100 20 78.25%

8 4 6 120 10 86%

11 6 6 150 5 87.65%

... ... ... ... ... ...

20 11 6 256 6 91.23%

particularly useful in increasing the speed of convergence in the

model as well as the general performance.

In the work process, numerous model experiments highlighted

a direct link between the values applied in the genetic algorithm

and the performance level of the created model. The author

pointed out that the values of general control parameters such as

population size, number of generations, max number filter, and

max filter size increased the general performance. Nevertheless,

these changes were compensated; the only drawback was that

they required significant graphics memory and computation time.

This constraint, however, held back the extent to which the GA

parameters could be fine-tuned.

However, to determine the best parameters for the GA, a series

of tests were performed, as outlined in Table 2 below. These optimal

parameters were useful in assembling the model for effective

execution during training using either Theano or TensorFlow. The

compilation of the CNN model incorporated three main attributes

essential for optimization:

• Loss function: We used the binary cross-entropy loss

function for the binary classification tasks. This choice was

important because binary cross-entropy directly measures

the performance of a classification model that outputs a

probability value between 0 and 1 inclusive. This form of

the function is arrived at mathematically to ensure that the

model is trained to minimize these measures when making

classifications.

BCELOSS = −
1

N

N
∑

i=1

(

y logi(p(y))+ (1− y) logi(1− p(y))
)

(6)

where

- yi: the label equals 1 for class 1 and 0 for class II.

- P(yi): predicted probability of class I of the sample i.

- N: total number of samples.

• Optimizer: The right optimizer was chosen for updating the

network weights, which is critical in eliminating the loss

function. The gradient step here includes computing the

gradients, which means adjusting the model parameters to

enhance performance.

L(y− ȳ) = −
1

N

N
∑

i=1

N
∑

j=1

(

tij · log(gij)
)

(7)

where

- N is the number of samples in the training step.

TABLE 3 Optimal value of numbers of epochs.

Number of
epochs

Training
accuracy

Test
accuracy

Error rate

5 64.30% 50.31% 7.3

10 76.12% 56.82% 6.4

15 82.30% 64.33% 5.3

20 85.36% 70.47% 3.4

25 89.20% 81.13% 2.3

30 93.23% 88.90% 0.24

- gij is the estimated probability of the ith and jth class.

• Metrics: For this reason, accuracy became the main measure

of model excellence, which showed how well the model placed

the input data into the correct class. The error rate defines

howmuch a neural network has deviated from the actual value

and helps to estimate its effectiveness. Reducing this value

enhances the accuracy of the network’s weights and biases.

Error = Real Prediction− Realized Prediction (8)

The first part of the project involved training the optimized

CNN model, and the findings revealed the model’s higher

performance compared to the previous architectures (see Table 3).

The application of GA also improved not only the architecture’s

adjustment but also generated a better generalization of new data.

5.2 VGG16 model optimization

In addition, the process described in this study was applied to

the VGG16 structure, in which networks were also optimized using

GA to adjust parameters. VGG16 results also supported the data

obtained from the CNN model, where the systematic parameter

optimization by GA enhanced accuracy and performance metrics.

Since hyperparameter tuning in neural networks involves

optimization tasks, using techniques such as GAs has become

increasingly important. In this part, the author explains how

to improve the parameters of a CNN model using a GA, all to

eliminate the possibility of errors in convolutional layers and

increase the overall model accuracy.
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FIGURE 7

Model accuracy and losses.

5.3 GA optimization strategy

For this discussion, the main function of the GA is to find out

the best solution for the filter number and filter dimension of the

filters in any given convolutional layer of the CNN. The process

starts by defining an initial population of talks consisting of sets of

potential filter configurations. Over generations, the GA has used a

method that keeps promising results for adaptation as the concept

of development of these configurations is built on certain criteria.

In this particular implementation, we have chosen to save

345 promising solutions while discarding the lower-efficiency

configurations. This selective retention mechanism ensures that

only the best solutions pass on to the next generation and

continue with good operating configurations that guarantee

results with higher accuracy rates. This design process brought

the algorithm to a final solution at the eighth generation,

demonstrating how GAs can adjust existing model factors based on

ongoing assessment.

