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Background: The lysosome plays a vitally crucial role in tumor development 
and is a major participant in the cell death process, involving aberrant functional 
and structural changes. However, there are few studies on lysosome-associated 
genes (LAGs) in lung adenocarcinoma (LUAD).

Methods: Bulk RNA-seq of LUAD was downloaded from The Cancer Genome 
Atlas (TCGA) and Gene Expression Omnibus (GEO). The lysosome risk signature 
was constructed after univariate and least absolute shrinkage and selection 
operator (Lasso) cox regression analysis of the TCGA training set, and its capability 
was validated by additional validation sets from GEO. Single cell sequencing 
(scRNA) was obtained from GEO to analyze the differences of lysosome risk 
signature at the single-cell level and the differences in the function and pathway. 
In vitro experiments have validated the function of CTSH in LUAD.

Results: The risk signature contained seven key LAGs, and patients were 
categorized into high- and low-risk groups based on a specific calculation 
formula. The LAG risk signature, which accurately predicted the prognostic status 
of LUAD patients, was still regarded as an independent prognostic indicator in 
multifactorial cox regression analysis. Subsequently, the combination of the 
signature and key clinical information was used to construct a column-line 
diagram for clinical assessment, which had a high discriminatory power. Immune 
infiltration analysis from bulk RNA-seq and scRNA-seq indicated that the low-
risk group was immune-activated and had a better benefit in the prediction of 
immunotherapy. Finally, we validated its role in inhibiting tumor proliferation 
and metastasis in LUAD cells by knockdown of CTSH.

Conclusion: We defined a new biomarker that provided unique insights for 
individualized survival prediction and immunotherapy recommendations for 
LUAD patients.
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1 Introduction

Non-small cell lung cancer (NSCLC) is the most common-sense 
subtype of lung cancer worldwide, and its epidemiology and current 
state of treatment are evolving (1). According to the latest 
epidemiological data, NSCLC ranks first in the world in terms of 
morbidity and mortality (2), which may be partly attributed to factors 
such as smoking, environmental pollution, and population aging (3). 
In the meanwhile, advances in genomics and molecular biology have 
revealed the molecular diversity of NSCLC, providing more 
possibilities for individualized treatment (4).

The treatment of non-small cell lung cancer is becoming more and 
more diversified. In addition to traditional surgery, radiotherapy and 
chemotherapy, novel therapies such as targeted therapy and 
immunotherapy have been gradually applied in the clinic (5). Immune 
checkpoint inhibitors (e.g., PD-1/PD-L1 and CTLA-4 inhibitors) and 
targeted therapies (e.g., EGFR inhibitors, ALK inhibitors) have 
become an integrated part of NSCLC treatment (6). The 
individualization of treatment plans is also more dependent on the 
molecular characteristics of the lung cancer, as well as the patient’s 
genetic background and physical condition. While novel treatments 
offer hope, they are also accompanied by a series of challenges. These 
include drug resistance, the high cost of treatment, and individual 
differences in clinical practice (7). Hence, the treatment of NSCLC 
continues to require interdisciplinary collaboration and sustained 
research efforts to improve patient survival and quality of life.

The lysosome contains a large number of protein hydrolyzing 
enzymes and in the past were known to be one of the key digestive 
organelles for maintaining homeostasis in the organism (8). With the 
in-depth study of lysosomal function, researchers have found that it 
plays a key role in tumors, regulating the balance of apoptosis and 
autophagy, invasion, metastasis, drug resistance, and immune 
response, and affecting tumor biology and therapeutic response (9, 
10). Tumors can regulate their own metabolism by altering the 
number of lysosomes, the activity and expression of proteins, and their 
spatial distribution, which in turn promotes progression (11). 
Activation of the autophagy-lysosomal pathway is regarded as a 
cytoprotective response to anticancer drug therapy and enhances 
tumor resistance to radiotherapy, chemotherapy, and targeted therapy 
(12). Targeting lysosomes is instrumental in preventing or delaying 
tumor drug resistance. In addition, lysosomes are major regulators of 
apoptosis, autophagy, necrosis, and other modes of cell death (13). 
Targeting aberrantly activated lysosomes in tumors to promote tumor 
death is a tenable therapeutic strategy.

In this study, we constructed a prognostic model for LUAD using 
LAGs, which was well capable of predicting the prognostic status of 
LUAD patients and was validated in extra datasets. In addition, 
we found that CTSH, a key gene in lysosome, inhibited the progression 
of LUAD by in vitro experiments, which is significantly valuable for 
the development of targeted lysosomal therapies.

2 Materials and methods

2.1 Data acquisition and processing

RNA-seq for the training set was obtained from the TCGA 
database, and a total of 485 LUAD patients were collected after 
deleting duplicate sequencing data, incomplete survival information, 

and samples with a survival time of less than 30 days. The validation 
sets GSE72094 and GSE68465 were obtained from GEO, which 
contain 398 and 442 samples with complete clinical information, 
respectively. LAGs were downloaded from MSigDB (KEGG_
LYSOSOME) (14), containing a total of 121 genes (Table S1).

2.2 Identification of key 
lysosome-associated genes

Firstly, the differentially expressed genes between tumor and 
normal tissues in TCGA-LUAD were compared by limma difference 
analysis (p < 0.05, fold change ≥1) (15), and key LAGs were obtained 
by analyzing and comparing KEGG_LYSOSOME.

2.3 GO/KEGG enrichment analysis

Potential pathways involved in key LAGs were analyzed by GO/
KEGG enrichment, a procedure executed by the “clusterProfiler” 
package (16).

