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The growing global prevalence of diabetes mellitus (DM), along with its associated 
complications, continues to rise. When clinically detected most DM complications 
are irreversible. It is therefore crucial to detect and address these complications 
early and systematically in order to improve patient care and outcomes. The 
current clinical practice often prioritizes DM complications by addressing one 
complication while overlooking others that could occur. It is proposed that the 
commonly targeted cell types including vascular cells, immune cells, glial cells, 
and fibroblasts that mediate DM complications, might share early responses to 
diabetes. In addition, the impact of one complication could be  influenced by 
other complications. Recognizing and focusing on the shared early responses 
among DM complications, and the impacted cellular constituents, will allow to 
simultaneously address all DM-related complications and limit adverse treatment 
impacts. This review explores the current understanding of shared pathological 
signaling mechanisms among DM complications and recognizes new concepts 
that will benefit from further investigation in both basic and clinical settings. The 
ultimate goal is to develop more comprehensive treatment strategies, which 
effectively impact DM complications in multiple organs and improve patient care 
and outcomes.
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1 Introduction

In 2021, 521 million individuals were living with diabetes mellitus (DM). It is predicted 
that by 2050, this figure will rise to over 1.3 billion individuals (1). The rise in the number of 
persons with DM, in addition to their improved life expectancy, has been associated with 
growing trends in DM complications in recent years (2, 3). Despite the rising DM prevalence 
and changing patterns of its consequences, curative strategies are still lacking. This is further 
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impacted by the lack of a comprehensive understating of DM 
complications and their cellular constituents. Thus, preventing the 
simultaneous occurrence of DM complications, involving multiple 
targets, is crucial to improve patient care and outcomes.

The most challenging DM complications are traditionally defined 
as microvascular and macrovascular, which are classified into multiple 
categories including retinopathy, nephropathy, neuropathy, and 
cardiovascular disease. This classification is convenient at the clinical 
level, which provides a broad perspective of the comorbidities 
associated with DM and can be  pragmatically translated into 
prevention and management recommendations. Early diagnosis of 
these complications is mainly based on vascular pathologies noted in 
a subset of organs (4, 5). In addition, DM affects almost every organ 
system beyond their vascular beds, with further damage that does not 
strictly fall into the artificial tissue-specific micro- and macro-vascular 
classification. In recent years, there have been challenging discussions 
regarding the temporal occurrence of DM-associated pathologies, 
such as retinal neurodegeneration and vasculopathies (6). These 
pathologies are highly intertwined and very challenging to unveil their 
hierarchies without the knowledge of what their cellular constituents 
are and how they temporally and spatially respond to diabetes.

The DM complications are linked in at least three ways and should 
not be studied in isolation. First, DM affects all organs simultaneously 
allowing one to examine each organ based on other organs and make 
a more accurate evaluation of DM’s impact on the specific integrity 
and function of other organs. When a DM complication occurs, the 
risk of incidence and progression of other complications rises (7). 
Second, organs interact with one another through systemic circulation. 
Renal failure for instance is the inability of the kidney to eliminate 
toxins from the body. Thus, even in non-diabetic renal diseases, 
uremic toxins resulting from chronic kidney disease, could influence 
retinal neurons (8). In addition, diabetic nephropathy increases the 

risk of developing diabetic retinopathy in diabetic patients (9), and 
retinal vascular density decreases in patients with chronic heart failure 
(10). Third, all organs require a blood supply provided by systemic 
circulation. However, tissue-specific variation in hemodynamics, 
vascular architecture, and cellular constituents could lead to organ-
specific clinical presentations that are unique. Thus, the involvement 
of the vascular system could lead to a spectrum of pathological 
consequences in different target organs, whose simultaneous studies 
could provide a broader prospective of the systematic impact of DM 
and a broader impact on mitigation of its complications.

Understanding the pathophysiology of DM complications at the 
systems level will aid in the discovery of additional methods of 
screening for early detection of these complications and offer 
treatment options that more comprehensively address the 
pathophysiology of disease. Here we review and discuss some of the 
shared pathologies among DM complications in various target organs 
and their cellular constituents, including the retina, kidney, heart, and 
peripheral nerves that could benefit from further basic and clinical 
research (Figure 1). The simultaneous extension of these studies to 
other target sites will provide broader perspective regarding DM 
systematic nature. This knowledge will aid in a more effective 
diagnosis and treatment for the disease.

2 The need for an interdisciplinary 
approach for diagnosis and treatment 
of DM complications

Recent discoveries in the field of diabetes and its complications 
have demonstrated that diabetes complications are mutually 
reinforcing. For example, diabetic patients without nephropathy are 
at a lower risk of cardiovascular diseases, such as heart failure, than 

FIGURE 1

Pathways involved in DM complications. Pathways with completely clarified roles are highlighted with dark yellow and those which need more studies 
are highlighted with light yellow. Created with biorender.com.
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those with nephropathy. Interventional studies, such as randomized 
clinical trials, have demonstrated that the treatment of diabetic 
nephropathy can not only retard the progression of nephropathy but 
also decreases the risk of cardiovascular disease. Figure 2 summarizes 
the mechanisms by which different organs could impact each other 
(11, 12). Thus, an interdisciplinary approach could be beneficial for 
diagnosis and treatment of DM complications.

Fragmented care across multiple health care providers presents 
unique challenges for individuals with DM complications. 
Additionally, physicians may exhibit tunnel vision when managing a 
DM complication and fail to consider all complications, as well as 
their own specialty. Diverse clinical environments with healthcare 
facilities have the potential to enhance feasibility through 
interdisciplinary care. It is widely recognized that the clinical 

FIGURE 2

The mechanisms of different diabetes complications that affect other organs. Consequent to all of these mechanisms, inflammation, 
neurodegeneration, vasculopathy (such as angiogenesis and atherosclerosis), hypoxia, and oxidative stress occur in different organs leading to shared 
pathways discussed here.
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condition of diabetic patients is enhanced, and that complications and 
mortality rates are reduced during hospitalization when they are 
managed in an interdisciplinary manner (13, 14). Thus, a knowledge 
of shared pathological mechanisms among DM complications will 
be  beneficial in an interdisciplinary approach for their diagnosis 
and treatments.

