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Background: Due to its potent antibacterial activity, vancomycin is widely used

in the treatment of sepsis. Therapeutic drug monitoring (TDM) can optimize

personalized vancomycin dosing regimens, enhancing therapeutic e�cacy and

minimizing nephrotoxic risk, thereby potentially improving patient outcomes.

However, it remains uncertain whether TDM a�ects the mortality rate among

sepsis patients or whether age plays a role in this outcome.

Methods: We analyzed data from the Medical Information Mart of Intensive

Care–IV database, focusing on sepsis patients who were admitted to the

intensive care unit (ICU) and treated with vancomycin. The primary variable

of interest was the use of vancomycin TDM during the ICU stay. The primary

outcome was 30-day mortality. To control for potential confounding factors

and evaluate associations, we used Cox proportional hazards regression and

propensity score matching (PSM). Subgroup and sensitivity analyses were

performed to assess the robustness of our findings. Furthermore, restricted

cubic spline models were utilized to investigate the relationship between age

and mortality among di�erent groups of sepsis patients, to identify potential

non-linear associations.

Results: A total of 14,053 sepsis patients met the study criteria, of whom 6,826

received at least one TDM during their ICU stay. After PSM, analysis of 4,329

matched pairs revealed a significantly lower 30-day mortality in the TDM group

compared with the non-TDM group (23.3% vs.27.7%, p < 0.001). Multivariable

Cox proportional hazards regression showed a significantly reduced 30-day

mortality risk in the TDM group [adjusted hazard ratio (HR): 0.66; 95% confidence

interval (CI): 0.61–0.71; p < 0.001]. This finding was supported by PSM-adjusted

analysis (adjusted HR: 0.71; 95% CI: 0.66–0.77; p < 0.001) and inverse probability

of treatment weighting analysis (adjusted HR: 0.72; 95% CI: 0.67–0.77; p <

0.001). Kaplan–Meier survival curves also indicated significantly higher 30-day

survival in the TDM group (log-rank test, p < 0.0001). Subgroup analyses
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by gender, age, and race yielded consistent results. Patients with higher severity

of illness—indicated by sequential organ failure assessment scores ≥6, acute

physiology score III≥40, or requiring renal replacement therapy, vasopressors, or

mechanical ventilation—experienced more pronounced mortality improvement

from vancomycin TDM compared with those with lower severity scores or

not requiring these interventions. The results remained robust after excluding

patients with ICU stays <48h, those with methicillin-resistant Staphylococcus

aureus infections, or when considering only patients with septic shock. In

subgroup analyses, patients under 65 years (adjusted HR: 0.50; 95% CI: 0.43–

0.58) benefited more from vancomycin TDM than those aged 65 years and older

(adjusted HR: 0.75; 95%CI: 0.67–0.83). Notably, sepsis patients aged 18–50 years

had the lowest mortality rate among all age groups, at 15.2% both before and

after PSM. Furthermore, in this age group, vancomycin TDM was associated with

a greater reduction in 30-day mortality risk, with adjusted HRs of 0.32 (95% CI:

0.24–0.41) before PSM and 0.30 (95% CI: 0.22–0.32) after PSM.

Conclusion: Vancomycin TDM is associated with reduced 30-day mortality in

sepsis patients, with themost significant benefit observed in patients aged 18–50.

This age group exhibited the lowest mortality rates and experienced the greatest

reduction in mortality following TDM compared with older patients.

KEYWORDS

vancomycin, therapeutic drug monitoring, sepsis, mortality, age

1 Introduction

Sepsis is a life-threatening condition resulting from a

dysregulated host response to infection, accounting for ∼30%

of global intensive care unit (ICU) admissions (1, 2). It is

estimated that there are 49 million cases of sepsis worldwide

each year, resulting in 11 million deaths (3). Currently, sepsis

is a leading cause of rising healthcare costs and in-hospital

mortality rates (3, 4). Therefore, timely antimicrobial treatment

is crucial for patients suspected of or diagnosed with sepsis (5).

Vancomycin is a glycopeptide antibiotic with potent bactericidal

activity against Gram-positive cocci. It is the primary drug

used to treat methicillin-resistant Staphylococcus aureus (MRSA)

infections (6, 7). According to the Surviving Sepsis Guidelines,

MRSA coverage is recommended in the initial management of

high-risk sepsis and septic shock patients (8). Empirical use of

vancomycin to address potential MRSA or other drug-resistant

Gram-positive bacterial infections is a common and necessary

practice in the initial treatment of sepsis (5). The vancomycin

dosing regimen should be guided by its pharmacokinetic

(PK) and pharmacodynamic (PD) properties, with adjustments

based on therapeutic drug monitoring (TDM) to manage

its narrow therapeutic index and address growing resistance

challenges (9, 10). Mounting evidence has demonstrated significant

differences in PK/PD among sepsis patients, making TDM

crucial for maximizing vancomycin efficacy while minimizing

adverse effects (11–13). It is generally recommended to monitor

trough concentrations (targeting 10–20µg/ml) or the area under

the curve (AUC)/minimum inhibitory concentration (MIC)

ratio (targeting 400–600) (9, 10, 14). In summary, TDM and

personalized dose adjustments have been shown to improve

therapeutic outcomes and are expected to enhance patient

prognosis (15).