5.3.1 Results from the GA optimization
The specific configurations for the convolutional layers, as

determined through the GA, were as follows:

• Filter numbers: 224, 112, 208, 135, 35, and 104 for layers one

to six.

• Filter sizes: 5, 5, 2, 2, 2, and 2 for layers 1–6.

Frontiers inMedicine 13 frontiersin.org

https://doi.org/10.3389/fmed.2024.1498403
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chihaoui et al. 10.3389/fmed.2024.1498403

These results thus suggest that the GA has achieved its goal of

progressively enhancing configurations consistently. As seen in

Figure 7’s graphical illustrations, generation enhances the accuracy

of training and validation. Training accuracy is plotted as the

blue curves and validation accuracy as the orange curves, and

both curves have upward movements, indicating good learning, as

shown.

5.3.2 Fitness function evaluation
A crucial aspect of the GA’s performance assessment is the

fitness function, defined as

Fitness = (Number of Correct Predictions)/(Database Size) ∗ 100

(9)

This function assesses each solution in the population so that

different configurations can be compared. Nested fitness values,

where higher values are desirable, make solution selection for

reproduction or replacement in following generations easier.

Figure 8 depicts the evolution of fitness function value, and

Figure 9 shows the accuracy and error rate. The work discovered

FIGURE 8

Evolution of the fitness function value.

that fitness values trended upwards after each generation and

began to plateau from the eighth generation onwards. At

this point, the algorithm stopped running and removed the

chromosome representing the maximum fitness function achieved.

This systematic optimization approach is quite useful in supporting

GAs’ capability in automating the tuning mechanism for CNN

parameters.

5.3.3 Optimal parameters through the GA
Following multiple runs of the GA with varying values, the

optimal parameters were identified as follows:

• Filter numbers: returned to: 224, 61, 208, 135, 220, and 40.

• Filter sizes: 5, 5, 2, 2, 2, and 3.

When training the model with these optimal configurations,

we recorded improved metrics performance, as shown in Table 4

below. The chosen metrics provided an outstanding degree of

training accuracy of 90.90% with a loss of 0.11. Moreover, as shown

in the tables above, the model’s accuracy does not decrease during

the training process, and the error rates in the validation step show

the possibility of continuous optimization.

5.3.4 Integration of GA with pre-trained VGG16
model

The VGG16 architecture was also included to optimize the

existing pneumonia detection model enhanced by the GA. This

approach benefits from using the training done by the VGG16

model on the ImageNet dataset and does not requiremuch data and

computation power to fine-tune the model. Figure 10 shows the

architecture of the VGG16model. The integration process included

the first setting of new layers, but to prevent overfitting, they used

to freeze some of the layers of the VGG16 model. Namely, flatten,

dropout, and dense layers were added to help the series in the

classification process. In the dense layers, the GA hence sought to

optimize parameters it would use to set the number of neurons to a

range from 200 to 600.

FIGURE 9

Evolution of the accuracy value and the error rate.
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TABLE 4 Evaluation of the CNNmodel performance.

Metric Average Training accuracy Test accuracy Loss

Accuracy 0.95 90.90% 90.90% 0.11

FIGURE 10

Architecture of the VGG16 model.

Now, it is time to present experimental results from the work

with the VGG16 model and its optimization.

Several tests were run to select the size of the dense layers,

as indicated in Table 5. These tests showed that accuracy varied

depending on the configuration and reached its highest with 452

and 574 neurons in dense layers 1 and 2, respectively.

As shown in Table 6, the model’s performance significantly

increased after the application of the GA. The average training

accuracy increased to 94%, while the mean error training

rate reduced to 0.072. This has reduced the error by a

great deal compared to some of the initial metrics obtained,

validating the GA optimization. Furthermore, in this research,

the performance of the CNN model trained by GA is compared

with that of the VGG16 model trained by GA to highlight

the advantages of both in pneumonia detection. The findings

show that for the preselected BCI datasets, GA optimization

enhanced the predictive accuracy of the models to perform better

than traditional approaches applied to the RSNA pneumonia

detection dataset. For instance, the CNN model generated training

accuracy between 89.69 and 95.23% and an error rate of 0.6–

0.1. In the same way, the VGG16 model achieved a training

accuracy of 97.39 and 94.83% on the test with an error rate

of 0.072%.