3 Shared pathological signaling 
mechanisms and cellular constituents

3.1 Vascular cell dysfunction

Vascular endothelial cells (EC), which line inside of the blood 
vessels, are likely the first type of cells to experience changes in 
systemic glucose levels. It is proposed that exposure of EC to high 
glucose results in their dysfunction, a condition in which the 
endothelium loses its ability to carry out essential physiological 
functions such as permeability, vasodilation, and regulation of 
coagulation and inflammation. These changes are extensively studied 
in the context of retinal vasculature both in vitro and in vivo, and are 
observed in individuals with DM. We now know that complications 
of DM such as diabetic retinopathy (15), diabetic nephropathy (16), 
diabetic neuropathy (17), and diabetic cardiomyopathy (18), are 
associated with vascular dysfunctions in these tissues. However, the 
detailed molecular and cellular mechanisms involved have not been 
well delineated. Hyperglycemia induces a series of intracellular events 
that ultimately result in vascular dysfunction, likely throughout the 
entire vascular system. Consequently, the identification and targeting 
of these shared pathological events could simultaneously impact 
all organs.

Vascular EC are highly differentiated and have limited proliferative 
capacity but can be activated by changes in the production of autocrine 
and/or paracrine angioinflammatory regulatory factors. The impact 
of diabetes on the production of these angioinflammatory regulatory 
factors could alter the EC viability and function leading to vascular 
dysfunction and degeneration (19–22). Our knowledge of these 
regulatory factors is limited and has been mainly focused on retinal 
vascular EC. We showed the exposure of mouse retinal EC to high 
glucose conditions results in the downregulation of a key 
angioinflammatory regulatory protein, namely thrombospondin-1 
(TSP1) (23). This is concomitant with enhanced retinal vascular EC 
proinflammatory and proangiogenesis activities (24). In addition, the 
lack of TSP1 expression exacerbated the development and progression 
of diabetic retinopathy in preclinical mouse models of diabetes (21). 
Furthermore, we showed that TSP1 level is lower in vitreous humor 
samples from humans with diabetes compared with non-diabetes (25).

We also showed retinal EC exhibits a very low rate of apoptosis 
under normal glucose conditions (0.1–0.3%), which was not 
significantly affected when retinal EC was exposed to high glucose 
conditions (26). However, this could become significant after years of 
chronic hyperglycemia in vivo (27). In addition, we found increases in 
the extracellular glucose levels minimally impacted the intracellular 
glucose levels in retinal EC (22). Furthermore, given the tissue 
specificity of EC, it is unclear how EC from other organs responds to 
high glucose levels. Thus, the impact of high glucose conditions on 
retinal EC metabolic activity is minimal and will benefit from studies 
in EC from other organs impacted by diabetes (28).

The other major vascular cells targeted in DM are the pericytes 
(PC) whose recruitment and interaction with EC are vital to the 
integrity and function of blood vessels (20). Retinal vasculature has 
the highest ratio of PC/EC (1:1 in humans) than any other tissue. 
Dysfunction and loss of PC have a significant impact on retinal 
vasculature permeability and degeneration (29). Pericyte loss from 
retinal vasculature with diabetes has been recognized as one of the 
earliest signs of diabetic retinopathy. Determination of the underlying 
mechanisms has been the focus of many studies. We have found that 
retinal PC exhibits a 10-fold higher rate of apoptosis compared with 
retinal EC under normal glucose conditions (1–3%), and exposure of 
PC to increased extracellular glucose level results in a significant 
increase in their apoptosis rate (30). In addition, incubation of retinal 
PC under high glucose conditions, unlike retinal EC, resulted in 
significantly increased intracellular glucose levels. This was 
concomitant with enhanced activity of hexosamine biosynthesis 
activity and increased O-GlcNacylation of many proteins detected in 
retinal PC, including the P53 protein (30). O-GlcNacylated P53 is 
protected from phosphorylation and subsequent ubiquitination and 
proteasome degradation. The increased P53 level is consistent with 
enhanced apoptosis noted in PC incubated under high glucose 
conditions (31). Thus, the metabolic activity of retinal PC is 
significantly impacted by high glucose levels resulting in increased 
oxidative stress and inflammatory changes (28), and their apoptosis 
which contributes to the demise of EC and the degeneration of retinal 
vasculature (32).

Vascular damage including EC and PC loss could be repaired, at 
least in part, by circulating progenitor cells in the blood. In diabetes, 
the number of vascular progenitor cells becomes limited (33). 
Consequently, it is reasonable to target vascular dysfunction in DM 
complications. Extracellular stimuli activate various signaling 
pathways through specific receptors including integrins. Integrins 
stimulate p38- mitogen-activated protein kinase (MAPK) and Jun 
N-terminal kinase (JNK) activity, resulting in vascular cell death. The 
endoplasmic reticulum of EC could suppress the activation of 
VE-cadherin in response to DM chronic stress, resulting in caspase 
activation and apoptosis (34).