In vancomycin TDM, assessing the AUC generally requires

1–2 blood concentration measurements (14, 16, 17). Thus, by

verifying if blood concentrationmeasurements were performed, we

can identify patients who underwent vancomycin TDM, regardless

of whether the monitored parameter was directly measured

trough concentration or the calculated AUC. However, only a few

retrospective studies have explored the impact of implementing

TDM on clinical outcomes (18–21). Research has shown that

vancomycin TDM can improve therapeutic efficacy and reduce

nephrotoxicity (22), but its impact on mortality, particularly in

sepsis patients, remains inadequately studied (23). In clinical

practice, vancomycin is often used as empiric treatment for sepsis

patients, and the benefits of TDM remain uncertain when the

pathogen is not identified. Moreover, TDM requires significant

medical resources and adds to treatment costs (24), necessitating a

clear demonstration of its benefits. Sepsis is a highly heterogeneous

disease, and mortality rates are closely related to patient age (25–

27). However, differences in mortality rates among sepsis patients

receiving vancomycin TDM across different age groups remain

unclear. Therefore, we designed this study to investigate the impact

of vancomycin TDM on mortality in sepsis patients and to analyze

whether this effect varies across different age groups.

2 Materials and methods

2.1 Data source and ethics approval

The data for this study were sourced from the Medical

Information Mart for Intensive Care (MIMIC)-IV database

(version 2.2). MIMIC-IV is an open-access, real-world clinical

database that includes hospitalization data for over 70,000 ICU

patients at Beth Israel Deaconess Medical Center from 2008
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FIGURE 1

Flowchart of included patients.

to 2019 (28). The use of this database was approved by the

Institutional Review Board of Beth Israel DeaconessMedical Center

(Project Number: 2001-P-001699/14), with informed consent

waived. Our research team completed the required training and

was granted access credentials (Certificate Number: 59679596)

for using the database. This study complies with the ethical

principles and reporting standards specified in the Strengthening

the Reporting of Observational Studies in Epidemiology (STROBE)

guidelines (29).

2.2 Patient selection criteria

The inclusion criteria were: (1) admission to the ICU; (2)

administration of intravenous vancomycin during the ICU stay,

regardless of when the treatment started; and (3) diagnosis

of sepsis according to the Sepsis-3 criteria, defined by a

documented or suspected infection and a sequential organ

failure assessment (SOFA) score of ≥2 (1). The exclusion

criteria were: (1) patients who were not on their first ICU

admission; (2) no intravenous vancomycin treatment during the

ICU stay; (3) age <18 years; and (4) not meeting the sepsis

diagnostic criteria. The patient selection process is illustrated

in Figure 1.

2.3 Exposure and outcomes

The primary exposure variable in this study was whether

vancomycin TDM was conducted during the ICU stay.

Vancomycin TDM was defined as the measurement of at

least one serum concentration —whether trough, peak, or random

level—during the ICU stay. Patients who underwent vancomycin

TDM were classified into the TDM group, while those who did not

were categorized into the non-TDM group.

The primary outcome of this study was 30-day mortality.

Secondary outcomes included ICUmortality, in-hospital mortality,

length of ICU stay, and total hospital stay.

2.4 Data extraction

Patient data were extracted from the MIMIC-IV database using

Structured Query Language (SQL). The corresponding SQL script

used for data extraction is available on GitHub (https://github.

com/MIT-LCP/mimic-iv). The extracted data included variables

such as baseline demographics, vital signs, general laboratory tests,

comorbidities, disease severity scores, treatment interventions,

and vancomycin TDM details. A comprehensive list of extracted

variables can be found in Table 1.
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TABLE 1 Baseline characteristics of the patients enrolled from the MIMIC-IV database.

Patient
characteristic

Before PSM After PSM

Total
(n=14,053)

Non-TDM
group

(n = 7,227)

TDM
group

(n= 6,826)

SMD Total
(n=8,658)

Non-TDM
group

(n = 4,329)

TDM
group

(n=4,329)

SMD

Gender

[male, n (%)]

8,197

(58.3)

4,153

(57.5)

4,044

(59.2) 0.036
3,654

(42.2)

1,835

(42.4)

1,819

(42) 0.007

Age (years) 66.2± 16.3 67.8± 15.9 64.6± 16.5 0.200 66.2± 16.5 66.3± 16.6 66.2± 16.4 0.005

RACE

[white, n (%)]

9,168

(65.2)

4,907

(67.9)

4,261

(62.4) 0.115
5,579

(64.4)

2,794

(64.5)

2,785

(64.3) 0.004

Vital signs

Heart rate (bpm) 88.2± 16.5 86.6± 15.6 89.8± 17.2 0.196 88.4± 16.6 88.4± 16.4 88.3± 16.7 0.004