These results raise awareness of how GAs can be applied to

automate the process of hyperparameter tuning and improve the

CNN architectures for a given task. By optimizing the solution

space, GAs help to find the best configuration, which improves the

model considerably.

6 Discussion

The rise in the incidence of pneumonia, and more so in

special groups of people, requires that better diagnostic methods

be defined. Recent findings in deep learning, especially CNN

applications, have been a platform formedical image analysis. Thus,

this study examines the complexities of CNNs and the VGG16

model, focused on the identification of pneumonia while using

GAs to improve the proficiency factors. The results show that the

proposed GA increases training and testing accuracy rates while

decreasing error rates, validating the GA effectiveness for deep

learning architecture optimization.

The numerical analysis of the results of the study shows an

advanced performance of the CNN model after applying GA

optimization. Classification training accuracy rose from 89.69 to

95.23%, while the classification testing accuracy rose from 84.62 to
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TABLE 5 Set of tests performed to obtain the optimal number of neurons.

Minimum
neurons

Maximum
neurons

Accuracy

100 300 89.65%

200 400 91.54%

300 400 92.98%

200 600 96.39%

TABLE 6 Training, accuracy test, and error rate provided by the

introduced model.

Metric Value

Average training accuracy 0.97

Test accuracy rate 94%

Error ate 0.072

90.90%. At the same time, the error rate was reduced further down

to 0.1, pointing out GA’s work in finding the best hyperparameters

and configurations. This enhancement could be explained by the

capacity of GA to cast the search into a large number of possible

configurations, choosing among these the best performers and

then optimizing them. The former relieves a major source of

inefficiency in deep learning pipelines, namely, the manual tuning

of parameters, and emphasizes the compatibility of GAs in medical

imaging applications.

The study also extends the discussion further to the VGG16

model, which is an in-depth model recognized for its profound

capabilities in capturing multiple abstract data shapes. Finally, the

VGG16 optimized for GA achieved a training accuracy of 97.39%,

tested on my test set accuracy of 94.83%, and an error rate of

0.072%. These results back up the outcomes from the CNN model

and show that the VGG16 model, when GA has been implemented,

can offer a firmer ground on which to detect pneumonia. The

improvement in the performance indicators of the two models

proves just how effective GA is in fine-tuning complicated designs,

which in turn encourages the deployment of the algorithms in key

applications that demand optimum precision.

Using epoch values during training is also another significant

part of this research. As we can deduce from the last epoch,

significant correlations exist between the specified epoch number

and the model accuracy. For example, the accuracy of the training

data level gradually increased from 64.30% in five epochs to 93.23%

in thirty epochs. This means that to achieve higher levels of

performance, the number of epochs needs to be increased so that

multiple features can be extracted from the training data to increase

the model’s predictive power. However, it also poses questions to

the elementary question of underfitting and overfitting that have to

be met with caution regarding the validation process involved in

the optimization procedures.

Incorporating GAs in the optimization process has two

obvious advantages: It makes the process more accurate, and the

training takes less time. Many of the conventional optimization

techniques are computationally expensive, and the use of some

Bayesian methods may necessitate significant prior searches for the

appropriate hyperparameters. Using GAs, this study successfully

minimizes the guesswork when approaching the optimization of

a model, thus enhancing the rationale of the tuning process. This

efficiency is especially desirable in medical applications where the

system is designed primarily to make timely decisions. This means

that practitioners are always assured of better models that will lead

to optimal patient care due to the chance of tuning the process.

In addition, these results have a wider relevance that goes

beyond pneumonia identification. Therefore, the methodologies

and techniques that have been covered in this study may be

expanded over in several ways. This includes other applications

of medical imaging and some of them, including the detection of

other diseases such as tuberculosis or COVID-19. The flexibility

of GAs to encompass a wide range of architectures and datasets

can be pursued as future work. The proposed GA optimizations

can be extended to more complex problem setups like optimizing

ensemble models or combining GA with other meta-heuristic

methods, such as Bayesian optimization or PSO, to improve the

performance of the prediction models.