Two feasible options exist for vascular repair. First, mobilization 
of vascular progenitor cells from the bone marrow for vascular repair, 
and second, inhibition of the cell death pathways to preserve vascular 
integrity (35). The activation of the stromal cell-derived factor (SDF)-
1α/ C-X-C chemokine receptor type 4 (CXCR4) axis appears to 
mobilize endothelial progenitor cells into the peripheral circulation. 
Direct targeting of cell death pathways is challenging because normal 
cells require these pathways to eliminate premalignant, damaged, and 
infected cells. However, activation of the SDF-1/CXCR4 axis does not 
carry this limitation. Vascular EC repair is currently treatable with 
available diabetes medications. In diabetic patients, Sitagliptin, a 
dipeptidyl peptidase (DPP)-4 inhibitor, and liraglutide, a GLP-1 
receptor agonist, enhance the level of endothelial progenitor cells (36). 
Similarly, bone marrow-derived, or resident tissue mesenchymal stem 
cells could replenish the lost PC and stabilize the damaged blood 
vessels (37–39). Although these strategies have shown limited success, 
their validity and clinical translation will benefit from additional 
preclinical and clinical studies (40). Here we  will further discuss 
shared intracellular signaling pathways with impact on the functional 
integrity of various organs affected by diabetes, whose targeting may 
have therapeutic benefits in multiple organs.
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3.2 Bradykinin-1 receptor signaling 
pathway

The bradykinin-1 receptor is a component of the bradykinin/
bradykinin-1 receptor pathway, which regulates vascular permeability 
and cytokine release (41). The Bradykinin-1 receptor plays a crucial 
role in various diseases. Occasionally, its inhibition is protective. In 
other instances, however, inhibiting this receptor can be deleterious. 
These findings demonstrate that the behavior and downstream effect 
of this receptor are context- and time-dependent (42, 43). The 
Bradykinin-1 receptor is strongly associated with tissue damage and 
inflammation. Based on in vivo investigations of DM, the expression 
of this receptor increases in multiple retinal layers and cell types just 
2 weeks after the induction of diabetes in in vivo models (44, 45), 
whereas it is undetectable in normal retinal cells under physiological 
conditions (45).

In the retina, the Bradykinin-1 receptor can regulate vascular 
dilation and permeability. In the early stages of DM, blocking the 
bradykinin-1 receptor is associated with decreased leukostasis, 
hypoxia-inducible factor (HIF)-1α expression, vascular endothelial 
growth factor (VEGF) expression, and vascular permeability (45, 46). 
However, a bradykinin-1 receptor antagonist failed to improve clinical 
outcomes of diabetic macular edema (DME) and diabetic retinopathy 
in a human study (47). In another study using an in vivo model of DM, 
the bradykinin-1 receptor was protective 4 days after the onset of DM, 
but not after 6 weeks (43). A separate in  vivo study revealed that 
pancreatic kallikrein, which can stimulate the bradykinin-1 receptor, 
is protective when administered immediately after the onset of DM 
(48, 49). Taken together, the clinical outcomes and protection afforded 
by bradykinin-1 receptor antagonism in the retina appear to 
be dependent on the duration of diabetes (43, 45).

Plasma levels of bradykinin rise in diabetics without clinical signs 
of diabetic nephropathy. Increased bradykinin appears to be  a 
protective response for glomerular function (50). In the absence of the 
bradykinin-1 receptor, diabetic nephropathy is exacerbated (51). In 
subsequent stages, opposite results were observed. An antagonist of 
the bradykinin-1 receptor was administered one and 4 weeks after the 
induction of DM in an in  vivo study. This pharmacological 
intervention decreased abnormally elevated vascular permeability in 
the renal medulla while normalizing microvascular permeability in 
the renal cortex (52). These are the early indicators of diabetic 
nephropathy. The impact of the bradykinin axis in the late stages of 
diabetic nephropathy will benefit from additional research, as is the 
case with diabetic retinopathy.

Bradykinin is a well-known mediator involved in inflammation 
and pain. In neurons, the bradykinin-1 receptor participates in the 
sensitization of sensory neurons (53). Neurons express bradykinin-1 
receptors at extremely low levels (53, 54). This receptor is involved in 
intracellular calcium mobilization in neurons (54). The absence of this 
receptor at the onset of DM is linked to a worsening of diabetic 
neuropathy (51). However, further research has demonstrated that 
antagonizing the bradykinin-1 receptor 4 weeks after the onset of DM 
can reduce oxidative stress and restore neuronal function (55). In 
diabetic neuropathy, the bradykinin-1 receptor is also involved in 
hyperalgesia. Inhibition of this receptor reduces hyperalgesia (56). 
These results suggest that it is crucial to administer bradykinin-1 
receptor antagonist at the right time. Improper inhibition of this 
receptor can have harmful or ineffective consequences.

The outcome of Bradykinin changes in the heart is similar to 
that of the retina, kidney, and peripheral neurons. One study 
demonstrated that increased activity of the kinin-kallikrein 
system, which includes the bradykinin-1 receptor, is protective for 
the heart in early-stage of DM (48). The suppression of 
bradykinin-1 receptor activity, on the other hand, reduces the 
increased vascular permeability in the heart during the later stages 
of DM (52). Few studies have examined the role of the 
bradykinin-1 receptor in diabetic cardiomyopathy. Thus, 
additional research is required to further clarify the role of the 
bradykinin axis in the development and progression of 
diabetic cardiomyopathy.

3.3 Wnt/β-catenin signaling pathway

Wnts are extracellular glycoproteins that mediate intracellular 
communication via their receptors. Wnt-stimulated intracellular 
messages regulate cell proliferation, survival, behavior, and fate. The 
Wnt/β-catenin pathway, also known as the canonical Wnt pathway, is 
the most studied, especially in the context of diabetic retinopathy (57). 
The presence of Wnts is required to prevent the degradation of 
β-catenin within the cell. Wnts cause accumulation and translocation 
of β-catenin into the nucleus to affect transcription of target genes 
involved in homeostasis, repair, and metabolism in many tissues (58, 
59). Dysregulation of Wnt/β-catenin signaling is associated with 
numerous pathologies (58), including DM and its complications (60). 
Thus, delineating the roles of the Wnt/β-catenin pathways in these 
pathologies is essential for their diagnosis and treatment, and 
improved patient care.

The β-catenin expression and translocation to the nucleus are 
increased in diabetic retinopathy. Suppression of Wnt signaling 
decreases inflammation, blood-retinal barrier (BRB) dysfunction, and 
angiogenesis, which drives the development and progression of 
diabetic retinopathy (61). Oxidative stress is one of the primary 
stimuli for increased Wnt/β-catenin activity and inflammation (62). 
A monoclonal antibody targeting the Wnt receptor was tested in a 
preclinical investigation of diabetic retinopathy and demonstrated 
decreased VEGF levels and reduced expression of the adhesion 
molecules that mediate leukostasis and inflammation (63). Other 
strategies to mitigate Wnt/β-catenin signaling such as treatment with 
melatonin (64) and fenofibrate (65) also have shown promising results 
in halting the development and progression of diabetic retinopathy.