MAP (mmHg) 76.1± 10.2 75.7± 10.0 76.5± 10.4 0.076 76.3± 10.4 76.3± 10.6 76.3± 10.3 0.003

Respiratory rate (/min) 20.2± 4.2 19.7± 4.0 20.8± 4.3 0.271 20.2± 4.2 20.2± 4.2 20.2± 4.1 0.015

Temperature (◦C) 37.6± 0.9 37.5± 0.8 37.7± 0.9 0.240 37.6± 0.9 37.6± 0.9 37.6± 0.9 0.014

SpO2 (%) 96.8± 2.6 96.8± 2.6 96.8± 2.5 0.002 96.8± 2.6 96.8± 2.7 96.8± 2.4 0.004

Laboratory tests

WBC (×109) 14.5

(10.3, 19.8)

14.2

(10.1, 19.0)

14.9

(10.5, 20.5) 0.079
14.6

(10.3, 19.9)

14.6

(10.4, 19.7)

14.6

(10.3, 20.1) 0.001

Hemoglobin (g/L) 9.9± 2.2 9.8± 2.1 9.9± 2.2 0.013 9.9± 2.2 9.9± 2.2 9.9± 2.2 0.003

Hematocrit (%) 29.8± 6.5 29.6± 6.3 30.0± 6.7 0.053 29.9± 6.6 29.9± 6.6 29.9± 6.6 0.002

Platelets (×109) 161.0

(108.0, 227.0)

158.0

(110.0, 220.0)

165.0

(105.2, 233.0) 0.061
164.0

(109.0, 232.0)

164.0

(112.0, 230.0)

164.0

(107.0, 233.0) 0.002

Creatinine (mg/dL) 1.2

(0.9, 2.0)

1.1

(0.8, 1.6)

1.3

(0.9, 2.4) 0.320
1.2

(0.9, 2.0)

1.2

(0.9, 1.9)

1.2

(0.8, 2.0) 0.023

BUN (mg/dL) 24.0

(16.0, 40.0)

22.0

(15.0, 34.0)

27.0

(17.0, 46.0) 0.298
24.0

(16.0, 41.0)

24.0

(16.0, 40.0)

25.0

(16.0, 41.0) 0.012

Glucose

(finger, mg/dL)

133.5

(114.8, 164.3)

131.5

(115.0, 157.1)

136.5

(114.5, 171.8) 0.051
134.7

(114.7, 167.3)

134.9

(116.0, 167.4)

134.4

(114.0, 167.2) 0.003

Potassium (mmol/L) 3.9± 0.6 3.9± 0.6 3.9± 0.6 0.051 3.9± 0.6 3.9± 0.6 3.9± 0.6 0.005

Bicarbonate (mmol/L) 20.6± 5.1 21.0± 4.9 20.1± 5.4 0.172 20.6± 5.2 20.5± 5.4 20.6± 5.1 0.006

Comorbidity diseases, n (%)

Hypertension 8,776 (62.4) 4,618 (63.9) 4,158 (60.9) 0.062 5,388 (62.2) 2,690 (62.1) 2,698 (62.3) 0.004

Congestive heart failure 4,249 (30.2) 2,109 (29.2) 2,140 (31.4) 0.047 2,707 (31.3) 1,365 (31.5) 1,342 (31) 0.011

COPD 3,729 (26.5) 1,847 (25.6) 1,882 (27.6) 0.046 2,334 (27.0) 1,188 (27.4) 1,146 (26.5) 0.022

Liver disease 2,307 (16.4) 945 (13.1) 1,362 (20) 0.186 1,400 (16.2) 704 (16.3) 696 (16.1) 0.005

Diabetes 3,463 (24.6) 1,794 (24.8) 1,669 (24.5) 0.009 2,117 (24.5) 1,058 (24.4) 1,059 (24.5) 0.001

Renal disease 3,103 (22.1) 1,424 (19.7) 1,679 (24.6) 0.118 2,004 (23.1) 992 (22.9) 1,012 (23.4) 0.011

Malignant cancer 2,048 (14.6) 1,063 (14.7) 985 (14.4) 0.008 1,298 (15.0) 649 (15) 649 (15) <0.001

Cerebrovascular disease 2,039 (14.5) 898 (12.4) 1,141 (16.7) 0.122 1,325 (15.3) 664 (15.3) 661 (15.3) 0.002

Severity of illness scores

CCI 5.9± 2.9 5.9± 2.9 6.0± 3.0 0.035 6.0± 3.0 6.0± 3.0 6.0± 3.0 0.008

SOFA score 6.0 (4.0, 8.0) 5.0 (3.0, 7.0) 7.0 (4.0, 9.0) 0.398 6.0 (4.0, 8.0) 6.0 (4.0, 8.0) 6.0 (4.0, 8.0) 0.016

APS III 60.4± 27.2 52.4± 24.5 68.8± 27.3 0.634 60.0± 24.8 60.0± 26.0 60.0± 23.5 0.001

(Continued)
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TABLE 1 (Continued)

Patient
characteristic

Before PSM After PSM

Total
(n=14,053)

Non-TDM
group

(n = 7,227)