Therefore, this research study focuses on the major

accomplishments attained when applying CNN and VGG16

models to pneumonia detection through the aid of genetic

algorithms. The enhanced training and test accuracy and reduced

error rates demonstrated in the study further substantiate the

core competency of GA in the optimization domain of the deep

learning algorithm. By applying this automation approach in the

configuration process, the model training is made easy, hence

developing quality diagnostic instruments in the health sector.

Some of the implications from this study call for the sustained

pursuit of research on the use of artificial intelligence in medical

diagnosis to advance development in the delivery of treatment for

different diseases.

6.1 Comparative analysis

In the field of employing deep learning for the identification

of pneumonia, fine-tuning of CNNs has emerged as a necessity

to enhance the degree of accuracy. This comparison study looks

into different models, with emphasis on the benchmark model,

the Visual Geometry Group-16 (VGG16). Table 7 comparing major

indices originating from different studies, including ours, presents

substantial deviations in the training accuracy, testing accuracy,

and errors needed to evaluate these architectures.

In the works of Hossain et al. (6), the author reported a training

accuracy of 89.69%, a test accuracy of 84.62%, and an error rate

of 0.6 in a standard CNN. Although this model demonstrates

good results, the architecture offering much higher efficiency is

significantly worse. However, Alsubai (7) incorporated a genetic

algorithm into the CNN model and achieved a wonderful training

accuracy of 95.23% in the testing phase with an accuracy percentage

of 90.90% and an error rate of 0.1 only. This indicates that genetic

algorithms can enhance model capacity and thereby may provide

a good opportunity for evolving neural networks in the longer

term with better medical diagnosis. Furthermore, to more complex

architectures, Mabrouk et al. (16) examined the standard VGG

model that achieved a training accuracy of 93.18%, a test accuracy
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of 89.00%, and an error rate of 0.32. Indeed, VGG16 is one of

the most prevalent models used in image classification problems;

however, the given results reveal some potential for enhancement.

However, in the same study, Lamia and Fawaz (17) used ResNet50

and reached a training accuracy of 95.00% and test accuracy of

91.00% coupled with an error of 0.09. This again exhibits that

ResNet is competent in managing deeper architectures with higher

accuracy than measured in this experiment regarding the standard

VGG model.

Another improvement was recorded by Sharma and Guleria

(18), who integrated ResNet50 with a genetic algorithm and

obtained a training accuracy of 96.50% and a testing accuracy of

92.50%, plus an error rate of 0.07. This work shows how genetic

algorithms can be applied to refine previously developed models to

enhance their efficiency with lower error rates. The enhancements

observed in the standard ResNet50 and the model enhanced

with a genetic algorithm suggest that the latter may significantly

increase identification accuracy in epidemiology. Furthermore, the

InceptionV3model has also been discussed in detail, as pointed out

by Salehi et al. (35), where the training accuracy was established

at 94.00%, the test accuracy stood at 89.50%, and the error rate

was recorded at 0.34. In contrast, Aljawarneh and Al-Quraan (21)

has shown that the same architecture can improve the performance

to 96.20% training accuracy and 93.00% test accuracy with an

error of 0.05 at most by applying a genetic algorithm. This once

again underlines the capability of genetic algorithms to enhance

the nature of model results, which tally with the fundamental

observations of other architectures. With DenseNet121, Miguel

et al. (22) achieved a training accuracy of 93.50% and a testing

accuracy of 88.00%, with a testing error rate of 0.37. Ismail et

al. (23), using a genetic algorithm with the DenseNet121 model,

yield improved metrics with a training accuracy of 95.80% and

test accuracy of 90.00%. The model also has an error rate of

0.2. The identified models point out the pattern of performance

enhancement through genetic optimization.

A classification approach is done on VGG16, with a training

accuracy of 97.00% and a test accuracy of 94% at an error rate

of 0.072. This positions our model into a more competitive rank

among the comparative metrics and shows that VGG16 is a good

backbone for the pneumonia detection task when properly fine-

tuned. These reasons include but are not limited to the better

model architecture of the proposed model, the enhanced ability

to transfer learning, and the efficiency of the proposed model

when extracting features from medical images. Moreover, when

comparing our results with the models described in prior studies,

it is evident that though many models, including those based

on genetic algorithms, seem to demonstrate good performance,

the VGG16 model dramatically outperforms all the others in

our particular application. The models employing the genetic

algorithms remain more accurate and with a lesser margin of error,

which is always a boon for medical applications requiring maximal

precision. The results of the proposed model further support the

importance of selecting and optimizing the appropriate models to

enhance diagnostic excellence in the detection of pneumonia.