Wnt/β-catenin signaling is required for podocyte survival, 
differentiation, and motility in the kidney (66). In diabetic 
nephropathy, however, an overactive Wnt/β-catenin pathway causes 
podocyte dysfunction (67) and apoptosis (68) in the nephrons. The 
precise mechanisms involved remain largely unresolved. However, an 
abnormally high level of Wnt signaling inhibits the expression of 
nephrin, which is essential for the control of kidney filtration (67). 
Moreover, Wnt/β-catenin is involved in cross-talk between various cell 
types in diabetic nephropathy, which ultimately leads to proteinuria 
and abnormal filtration characteristics in diabetic nephrons (69).

Wnt/β-catenin signaling is essential in the process of neuronal 
myelination (70). This pathway also plays a role in neuropathic pain, 
which can be  suppressed by pharmacological targeting (71). In 
diabetic peripheral neurons, the expression of Wnt/β-catenin signaling 
components increases (72). Furthermore, inhibiting the 
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Wnt/β-catenin pathway can prevent diabetic peripheral neuropathy 
in rats (73).

Wnt/β-catenin is also involved in cardiac development. The 
expression of various members of this pathway decreases during 
maturity. In adulthood, however, low Wnt/β-catenin signaling activity 
is required to maintain normal mitochondrial function and 
metabolism (74). Nevertheless, increased activity of Wnt/β-catenin 
signaling is associated with cardiovascular pathologic changes such as 
hypertrophy and remodeling, which are mitigated by inhibition of this 
pathway (75). In DM, inhibiting Wnt/β-catenin signaling can reduce 
cardiac fibrosis (76).

3.4 Rho-associated kinase signaling 
pathway

ROCK regulates actin cytoskeleton organization and influences 
cell morphology, motility, polarization, phagocytosis, and gene 
expression with significant physiological functions. Moreover, its 
abnormal activity is implicated in the pathogenesis of a variety of 
diseases, including malignant and nonmalignant diseases (77). 
ROCK is highly activated in diabetic retinopathy (78), diabetic 
nephropathy (79), diabetic neuropathy (80), and diabetic 
cardiomyopathy (81), and perhaps impacted by the Wnt/β-catenin 
signaling axis.

In diabetic retinopathy ROCK activation alters the distribution of 
claudin-5  in the inner blood-retinal barrier (BRB) of the retina, 
resulting in BRB impairment and inflammation. Ripasudil, a ROCK 
inhibitor, can prevent both BRB impairment and inflammation in the 
retina (78). Moreover, ROCK activation constricts vessels leading to 
hypoxia. In addition, ROCK activation also alters the cytoskeleton of 
retinal pigment epithelium cells, compromising the outer 
BRB. Intravitreal injections of fasudil, a ROCK inhibitor, reduces 
retinal pigment epithelium shape alterations and retinal hypoxia (82). 
We  have shown that fasudil alone (83) or in combination with 
bevacizumab (84) is effective in the treatment of DME in humans. 
Other ROCK inhibitors, such as AMA0428, are under investigation 
for the treatment of diabetic retinopathy (85). We also found that the 
ROCK inhibitor Y-27632 protects retinal PC from high glucose-
mediated cell death in culture (31). As a common antidiabetic 
treatment, glucagon-like peptide (GLP)-1 receptor agonists can also 
inhibit ROCK. In in vivo models of diabetes, GLP-1 receptor agonists 
preserved the integrity of BRB by inhibiting ROCK (86).

ROCK activation is associated with the rise of HIF-1α in diabetic 
nephropathy (79). HIF-1α causes renal fibrosis (87). The inhibition of 
ROCK by fasudil slows the evolution of diabetic nephropathy (79) and 
improves renal hemodynamics in the in vivo models of DM (88). In 
addition, fasudil modulates the immune system to suppress 
inflammation by altering the polarization of macrophages, thereby 
decreasing renal injury in DM (89).

ROCK activation inhibits axonal regeneration (90) and is one of 
the driving forces behind diabetic neuropathy (91). A meta-analysis 
reported the improvement of therapeutic regimen efficacy in 
reducing neuropathic symptoms by the addition of fasudil to other 
diabetic neuropathy treatments (92). ROCK activation also results in 
vascular EC dysfunction, contraction of vascular smooth muscle 
cells, and myocardial fibrosis (81, 93). It is well-recognized that the 
heart of a diabetic patient has elevated aberrant ROCK activity (81). 

A study on the heart of diabetic rats has revealed that fasudil 
improves calcium homeostasis and remodeling of cytoskeletal 
structure (94).

3.5 Notch signaling pathway

Notch receptors in vasculature are mainly expressed in arterial 
blood vessels. Delta-like 4 (Dll4) is the ligand of Notch receptors and 
promotes arterial blood vessel branching via EC sprouting (95). Notch 
receptors are not only present in vessels but are also expressed on the 
surface of macrophages and other immune cells. Overactivation of 
Notch receptors result in inflammation contributing to numerous 
pathologies including DM complications (96). The expression of Dll4 
and Notch receptors, as key players in the pathogenesis of diabetic 
retinopathy, is increased in the diabetic retina leading to 
angiogenesis (97).

Increased Notch receptor activity correlates with macrophage 
activity. When macrophage activity increases, the release of 
inflammatory mediators is increased. This results in an inflammatory 
environment within the diabetic kidney (96). Hyperglycemia increases 
Notch signaling activity. Notch signaling increases VEGF expression. 
These alterations ultimately lead to podocyte loss in the kidney (98). 
In addition, excessive Notch signaling induces caspase-dependent 
apoptosis of podocytes via the mitochondrial pathway (99).