TDM
group

(n= 6,826)

SMD Total
(n=8,658)

Non-TDM
group

(n = 4,329)

TDM
group

(n=4,329)

SMD

SAPS II 41.6± 15.1 39.7± 14.7 43.7± 15.1 0.267 41.9± 15.1 42.1± 15.9 41.8± 14.2 0.021

OASIS 36.4± 9.5 33.9± 9.0 39.0± 9.3 0.562 36.6± 8.9 36.7± 9.0 36.5± 8.8 0.015

Therapy, n (%)

RRT 856 (6.1) 231 (3.2) 625 (9.2) 0.249 453 (5.2) 213 (4.9) 240 (5.5) 0.028

Mechanical ventilation 8,620 (61.3) 3,595 (49.7) 5,025 (73.6) 0.507 5,444 (62.9) 2,733 (63.1) 2,711 (62.6) 0.011

Vasoactive drug 8,236 (58.6) 3,786 (52.4) 4,450 (65.2) 0.262 4,939 (57.0) 2,486 (57.4) 2,453 (56.7) 0.015

Infectious pathogen, n (%)

MRSA 1,135 (8.1) 423 (5.9) 712 (10.4) 0.168 708 (8.2) 351 (8.1) 357 (8.2) 0.005

MAP, mean arterial pressure; SpO2 , percutaneous arterial oxygen saturation; WBC, white blood cell count; BUN, blood urea nitrogen; COPD, chronic obstructive pulmonary disease; CCI,

charlson comorbidity score; SOFA score, sequential organ failure score; APS III, acute physiology score III; SAPS II, simplified acute physiology score II; OASIS, oxford acute severity of illness

score; RRT, renal replacement therapy; MRSA, methicillin-resistant Staphylococcus aureus.

2.5 Statistical analysis

The sample size for this study was determined by the available

dataset. The extracted data were initially preprocessed, and missing

values were handled using the K-Nearest Neighbors imputation

method (30). Detailed information on missing data is available

in Supplementary Table 1. Continuous variables following a

normal or approximately normal distribution were presented as

mean ± standard deviation (SD), while non-normally distributed

variables were presented as median and interquartile range.

Categorical variables were expressed as frequencies (percentages).

Between-group comparisons of continuous variables were

conducted using the Student’s t-test or theWilcoxon rank-sum test.

Categorical variables were compared using Pearson’s chi-square

test or Fisher’s exact test, depending on specific conditions.

To minimize selection bias from potential confounders,

propensity score matching was employed using a logistic regression

model with 1:1 nearest-neighbor matching and a caliper of

0.1. Variables included in the PSM model were selected based

on previous literature and included age, sex, race, laboratory

results, comorbidities, severity scores, and treatment interventions.

Covariate balance between groups was evaluated using the

standardized mean difference (SMD), with an SMD of <10% after

PSM indicating well-balanced groups.

To assess the association between vancomycin TDM and

30-day mortality, Cox proportional hazards regression analysis

was performed, adjusting for confounders listed in Table 1.

Survival analysis was conducted using the Kaplan–Meier method,

and between-group differences were evaluated by the log-rank

test. Following PSM, subgroup analyses were performed to

evaluate the association between vancomycin TDM and 30-

day mortality across various subgroups. Sensitivity analyses

were performed by excluding patients with an ICU stay of

<48 h or those diagnosed with MRSA infection. Additionally,

further validation was performed among patients with

septic shock.

Specifically, the relationship between age and 30-day mortality

was investigated. The restricted cubic spline (RCS) model was

applied to explore potential nonlinear associations between age and

30-day mortality. Age was further stratified to analyze the impact

of vancomycin TDM on 30-day mortality in sepsis patients across

different age groups.

All statistical analyses were performed using R statistical

software (version 3.3.2, https://www.R-project.org) and Free

Statistics software (version 1.9.1, https://www.clinicalscientists.cn/

freestatistics/). A two-sided test was employed, with p < 0.05

considered statistically significant.

3 Results

3.1 Demographic and clinical information
in patients before PSM

The flow diagram of this study is shown in Figure 1.

This study included 14,053 sepsis patients from the MIMIC-IV

database who were admitted to the ICU and received intravenous

vancomycin. Among them, 6,826 patients (48.6%) underwent at

least one vancomycin serum concentration measurement, while

the remaining 7,227 patients (51.4%) did not (Table 1). Before

PSM, significant differences were observed across most variables

(p < 0.05), except for peripheral oxygen saturation (SpO2),

hemoglobin levels, and the proportions of patients with diabetes

and malignant tumors. Although patients in the TDM group were

younger than those in the non-TDM group (p < 0.001), their

scores on all five severity indices were significantly higher (p

< 0.001). Additionally, the TDM group had significantly higher

proportions of patients with comorbidities such as congestive

heart failure, chronic obstructive pulmonary disease (COPD), liver

disease, renal disease, and cerebrovascular disease (p < 0.001).

Compared with the non-TDM group, the TDM group also had

significantly higher need for renal replacement therapy (RRT),
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TABLE 2 Primary outcome and secondary outcomes of the study.