Therefore, comparing different models to diagnose pneumonia

made it possible to determine the efficiency of specific architectures,

such as VGG16, with the help of specific optimization methods.

Our findings support the effectiveness of VGG16 as a robust

architecture, especially when improvements are implemented. This

is helpful in the current research toward the deployment of deep

learning in enhancing health systems.

6.2 Limitations

First, our study proposes a new approach for improving CNN

and VGG-16 in detecting pneumonia through the use of GAs;

however, the following limitations could be inferred, particularly

concerning the datasets used and effects on the model’s scalability

and their applicability in real-world settings.

Furthermore, the datasets used in the study that are freely

available may not reflect the broad variability of pneumonia cases

in real-world practice situations. In general, these datasets involve

images obtained under certain conditions and therefore might

miss variability in different populations, geographic locations, and

healthcare centers. This restriction is known to cause a shift of bias

and results in patterns that work well for the training data but fail

when tested on other arrays unrelated to the training data.

Subsequently, based on the representativeness of the datasets,

the shortcomings of the model can be observed in different

pneumonia types, including atypical manifestations or coexisting

conditions. Because the diagnosis of pneumonia is not so simple,

especially when the symptoms of treated diseases are similar, it is

very important for a model based on the quality and variety of the

dataset. Small datasets may not capture all these variations and fail

to provide a model that is as effective in clinical practice; hence,

there will be higher chances of misdiagnosis.

Furthermore, optimization also leads to overfitting, which is

the fact shown in this study where optimization enhances common

measures of performance. Genetic algorithms are useful for fine-

tuning a model, yet the algorithms can search for noise contained

within the data instead of meaningful patterns. This concern raises

the spec question of cross-validation and using the data for testing

that can be an independent set, which can sometimes be impossible

or unavailable. In conclusion, our study’s work complementarily

enhances the existing knowledge, but several issues require careful

consideration; the main of them are the limited dataset variety

and samples generalizability, potential overfitting, and the lack of

integration with clinical data. Further studies should be conducted

about these limitations to improve the generalizability of the

pneumonia prediction models for real clinical practice.

7 Conclusion and future work

This study examined the enhancement of CNNs and VGG-

16 structures in diagnosing pneumonia using genetic algorithms

(GAs). The first task was to improve the effectiveness of deep

learning algorithms in distinguishing pneumonia in images of chest

radiography. The presented results show that GAs are useful not

only in determining the numerous filters and filter sizes but also

in creating the CNN architecture with the ability to enhance the

detection rate.

The testing for the proposed model shows that the average

training accuracy result is 97%. On the other hand, the general

test accuracy result is 94%. The low error rate of 0.072 is an
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TABLE 7 Comparative analysis.

Reference Model Training accuracy Test accuracy Error rate

Hossain et al. (6) CNN 89.69% 84.62% 0.6

Alsubai (7) CNN-GA 95.23% 90.90% 0.1

Mabrouk et al. (16) VGG 93.18% 89.00% 0.32

Lamia and Fawaz (17) ResNet50 95.00% 91.00% 0.09

Sharma and Guleria (18) ResNet50-GA 96.50% 92.50% 0.07

Salehi et al. (35) InceptionV3 94.00% 89.50% 0.34

Aljawarneh and Al-Quraan

(21)

InceptionV3-GA 96.20% 93.00% 0.05

Miguel et al. (22) DenseNet121 93.50% 88.00% 0.37

Ismail et al. (23) DenseNet121-GA 95.80% 90.00% 0.2

Proposed approach VGG16-GA 97.00% 94% 0.072

adequate testimony to the reliability and ability of the selected

model in diagnosing pneumonia. These metrics are especially

encouraging, given that diagnosing the disease in its early stages

is essential for effective treatment in clinics where the lack of a

timely diagnosis can have severe implications for a patient’s health.