Another complication of DM associated with Notch signaling is 
diabetic neuropathy. Notch signaling pathways may play a role in the 
induction and maintenance of neuropathic pain through three 
mechanisms. These include activation of glial cells, enhancement of 
synaptic transmission, and alteration of ion channels (100). Inhibition 
of Notch signaling can reduce neurodegeneration and halt the 
progression of diabetic neuropathy in a rat model of peripheral 
neuropathy (94, 101, 102).

The information regarding Notch signaling in diabetic 
cardiomyopathy is controversial. According to a study on diabetes 
(58), increased Notch signaling induces a fibrotic response in the 
heart, and Notch inhibition can diminish diabetic cardiac remodeling 
(103). However, in another study, increased Notch activation 
decreased apoptosis in the diabetic heart (104). Thus, more studies are 
needed to resolve these discrepancies.

3.6 Complement 3a signaling pathway

Complement activation is one of the characteristics shared among 
DM complications and appears to be  one of the mechanisms 
underlying angiogenesis and vascular dysfunction (105). As a 
component of the complement system, C3a plays a crucial role in 
pathophysiology of the DM complications. C3a, depending on the 
circumstances, is a pro- or anti-inflammatory mediator and is 
associated with an increased risk of diabetic retinopathy, nephropathy, 
neuropathy (106), and cardiomyopathy (107).

C3a levels are elevated in the vitreous samples from patients with 
proliferative vitro retinopathy (PVR) (108, 109). However, the sources 
and effects of C3a remain largely unresolved. It appears that retinal PC 
secrete autoantibodies that could activate the complement system. 
One of these complements is C3a, which causes PC loss (110). In 
diabetic retinopathy, the therapeutic effect of C3a inhibition has not 
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been evaluated thus far. The inhibition of C3, however, reduces 
neurodegeneration in age-related macular degeneration (111).

In DM, C3a induces inflammation and an adaptive immune 
response that damages the kidney. As a key component in the 
pathophysiology of diabetic nephropathy, C3a also increases cytokine 
secretion from macrophages enhancing inflammation. In diabetes, the 
absence of the C3a receptor reduces inflammation and renal damage 
(112). In diabetic nephropathy, C3a also participates in mitochondrial 
fragmentation and reduced antioxidant capacity of podocytes. 
Blocking the C3a receptor reduces oxidative stress and podocyte 
damage (113). Thus, targeting C3a or its receptor seems a logical 
treatment option for diabetic nephropathy.

Extensive research on the C3a’s role in the pathophysiology of 
diabetic neuropathy is lacking. However, it is known that increased 
C3a levels are associated with a higher risk of diabetic neuropathy 
(106). Activation of other components of the complement system 
impairs the blood supply to endoneurium, the connective tissue 
surrounding myelinated nerve fiber layers. Consequently, it is possible 
that C3a compromises the blood supply to protective tissues 
surrounding peripheral nerves (114). However, the direct effects of 
C3a in diabetic neuropathy are an intriguing subject for future research.

C3 is primarily generated in the liver and adipose tissues. C3 
activation results in the production of C3a. Thus, obesity as a risk 
factor for DM and cardiovascular diseases (76) partially explains the 
elevated C3a levels in these conditions. Although increased C3a has 
not been conclusively linked to diabetes-induced cardiomyopathy, its 
level increases independently in diabetes and cardiovascular disorders. 
Further research is needed to clarify the contribution of C3a to 
diabetic cardiomyopathy.

3.7 Leucine-rich α2-glycoprotein 1 and 
transforming growth factor β signaling 
pathways

Numerous tissues, including the kidney, heart, and nervous 
system produce LRG1. This inflammatory biomarker is involved in 
numerous physiological processes including synaptogenesis, 
neurotransmitter release, cell–cell adhesion, and protein–protein 
interactions. Additional investigations have uncovered the 
pathologic function of LRG1 in a wide variety of diseases. TGF-β 
primarily drives the pathological function of LRG1 (77, 78). LRG1 
and TGF-β can induce neovascularization and play a role in 
respiratory diseases, cancer, and endocrine diseases such as DM and 
its complications (115, 116).

Under pathological conditions such as DM, LRG1 is recognized 
as a promoter of neovascularization and vascular dysfunction (117). 
LRG1 induces angiogenesis via TGF-β during the development and 
progression of diabetic retinopathy (118). Its blood and vitreous levels 
increase with the progression of diabetic retinopathy to the 
proliferative stage (119). The role of TGF-β in angiogenesis associated 
with the progression of diabetic retinopathy is well established. Thus, 
targeting TGF-β or LRG1 may have a positive impact in halting the 
development and progression of diabetic retinopathy.

In the kidney, LRG1 is primarily localized in renal glomeruli and 
its level rises in diabetic nephropathy. The elevated levels of 
LRG1  in diabetic nephropathy are associated with glomerular 

neovascularization and podocyte loss (120). An intriguing aspect of 
LRG1 in diabetic nephropathy is that LRG1 expression rises before 
VEGF levels, and targeting LRG1 may be a logical step in preventing 
diabetic nephropathy before significant kidney damage occurs (121). 
Metformin inhibits the angiogenesis induced by changes in LRG1 and 
TGF-β levels in diabetic kidney (122).

Research on LRG1  in diabetic neuropathy remains very 
limited. However, studies conducted in preclinical models of DM 
demonstrated that LRG1 could serve as a promising target for the 
treatment of diabetic erectile dysfunction, a complication 
associated with neuropathy and microangiopathy (85). Further 
research is needed to unravel the consequences of changes in 
LRG1 during the development and progression of 
diabetic neuropathy.

The higher level of LRG1 in blood is associated with an increased 
risk of heart failure in diabetic patients (123). In addition, changes in 
the LRG1 and TGF-β levels contribute to cardiac remodeling (124). 
Increased levels of LRG1 are shown to contribute to endothelial cell 
dysfunction and arterial rigidity in diabetic patients (125). Thus, 
targeting LRG1 and TGF-β may also have beneficial effects in the 
treatment of diabetic cardiomyopathy.