Outcomes Matching Total Non-TDM group TDM group p

30 days mortality Before PSM, n (%) 3,350/14,053 (23.8) 1,494/7,227 (16.2) 1,856/6,826 (27.2) <0.001

After PSM, n (%) 2,211/8,658 (25.5) 1,201/4,329 (27.7) 1,010/4,329 (23.3) <0.001

ICU mortality Before PSM, n (%) 2,138/14,053 (15.2) 924/7,227 (12.8) 1,214/6,826 (17.8) <0.001

After PSM, n (%) 1,375/8,658 (15.9) 810/4,329 (18.7) 565/4,329 (13.1) <0.001

Hospital mortality Before PSM, n (%) 2,830/14,053 (20.1) 1,214/7,227 (16.8) 1,616/6,826 (23.7) <0.001

After PSM, n (%) 1,824/8,658 (21.1) 1,012/4,329 (23.4) 812/4,329 (18.8) <0.001

The length of ICU stay (days) Before PSM, n (%) 3.7 (1.9, 8.0) 2.2 (1.3, 3.9) 6.9 (3.7, 12.8) <0.001

After PSM, n (%) 3.8 (2.0, 7.4) 2.6 (1.5, 4.7) 5.6 (3.1, 10.6) <0.001

The length of hospital stay (days) Before PSM, n (%) 9.9 (5.9, 17.4) 7.5 (4.9, 11.8) 14.1 (8.5, 22.9) <0.001

After PSM, n (%) 10.0 (5.9, 17.1) 7.9 (4.7, 12.8) 13.0 (8.0, 21.2) <0.001

vasopressor support, and mechanical ventilation (p < 0.001).

These data indicate that patients in the TDM group presented

with more complex and severe conditions than those in the non-

TDM group.

In terms of clinical outcomes, the 30-day mortality rate (27.2%

vs. 16.2%; p < 0.001), ICU mortality (17.8% vs. 12.8%; p <

0.001), and in-hospital mortality (23.7% vs. 16.8%; p < 0.001)

were significantly higher in the TDM group. Furthermore, patients

in the TDM group had significantly longer ICU stays compared

with those in the non-TDM group [median 6.9 days, interquartile

range (IQR) 3.7–12.8 vs. median 2.2 days, IQR 1.3–3.9; p <

0.001]. Similarly, total hospital stays were also longer in the

TDM group (median 14.1 days, IQR 8.5–22.9) compared with

the non-TDM group (median 7.5 days, IQR 4.9–11.8; p < 0.001;

Table 2).

3.2 Demographic and clinical information
in patients after PSM

In the PSM analysis, 4,329 patient pairs were successfully

matched between the TDM and non-TDM groups. After PSM,

there were no notable differences in baseline characteristics

between the two groups (Table 1). Table 2 presents the clinical

outcomes following PSM. The overall 30-day mortality rate

was 25.5% (2,211/8,658); however, the mortality in the TDM

group was significantly lower than that in the non-TDM group

(23.3% vs. 27.7%, p < 0.001). Moreover, compared with the

non-TDM group, the TDM group had significantly lower ICU

mortality (13.1% vs. 18.7%, p < 0.001) and in-hospital mortality

(18.8% vs. 23.4%, p < 0.001). Consistent with pre-PSM results,

the ICU stay and total hospital stay were significantly longer

in the TDM group compared with the non-TDM group. The

median ICU stay was 5.6 days (IQR 3.1–10.6) in the TDM

group vs. 2.6 days (IQR 1.5–4.7) in the non-TDM group,

and the median total hospital stay was 13.0 days (IQR 8.0–

21.2) vs. 7.9 days (IQR 4.7–12.8), respectively (p < 0.001 for

both comparisons).

TABLE 3 The association between vancomycin TDM and 30-day

mortality, as determined by analyses incorporating multiple models.

HR 95% CI p-value

Crude analysis.Unmatched 1.29 1.21–1.39 <0.001

Multivariable.adjusteda 0.66 0.61–0.71 <0.001

PropensityScore.Matchedb 0.76 0.70–0.83 <0.001

PropensityScore.adjustedc 0.71 0.66–0.77 <0.001

Weighted.IPTWd 0.72 0.67–0.77 <0.001

aHR from a multivariable Cox proportional model adjusted for all covariates in Table 1.
bHR from a multivariate Cox proportional hazards model with the same strata and covariates

matched according to the propensity score.
cHR from a multivariable Cox proportional hazards model with the same strata and

covariates, with additional adjustment for the propensity score.
dHR from a multivariable Cox proportional hazards model with the same strata and

covariates, with IPTW adjustment according to the propensity score.