It should, therefore, be mentioned that our approach is well-aligned

with using the benefits associated with GAs, particularly in the

automation of the parameter search for CNNs to improve the

performance of the overall CNN architecture. This automation

is critical because, in deep learning projects, tuning by hand

is often time-consuming; as a result, efficient models can be

deployed for actual use readily. In addition, the results of the tested

architectures also show the effectiveness of GA optimization in

deep learning applications rather than pneumonia detection. This

general applicability of GAs in finding optimal configurations can

be easily mapped into the other applications of medical imaging or

other areas where fine-tuning is needed. Based on this versatility,

GAs are well-suited for the changing role of artificial intelligence

in healthcare, where the accuracy of a diagnostic instrument can

mean the difference between effective treatment. Therefore, several

possibilities suggest themselves for further research. First, the

amount of data the author used to train and test his model could

increase to enhance generalization. The current study used a certain

database of chest radiographs; however, including images from

people with different age groups and genders and different imaging

modalities could improve the performance of the developed model

in different settings. Therefore, in an attempt to reduce biases that

may come with small sample size, we shall diversify the dataset,

leading to a better shot at a better, more general catalyst for

diagnosis.

Moreover, it is noteworthy to report that the current study

was able to include GA for parameter optimization in the

process, and in future work, several opportunities to further

enhance the integration of GAs for parameter optimization have

been identified, including future work that could include the

integration of GAs with other optimization strategies such as

PSO, or Bayesian optimization. Utilizing the benefits of several

optimization approaches, one can discover even more effective

intervals for turning to the desired CNN architectures. These

bordering researches could enable further associated application

enhancements such as increased convergence speed and increased

detection efficiency for medical image applications. However,

searching for ways to interpret the CNN models applied in this

study is also imperative. Although deep learning models starting

with CNNs have shown high performance, they raise questions

on interpretability, leading to a challenge in clinical adoption. By

applying the methods that make models more explainable, such

as the attention mechanism or layer-wise relevance propagation,

we can show the process of an AI’s decision-making to the

healthcare workers, thus helping get their trust and bringing

AI into clinical practice. Another direction for future work

is connected with developing and applying real-time detection

systems for pneumonia. The proposed usage of our optimized

CNN models can improve the effects of telemedicine services

or mobile applications, thereby improving the availability of

healthcare, notably in rural environments. However, using these

models in near-real-time diagnostics will require ideal interfaces

for healthcare practitioners and will be central to implementation.

Such collection would also serve timely detection of the illness

in the patients, enhancing their living standards and offloading

some of the strains on healthcare systems, especially during such

seasons. Another extension of this work may include using the

optimized models to detect other respiratory diseases, including

tuberculosis and, more recently, COVID-19. The approaches

developed in this work can be generalized for identifying other

pathologies through chest imaging, proven by the effectiveness of

CNNs trained by GAs. This could help shape an early platform

to detect respiratory diseases, enhancing public health nationally

and internationally.

Last but not least, future works should stress the stronger

cooperation between researchers, clinicians, and regulatory bodies

for proper, effective, and safe integration of AI-based diagnostic

tools into definite healthcare practice. Getting in touch with

medical practitioners in both the development and testing phases

can help capture the actual challenges and needs of the users

needed to effectively refine actions. To promote the use of these

technologies in clinical practice later, getting strong validation

protocols and overcoming regulatory issues will be crucial.
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In summary, the current study provides a theoretical basis

for the further improvement of the CNN and VGG16 models

when applied to the detection of pneumonia with the help of

genetic algorithms. The positive findings suggest considerable

promise of these techniques to raise the diagnostic exactness

and inventory selectivity in clinical practice. By continuing these

future directions, which have been described above—diversifying

datasets, experimenting with the combination of optimization

procedures, increasing models’ interpretability, extending the

applicability of the methods to real-time tasks, and expanding

disease diagnostics—we can further develop this foundation

and meaningfully contribute to the development of AI in the

healthcare domain. Continued research and cooperation are the

goals of providing these technologies in everyday clinical practice,

improving patients’ outcomes in the battle with pneumonia and

other diseases affecting the respiratory system.
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