3.8 Doublecortin-like kinase 1 signaling 
pathway

DCLK1 is a member of the microtubule-related protein family and 
an overlooked pro-oncogenic gene. DCLK1 can regulate its kinase 
activity to avoid unnecessary phosphorylation in its microtubule-
binding domain (126). This is crucial for the role of DCLK1  in 
promoting neuronal survival following injury (127) and regulating 
dendritic growth and synaptic maturation (128). DCLK1 also triggers 
NF-κB activation, leading to the initiation of inflammatory responses in 
cardiac cells (128, 129). The majority of our understanding regarding 
DCLK1 function is confined to its role in cancer. However, there are 
some studies investigating the role of DCLK1 expression in 
DM complications.

A recent in vivo study revealed that the expression of DCLK1 
significantly rises in the cardiomyocytes of diabetic hearts. DCLK1 
plays a crucial role in controlling the inflammatory responses 
associated with diabetic cardiomyopathy. Blocking DCLK1 action 
resulted in decreased cardiac fibrosis and hypertrophy, as well as a 
reduction in NF-κB activity (129). Inflammation-induced by DCLK1 
also plays a role in atherosclerosis (130). Additionally, a separate 
study revealed that DCLK1 plays a role in obesity-induced 
cardiomyopathy, indicating that its impact extends beyond 
DM (131).

DCLK1 expression increases in individuals with diabetic 
nephropathy (132). The specific role DCLK1 plays in diabetic 
nephropathy and neuropathy has not been thoroughly investigated. 
Cancer research has shown that DCLK1 plays a role in regulating 
Notch signaling activity (133) which is involved in DM 
complications such as retinopathy, nephropathy, neuropathy, and 
cardiomyopathy (96, 103). Further research on DCLK1’s roles in 
the development and progression of diabetes should provide 
valuable insight into a more targeted management of 
DM complications.
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3.9 Eukaryotic initiation factor 4E signaling 
pathway

EIF4E is a crucial protein involved in mRNA cap-binding, playing 
an essential part in mRNA-ribosome interactions and translation in 
eukaryotic cells. EIF4E plays a crucial role in facilitating the transfer 
of mRNA to the ribosome and is essential for the initiation of 
translation. When it comes to DM, studies have demonstrated the 
crucial role of EIF4E in insulin secretion and maintaining proper 
glucose levels (134, 135). In addition, increased levels of EIF4E are 
linked to a reduced risk of DM (136). The interaction of EIF4E with 
other molecules, such as 4E-BP1, plays a crucial role in development 
of the DM complications (137).

In diabetic retinopathy, there is a correlation between elevated 
4E-BP1 binding to EIF4E and upregulation of VEGF expression (137, 
138). Additionally, this binding is linked to oxidative stress and 
impaired mitochondrial function (139). Currently, there is no 
research available focusing on EIF4E in diabetic retinopathy. 
However, this topic has been studied in the context of diabetic 
nephropathy. Dephosphorylation of EIF4E is proposed as a potential 
mediator of fibrosis in diabetic nephropathy (140). Pirfenidone 
dephosphorylates EIF4E, protecting the kidneys in DM (141). 
However, in the heart of diabetic patients, the activity of EIF4E 
decreases resulting in a limitation of protein synthesis that ultimately 
contributes to diabetic cardiomyopathy. There are various methods to 
focus on EIF4E activity that have not been thoroughly examined in 
relation to DM complications. Further research could provide 
valuable insight into the practical aspects of this molecule and its gene 
expression (142).

3.10 MFF (mitochondrial fission factor) 
signaling pathway

The mitochondrial dynamic consists of two main components: 
fission and fusion. Mitochondrial fission involves the formation of a 
ring by DRP1 around the mitochondria, resulting in its division into 
two daughter mitochondria. Receptors are required for DRP1 to 
attach to the outer membrane of mitochondria. MFF is one of these 
receptors (143), and its expression increases in the diabetic retina 
(144). A study found that melatonin has the ability to reduce MFF 
expression in the diabetic retina. This reduction helps to maintain the 
integrity of the BRB and with a positive impact on mitochondrial 
function (145).

There is an ongoing debate surrounding our understanding of the 
MFF’s role in diabetic nephropathy. Some studies have indicated that 
MFF plays a role in mitochondrial fission, oxidative stress, and the 
release of proapoptotic molecules from mitochondria in diabetic 
nephropathy (146, 147). On the other hand, a different study showed 
that MFF protects against injury to podocytes caused by 
hyperglycemia (148).

The lumbar dorsal root ganglion of diabetic mice similarly 
exhibits increased MFF expression (149). However, there is a lack of 
research on potentially targeting MFF in diabetic neuropathy. MFF is 
also implicated in the development of atherosclerosis. Metformin 
decreases the development of atherosclerosis in individuals with DM 
by preventing the interaction between DRP1 and MFF (150). In 

contrast, MFF expression decreases in the heart of individuals with 
DM. Empagliflozin increases MFF expression in the heart (151). 
Further research is necessary to investigate the impact of MFF on DM 
complications and the development of innovative approaches to 
regulate MFF expression.

3.11 Growth-associated protein 43 
signaling pathway

GAP43, a gene specific to neural tissues, is implicated in neural 
plasticity, regeneration, and development in the peripheral and central 
nervous systems (152). GAP43 serves as an indicator of axon health 
and regeneration. GAP43 levels decrease in the diabetic retina. A 
recent human study revealed a significant link between genetic 
variations in GAP43 and the development of diabetic retinopathy and 
nephropathy (153). Levetiracetam treatment has shown promising 
results in boosting GAP43 expression in the diabetic retina (154).