3.3 Association between vancomycin TDM
and 30-day mortality

We used Cox proportional hazards regression, adjusted for all

covariates in Table 1, to assess the association between vancomycin

TDM and 30-day mortality. Prior to PSM, vancomycin TDM

was significantly associated with lower 30-day mortality (adjusted

HR: 0.66; 95% CI: 0.61–0.71; p < 0.001). After PSM, the

association remained significant, with an adjusted HR of 0.71

(95% CI: 0.66–0.77; p < 0.001). Consistently, using inverse

probability of treatment weighting (IPTW) based on propensity

scores for further covariate adjustment, the adjusted HR was

0.72 (95% CI: 0.67–0.77; p < 0.001). These findings consistently

demonstrate that vancomycin TDM is associated with reduced 30-

day mortality, even after adjusting for potential confounders using

PSM and IPTW (Table 3). In the matched cohort, the Kaplan–

Meier survival curves demonstrated a significantly reduced 30-

day mortality rate in the TDM group (log-rank test: p < 0.0001;

Figure 2).

Frontiers inMedicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2024.1498337
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Peng et al. 10.3389/fmed.2024.1498337

FIGURE 2

Kaplan–Meier survival curves for 30-day mortality in sepsis patients:

TDM group vs. non-TDM group.

3.4 Subgroup analysis

Next, we stratified the study population into clinical

subgroups based on factors such as gender, age, race, SOFA

score, APS III score, and the use of RRT, vasopressors,

or mechanical ventilation. We evaluated the impact of

vancomycin TDM on 30-day mortality in each subgroup, and

presented the results in a forest plot (Figure 3). Subgroup

analysis showed that vancomycin TDM was significantly

associated with a lower 30-day mortality (HR < 1) across

all subgroups examined, including those defined by gender,

age (<65 or ≥65 years), race (White or non-White), SOFA

score (<6 or ≥6), and the need for RRT, vasopressors, or

mechanical ventilation.

Notably, the reduction in mortality risk with vancomycin TDM

was more pronounced in certain subgroups: patients younger than

65 years (HR: 0.50; 95% CI: 0.43–0.58), those with a SOFA score

≥6 (HR: 0.57; 95% CI: 0.51–0.63), an acute physiology score (APS)

III score≥40 (HR: 0.61; 95% CI: 0.56–0.67), patients receiving RRT

(HR: 0.25; 95% CI: 0.18–0.36), those using vasopressors (HR: 0.57;

95% CI: 0.51–0.63), and those requiring mechanical ventilation

(HR: 0.56; 95% CI: 0.51–0.62). These patients experienced a

greater survival benefit from vancomycin TDM compared with

patients aged ≥65 years (HR: 0.75; 95% CI: 0.67–0.83), those

with a SOFA score <6 (HR: 0.86; 95% CI: 0.74–1.00), those

not receiving RRT (HR: 0.70; 95% CI: 0.64–0.76), those not

using vasopressors (HR: 0.86; 95% CI: 0.74–1.00), and those not

requiring mechanical ventilation (HR: 0.86; 95% CI: 0.74–1.00).

However, patients with an APS III score <40 (HR: 1.14; 95%

CI: 0.82–1.60) did not show a statistically significant benefit from

vancomycin TDM.

3.5 Sensitivity analysis

To verify the robustness of our results, we conducted three

sensitivity analyses (Table 4). First, excluding 3,821 patients with

an ICU stay of <48 h, analysis of the remaining 10,232 patients

showed that vancomycin TDM remained associated with lower

30-day mortality (adjusted HR: 0.87; 95% CI: 0.79–0.95; p <

0.001). Second, after excluding 1,135 patients who tested positive

for MRSA, analysis of the remaining 12,918 patients also revealed

that vancomycin TDM was associated with lower 30-day mortality

(adjusted HR: 0.66; 95% CI: 0.61–0.72; p < 0.001). This finding

suggests that empirical use of vancomycin with TDM can improve

outcomes in sepsis patients, even when the etiological diagnosis

is unclear. Finally, after excluding patients with missing lactate

values, analysis of 4,398 patients diagnosed with septic shock

yielded results consistent with those observed in the overall sepsis

population (adjusted HR: 0.58; 95% CI: 0.51–0.66; p < 0.001).

3.6 Age response relationship between
vancomycin TDM and 30-day mortality

Given that age is a continuous variable, we first performed a

nonlinear test to assess the relationship between age and 30-day

mortality. The results indicated that both before and after PSM, the

univariate and multivariate Cox regression analyses combined with

RCS demonstrated a significant nonlinear relationship between age

and 30-day mortality in sepsis patients (p < 0.05; Figures 4A–

D). Further post-PSM analysis revealed a significant nonlinear

relationship between age and 30-day mortality in both the TDM

and non-TDM groups (p < 0.05; Figures 4E–H). The RCS curves

from the multivariate Cox regression analyses indicated that,

compared with the non-TDM group, patients in the TDM group

had a lower risk of mortality (HR < 1) at ages below 67.77 years

(Figures 4F, H).

To further analyze the impact of vancomycin TDM on

30-day mortality across different age groups, we divided the

patients into four age groups: 18–50, 50.1–65, 65.1–80, and

>80 years. Baseline characteristics of each group are detailed in

Supplementary Tables 2, 3. Subgroup analysis suggested that both

before and after PSM, sepsis patients aged 18–50 years derived

the greatest survival benefit from vancomycin TDM (Figure 5).