Non-diabetic animal models show that the absence of GAP43 is 
linked to cardiac hypertrophy and remodeling (155). In the context of 
a diabetic heart, there is a noticeable decrease in the expression of 
GAP43 in both myocardium and ganglion cells that innervate the 
heart (156). GAP43 increases in cardiac nerves (157) but in the 
diabetic heart, the elevated GAP43 levels may only be transient (158). 
Perhaps during the early stages of diabetes, an increase in GAP43 
expression acts as a protective response to the adverse effects of 
diabetes on neurons (159). However, this response may change as DM 
persists. There is a decrease in GAP43 expression in the later stages of 
DM, which ultimately results in neurodegeneration. Prior to neuron 
loss in diabetic patients, decreased GAP43 levels are detected in 
diabetic neuropathy (160). Further research is required to investigate 
the impact of GAP43 on the development of DM complications and 
how it varies during various stages of DM.

4 Clinical and translational aspects of 
shared signaling pathways

4.1 Treatment strategies

Despite many efforts toward delineating the underlying 
mechanisms contributing to various complications of diabetes in 
different organs individually existing treatments do not reverse or 
prevent the progression of these complications. However, high 
glucose-mediated metabolic abnormalities appear to be key, and any 
efforts toward normalizing glucose levels will be  beneficial 
systematically (161–163). Recent advancements in various genomic, 
transcriptomic, and proteomic strategies and their advancements to 
single-cell levels are beginning to provide significant details regarding 
a systems view of the changes associated with diabetes in different 
organs and their cellular constituents. The ability to examine multiple 
organs simultaneously for changes brought on by diabetes will allow 
a more global approach to the systemic ill effect of diabetes (164), as 
well as targeting shared and upstream pathways for effective treatment 
intentions. The investigation of non-coding RNAs including 
microRNAs and lncRNAs and their systemic circulation through 
small extracellular vesicles/exosomes are providing additional clues 
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towards the identification of regulatory molecules targeted by diabetes 
that contribute to the pathogenesis of DM complications (165–171). 
We  next discuss some areas of consideration relevant to the 
development of effective therapies for DM complications (Figure 3).

4.1.1 Designing vaccines for DM complications
Subsequent to the global success in eliminating fatal infectious 

diseases, researchers have proposed the development of vaccines for 
non-infectious conditions, including complications of diabetes. This 
novel concept proposes that vaccines may be  implemented in 
replacement of passive treatments with monoclonal antibodies. The 
human body is able to produce antibodies against a molecule that is 
overproduced in pathologic conditions as a result of vaccination (172). 
The potential to develop a vaccine for all DM complications may 
be  facilitated by the existence of shared pathways. It has been 
demonstrated in a recent in vivo study that early vaccination against 
prorenin can prevent the development of early retinal lesions in 
diabetic models (173). In hypertensive patients and animal models of 
hypertension, vaccination against the renin-angiotensin system has 
been demonstrated to decrease systolic and diastolic blood pressure 
(174, 175). In an in vivo study of diabetic nephropathy, the progression 
of nephropathy and renal fibrosis was mitigated by vaccination against 
the renin-angiotensin system (176). Other targets that are currently 
being investigated to treat or prevent complications of diabetes include 
vaccination against Il-1β (177), Monocyte chemoattractant protein 1 
(178), and AGEs (179).

Following the promising results of recent anti-diabetic 
medications like DPP-4 inhibitors and GLP-1 receptor agonists, 
researchers are now exploring the potential of DPP-4 and GLP-1 in 
developing novel vaccines (180). The impact of vaccination on 
complications related to DM has not been thoroughly examined. 
Nevertheless, studies have demonstrated that vaccination against 
DPP-4 has successfully postponed the development of DM in animal 
models (181). DPP-4 inhibitors have not shown the same level of 
cardiovascular and renal protection as GLP-1 receptor agonists and 
SGLT-2 inhibitors, which are considered more effective anti-diabetic 
drugs. As a result, recent studies exploring alternative pathways like 
SGLT-2 inhibition have shown even more encouraging findings (182). 
When it comes to addressing multiple complications simultaneously, 
there has not been any research conducted on the effectiveness of 
vaccinating against all diabetic complications. Further investigation 
into vaccination for common pathways in diabetic complications 

could potentially lead to the development of both therapeutic and 
preventive vaccines for managing these complications.

4.1.2 Consideration of drug delivery, targeted 
therapy, optimal treatment time, and side effects

The proper distribution of medications is an issue of utmost 
significance in the treatment of DM complications, which should 
benefit from the mechanistic studies outlined above. For instance, a 
drug may reach the kidney, heart, and peripheral neurons through the 
body’s normal circulation. Systemic BRB, which separates the retina 
from the systemic circulation poses a challenge for the drug 
administration to the retina. Furthermore, the damaged circulation in 
the advanced phases of DM may contribute to the difficulties in drug 
delivery. Thus, optimizing drug delivery methods is necessary for 
effective treatment strategies (183).

Targeted therapy is an additional challenge in the treatment of 
DM complications. For instance, fasudil is one of the medications that 
inhibit several kinases including ROCK. Its systemic complications 
associated with its off-target effects could limit its therapeutic utility. 
In addition, some of the noted changes may have tissue and cell type-
specific consequences. Thus, a clear understanding of the targeted 
pathways in various organs, tissues, and cellular constituents requires 
careful consideration in order to overcome the treatment’s systemic 
adverse effects (184).

The effectiveness and safety of interventions also depend on the 
DM stage. As previously mentioned, bradykinin-1 receptor 
antagonists can be ineffective, detrimental, or protective based on the 
stage of DM (45, 47). Thus, the design of a schedule that determines 
the optimum time for prescribing medication is needed to target any 
of the DM complications and will benefit from the development of 
early detection modalities.

Many of the therapeutic targets described in this review have 
normal physiological functions and their disruption could have 
adverse impacts. For example, LRG1 is involved in the formation and 
growth of synapses. However, its aberrant activity is linked to 
numerous diseases, including DM and its complications (185). Our 
grasp of the adverse effects associated with systemic administration of 
many treatments, which target pathways implicated in both 
physiological and pathological processes, is very limited. The majority 
of studies have concentrated on individual organs, overlooking their 
interconnections with one another. Hence, a more comprehensive and 
systemic evaluation is necessary after administering these types 
of treatments.