After PSM, the 18–50 age group exhibited the lowest mortality rate

(15.2%), and the reduction in mortality was particularly significant

among patients who received TDM compared with those who did

not (Figure 6).

4 Discussion

In this large retrospective cohort study, we found that

vancomycin TDM is significantly associated with a reduction in 30-

day mortality among sepsis patients, and this effect appears to vary

across different age groups. Initially, we observed a higher 30-day

mortality rate in the TDMgroup compared to the non-TDMgroup.

However, after adjusting the baseline differences through PSM, the

trend reversed, suggesting that TDM may play a critical role in

improving survival. This finding was further supported by Cox
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FIGURE 3

Subgroup analysis of the relationship between vancomycin TDM and 30-day mortality in sepsis patients, as visualized by a forest plot. TDM,

therapeutic drug monitoring; HR, hazard ratio; CI, confidence interval; SOFA score, sequential organ failure assessment score; APS III, acute

physiology score III; RRT, renal replacement therapy.

proportional hazards regression analysis, PSM-adjusted analysis,

IPTW analysis, and Kaplan–Meier survival curves, all of which

consistently indicated better outcomes with TDM. These results

underscore the potential clinical benefits of TDM for optimizing

vancomycin therapy in sepsis patients.

The association between aging and increased mortality in

sepsis is well documented (25, 31). In our study, both the RCS

curves before and after PSM (Figures 4A, C) and the subgroup

analysis (Figure 5) also reflected this trend. Further exploration

of the effect of vancomycin TDM on age-related sepsis mortality

showed that while vancomycin TDM was associated with lower

30-day mortality across all age groups, the survival benefit was

more pronounced in patients younger than 65 years, particularly

those aged 18–50 years. This age-related heterogeneity in treatment

effect may be attributed to differences in physiological resilience

and comorbidity burden. Younger patients generally have stronger

cardiovascular and renal function, which can enhance drug

clearance and reduce the risk of toxicity. Additionally, they often

exhibit stronger immune responses, which may complement the

effects of optimized antibiotic therapy (32, 33). In contrast, older
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TABLE 4 Sensitivity analysis of the relationship between vancomycin TDM and 30-day mortality.

Sensitivity Matching 30-day mortality, n (%) Cox proportional hazards
regression analysis

Total Non-TDM
group

TDM
group

p HR 95%CI p

Model 1

(n= 10,232)

Before PSM 2,481/10,232

(24.2%)

791/3,933

(20.1%)

1,690/6,299

(26.8%)

<0.001 0.87a 0.79–0.95 <0.001

After PSM 1,355/6,398

(21.2%)

746/3,199

(23.3%)

609/3,199

(19.0%)

<0.001 0.69b 0.62–0.77 <0.001

Model 2

(n= 12,918)

Before PSM 3,044/12,918

(23.6%)

1,387/6,804

(20.4%)

1,657/6,114

(27.1%)

<0.001 0.66a 0.61–0.72 <0.001

After PSM 2,117/7,978

(26.5%)

1,105/3,989

(27.7%)

1,012/3,989

(25.4%)

<0.001 0.62b 0.57–0.68 <0.001

Model 3

(n= 4,398)

Before PSM 1,412/4,398

(32.1%)

593/2,110

(28.1%)

819/2,288

(35.8%)

<0.001 0.58a 0.51–0.66 <0.001

After PSM 907/2,408

(37.7%)

493/1,204

(40.9%)

414/1,201

(34.4%)

<0.001 0.45b 0.39–0.51 <0.001

Model 1: Excluded those who ICU stay was <48 h; Model 2: Excluded those who had positive microbiological cultures of MRSA; Model 3: Only septic shock patients were included, with the

diagnostic criteria based on “The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).” Patients with missing lactate data were excluded.
aHR from a multivariable Cox proportional model adjusted for all covariates in Table 1.
bHR from a multivariable Cox proportional hazards model with the same strata and covariates, with additional adjustment for the propensity score.

patients often face more complex clinical conditions, including

multiple comorbidities and higher risks of resistant infections,

potentially limiting the overall impact of TDM despite its ability

to optimize vancomycin dosing (31). These findings highlight the

importance of individualized treatment strategies that account for

patient-specific factors such as age and overall health status. For

example, younger patients with better renal function may benefit

from more aggressive dosing strategies, while older patients with

multiple comorbidities may require more conservative dosing to

minimize toxicity risks. Notably, our analysis revealed that younger

patients derived greater benefits from TDM, suggesting that timely

and precise dosing adjustments can have a substantial impact on

survival outcomes in this group. Due to their lower mortality rate,

younger sepsis patients are often overlooked for TDM in clinical

practice. Given the significant advantage in reducing mortality risk,

our study stresses the need to implement TDM for younger sepsis

patients (aged 18–50 years).

Sepsis-induced changes in volume of distribution and

creatinine clearance can lead to significant fluctuations in serum

drug levels, such as vancomycin, highlighting the necessity

of individualized dosing strategies (34–36). The Surviving

Sepsis Campaign also emphasizes the importance of optimizing

antimicrobial dosing based on PK, PD, and antimicrobial

resistance profiles (8). Compared to a standardized dosing

approach, individualized antimicrobial dosing is better suited for

sepsis patients, with TDM being a critical method for achieving

optimal dosing (10, 15). Previous studies on vancomycin TDM

in sepsis have primarily focused on two areas. The first is

the pharmacokinetics of vancomycin in specific sepsis patient

subgroups (11, 13, 37), and the second is the relationship between

vancomycin trough concentrations or AUC/MIC ratios and

clinical outcomes (38–41). However, only limited studies have

reported on the mortality of sepsis patients related to vancomycin

TDM (42, 43). The relationship between vancomycin TDM

indicators and mortality in sepsis patients remains complex.

According to the latest meta-analysis, while lower vancomycin

trough levels are associated with a reduced risk of treatment

failure and all-cause mortality, no significant correlation has

been found between vancomycin trough levels and clinical

outcomes in adult patients with sepsis or Gram-positive bacterial

infections (44). Additionally, there remains a lack of robust

data linking vancomycin AUC to mortality (45, 46). Welder-

Zamone et al. identified vancomycin serum concentration

as a key predictor of acute kidney injury (AKI) in sepsis

patients. In their Cox regression model, a serum concentration

exceeding 21.5 mg/L was the sole variable significantly associated

with mortality, although the study’s sample size was limited

to 135 patients (47). Another study involving 3,146 elderly

ICU patients found that vancomycin trough concentrations

were significantly associated with AKI and increased 30-day

mortality risk, with a trough concentration above 19.17 mg/L

significantly elevating this risk (48). However, because the

study population was limited to elderly ICU patients, the

findings may not generalize to the broader sepsis population.

To date, there are almost no studies that have directly compared

the clinical outcomes of TDM vs. non-TDM approaches in

sepsis patients. Due to the limitations of current studies, it

remains unclear whether TDM significantly impacts mortality

compared to non-TDM approaches in sepsis patients. Our

study highlights the potential substantial benefit of vancomycin

TDM in reducing mortality among sepsis patients. By leveraging

a larger, more heterogeneous cohort of ICU-admitted sepsis

patients, our findings may be more broadly applicable. These

findings contribute to the growing body of evidence endorsing

routine TDM for optimizing vancomycin therapy, particularly

in critical care settings. This aligns with current guidelines

that prioritize individualized dosing strategies to improve

therapeutic outcomes.
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FIGURE 4

Association between age and 30-day mortality using RCS. The curves illustrate the relationship between HR and age using univariate (A) and

multivariate (B) Cox regression models with RCS in all sepsis patients before PSM. Similarly, curves for HR and age are presented for univariate (C) and

multivariate (D) Cox regression models with RCS in all sepsis patients after PSM. Additional analyses include univariate (E) and multivariate (F) Cox

regression models with RCS in non-TDM patients after PSM, as well as univariate (G) and multivariate (H) Cox regression models with RCS in TDM

patients after PSM. The multivariate Cox regression models were adjusted for all variables listed in Table 1. The cubic spline curves are shown as solid

lines, with shaded areas representing the 95% confidence intervals. The “Ref.point” represents the reference age at which the HR equals 1. The hazard

ratio spline is plotted on a logarithmic scale across the age distribution.
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FIGURE 5

Subgroup analysis of the relationship between vancomycin TDM and 30-day mortality in sepsis patients of di�erent age groups, as visualized by a

forest plot.

FIGURE 6

The 30-day mortality rates of sepsis patients among di�erent age subgroups after PSM. *p < 0.05.

This study has several limitations. As a retrospective study, it

inherently carries the risk of information bias and confounding

bias. Although we applied the PSM method and conducted

subgroup and sensitivity analyses to reduce these biases,

unmeasured confounders could still influence the results.

Furthermore, retrospective studies establish associations rather
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than causality. Therefore, randomized controlled trials are needed

to validate the survival benefits associated with vancomycin

TDM in sepsis patients and to identify the subpopulations

that benefit most. Future studies should adopt a multicenter

design and stratify patients by age and comorbidities to

clarify the differential impacts of TDM. Additionally, the

data utilized in this study were drawn from the single-center

MIMIC-IV database, potentially limiting the generalizability

of our findings. Moreover, implementing TDM necessitates

specialized equipment, trained personnel, and entails additional

time and costs. While our study suggested that vancomycin

TDM reduced mortality risk in sepsis patients, the cost-

effectiveness of routine TDM implementation across all patients

remains uncertain.

5 Conclusions

This retrospective analysis revealed that vancomycin TDM

was associated with a reduction in 30-day mortality among sepsis

patients, with the most significant impact observed in those aged

18–50 years. Despite the limitations inherent in the retrospective

design and potential confounding factors, the findings support the

implementation of TDM as a standard practice for vancomycin

therapy in sepsis patients across all age groups. Furthermore, the

study found that although younger sepsis patients exhibited lower

mortality rates, vancomycin TDM conferred a greater benefit in

enhancing their survival.
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