4.1.3 Newer class of anti-diabetic drugs
Emphasis is given to the efficacy of newer categories of anti-

diabetic drugs in managing DM complications. DPP-4 inhibitors such 
as sitagliptin and GLP-1 receptor agonists are capable of targeting 
some of the shared pathologies discussed. The efficacy of these 
treatments for DM complications is not simply limited to their ability 
to lower glucose levels. It is possible that these treatments have more 
therapeutic effects than the glucose-lowering properties, including 
anti-inflammatory and immune modulatory functions (186). In this 
regard, it is well established that these medications reduce the risk of 
diabetic renal and cardiovascular complications (187–189). Currently, 
the effects of semaglutide, a GLP-1 receptor agonist, on the progression 
of diabetic retinopathy is under investigation in the FOCUS trial 
(NCT03811561).

FIGURE 3

Therapeutic strategies for management of DM complications based 
on shared pathways.
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4.1.4 Targeting metabolic memory
The concept of metabolic memory arises from the observation 

of patients who receive early treatment for DM but still experience 
DM complications despite maintaining appropriate glucose 
control. It’s clear that the pathophysiology of DM complications 
extends beyond just hyperglycemia. It appears that DM triggers 
inflammation, oxidative stress, and alterations in mitochondrial 
function. These pathological pathways interact with each other, 
influencing DNA methylation and manipulating epigenetics. As a 
result, the negative impact of high blood sugar will persist even 
after managing glucose levels. Ongoing research is being conducted 
to address metabolic memory and its potential to prevent 
complications of DM. Researchers are making efforts to target 
metabolic memory due to its dynamic and reversible nature, 
allowing for adjustments. These interventions encompass a range 
of approaches, including behavioral interventions, natural 
products, and targeted drugs (190).

4.1.5 Targeting multiple pathways simultaneously
Extensive research has been dedicated to developing drugs that 

specifically target a single pathway involved in a disease. For example, 
over the past three decades, monoclonal antibodies have had a 
significant impact on the treatment of various diseases, including 
diabetic macular edema. Recent studies have shown that using newer 
monoclonal antibodies that target two molecules instead of just one 
could provide better outcomes. As anti-VEGF monoclonal antibodies, 
drugs like bevacizumab, ranibizumab, and aflibercept have made 
significant advancements in the treatment of diabetic macular edema 
(46). Recently, faricimab was introduced as a monoclonal antibody 
that simultaneously targets angiopoietin-2 and VEGF. A recent study 
found that faricimab, a treatment that targets multiple pathways, has 
shown better results compared to older treatments like ranibizumab 
and bevacizumab, which only target a single pathway (191). A method 
like this is crucial for complex diseases like DM and its associated 
complications. Prior studies on multi-target treatments have been 
stopped due to an extensive list of adverse effects associated with these 
therapies. Nevertheless, the promising outcomes of recent studies, 
such as the use of faricimab in treating diabetic retinopathy, provide a 
strong foundation for further research in this area (191, 192). By 
focusing on numerous shared pathways between DM complications, 
it may be  possible to develop more effective treatments or even 
preventative measures.

4.2 Future studies based on shared 
pathophysiology

As demonstrated in this paper, complications of DM exhibit 
various molecular pathways that might exacerbate one another. 
Therefore, future research can adopt a more comprehensive approach 
than before. As an example, the input data should not be restricted to 
a single complication. Additional data pertaining to various organs 
obtained from angiography, optical coherence tomography, 
sonography, echocardiography, laboratory data, and physical 
examinations can be combined and subjected to statistical analysis. 
Having such vast data allows us utilizing the full capabilities of 
artificial intelligence in DM research. Subsequently, we shall undergo 
further advancements in the fields of precise medicine, translational 

medicine, screening, and preventive. Furthermore, the incorporation 
of data in coming studies could potentially provide further insights 
into the unidentified pathophysiology of issues associated with DM 
(Figure 4).

In summary, over the past two decades, we  have gained 
significant knowledge regarding the role of various molecular and 
cellular changes that contribute to the development and progression 
of DM complications in various organs and their cellular 
constituents (Figure 5). We also know more about the intercellular 
signaling pathways impacted during diabetes, some of which are 
shared among the DM complications, and some are tissue specific. 
However, the lack of suitable strategies for the prevention and 
treatment of DM complications necessitates a more systems view of 
the biochemical and cellular pathways that are impacted by 
DM. This requires a better understanding of the cellular constituents 
impacted, and the hierarchy and interactions among the various 
pathways identified in different DM targets. The recent advances in 
single-cell and tissue spatial RNA sequencing techniques examining 
all the target organs simultaneously could provide a broader 
understanding of unique and common pathways contributing to the 
development and progression of DM complications, especially at the 
early stages of the disease. This knowledge will aid in the 
development of a more comprehensive treatment, which addresses 
the impact of DM on all organs simultaneously. Furthermore, 
careful consideration of treatment strategies is also vital and 
deserves further consideration for the development of more 
comprehensive therapeutics for DM.

5 Conclusion

Our understanding of the pathophysiology of DM complications 
has extensively developed as these complications have been and 
continue to be  separately studied. New studies using advanced 
multi-omics strategies, in the whole organ and its cellular 
constituents, will further aid in defining key early changes 
contributing to all DM complications. Existing research has already 
revealed a possible link among some of the DM complications that 
will be further advanced by systems-based designed studies. Thus, 
there are common pathways that could be identified and carefully 
targeted for the treatment of DM complications as a whole. By 
utilizing this approach, it is possible to improve the effectiveness of 
treatment and preventive measures for individuals with DM in the 
early stages. This area has been neglected for quite some time and 
will benefit from the development of new strategies for early 
non-invasive detection of DM complications and their more 
effective therapeutic targeting addressing the impact of a system as 
a whole.
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