2.4 Construction of lysosome risk signature

Univariate cox regression analysis was applied to key LAGs, which 
were later included in lasso cox regression analysis to identify 
candidate genes and their coefficients. The coefficients of each gene 
were multiplied by its RNA expression, which was finally summed up 
to be the risk scores of each patient. The LUAD patients were divided 
into high- or low-risk groups according to the median of their risk 
scores and subjected to subsequent analysis to compare the survival 
differences between the two groups by KM curves and log-rank tests. 
Risk scores were calculated in the same way for two validation sets.

2.5 Establishment and validation of 
nomogram

In an attempt to improve application of the signature, the 
lysosome risk signature and clinical characteristics were integrated 
and a nomogram was constructed by “regplot” R package. ROC curves 
as well as calibration curves were used to evaluate the predictive 
performance of the nomogram.

2.6 Gene set enrichment analysis

For exploring the biological characteristics and pathways 
associated with various risk subgroups, we  downloaded “c5.
go.v7.5.1.symbols” and “c2.cp.kegg.v7.5.1.symbols” from the molecular 
signature database to be used for implementation in GSEA (17).

2.7 Tumor mutation burden analysis

Somatic mutation data of LUAD patients were retrieved from the 
TCGA database, and the TMB of each sample was obtained by 
quantifying the number of somatic non-synonymous mutations in the 
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characterized genomic regions. The somatic mutations in the high and 
low-risk groups were visualized using the “maftools” R package, and 
the relationship between the risk score and TMB was calculated 
through correlation analysis.

2.8 Immune infiltration analysis and 
prediction of immune therapy response

The ssGSEA algorithm was used to assess the relative activity 
levels of 28 immune cells in each sample (18). The ESTIMATE 
algorithm uses the expression profiles of immune-related genes as 
well as mesenchymal-related genes to infer the proportion of immune 
and mesenchymal cells in a tumor, which in turn yields an immune 
score and mesenchymal score for each sample (19). The Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm inferred the 
response of solid tumors to treatment with immune checkpoint 
inhibitors (ICIs) by analyzing the degree of immune cell infiltration 
as well as immune dysfunction (20), and calculated a TIDE score for 
each patient based on the expression profile of the LUAD, with higher 
TIDE scores implying a greater likelihood of ICIs treatment Resistance.

2.9 The analysis of scRNA-seq

Single cell dataset of LUAD was downloaded from previous 
research (21)，containing 10 LUAD and 10 adjacent normal lung 
tissues. Processing and analysis of scRNA-seq using “Seurat” (22). 
Firstly, genes expressed in less than 3 cells were removed and the 
number of genes expressed in each cell was limited to 500–5,000. 
Subsequently, cells with a mitochondrial gene proportion 
exceeding 15% were filtered, and the total number of molecules 
detected within the cells was less than 40,000. The annotation of 
cells was based on recognized typical biomarkers. The LAG risk 
signature was defined as 7 genes in the prognostic model (AP1S1, 
CTSG, CTSH, CTSV, CTSW, DNASE2B, and NAPSA). The 
‘AddModulusScore’ function was used to calculate the LAG risk 
signature for each cell.

2.10 Cellchat analysis of different LAG risk 
group

Based on the CellChat database of 1939 validated molecular 
interactions, we simulated the probability of cell–cell communication 
between different cell types, and inferred the communication between 
different cell subpopulations (23).

2.11 Cell culture

Two human lung cell lines (A549 and PC9) were purchased from 
the Xinyuan Biotech Co. Ltd. (Shanghai, China) and applied in the 
experiment. Short tandem repeat (STR), bacterial, mycoplasma and 
fungal contamination analysis were checked routinely. Cultured in 
RPMI-1640 medium (Gibco, Grand Island, NY, United  States) 
containing 10% foetal bovine serum (Sinsage, Beijing, China), the 

cells were cultured in a 5% CO2 humidified environment at 37°C. The 
siRNAs were from commercial synthesis and transfected into A549 
and PC9 cells with GP-transfect-Mate (Suzhou Gene Pharma, China). 
The sequences of the siRNAs were as follows: si1-CTSH: 
5′-CAAGTCATGGATGTCTAAGCACC-3′; si2-CTSH: 5′-CATTGT 
TGTGGGCGTTTATCTTC-3′; si-NC: 5′-UUCUCCGAACGUGUCA 
CGUTT-3′.

2.12 Western blotting

Protein lysates were prepared with RIPA lysis buffer supplemented 
with protease inhibitors and phosphatase inhibitors (purchased from 
Sigma-Aldrich). Samples were quantified by the Bradford method 
and equal amounts of proteins were separated on 10% Bis-Tris gels 
(Epizyme, Shanghai, China) using MOPS/MES buffer. The 
electrodepositionally separated proteins were then transferred onto 
a polyvinylidene difluoride (PVDF) membrane (Invitrogen, 
California, United  States). Membranes were blocked with 5% 
skimmed milk (dissolved in PBS containing 0.1% Tween 20) for 2 h 
at room temperature and then incubated in primary antibodies: 
mouse anti-TUBLIN (Proteintech, Chicago, USA) 1:3000 and rabbit 
anti-CTSH (Abcam, Shanghai, China) 1:1000 overnight at 4°C. The 
following day, the membranes were subjected to incubation with 
horseradish peroxidase (HRP)-conjugated secondary antibody 
diluted with PBST containing 5% skimmed milk at room temperature 
for 1 h. Protein signals were detected using an ECL 
chemiluminescence system (Tannen, Shanghai, China) and analyzed 
by Image J software (version 2.0, LOCI, University of Wisconsin, 
Madison, WI, United States).

2.13 Viability and proliferation testing

Assessment of cell viability was done using Cell Counting Kit-8 
(CCK-8) (DOJINDO). Cells were cultured in 96-well plates (1,000 
cells per well, 100ul complete medium). After affixing, 10ul CCK-8 
solution was added to each well and incubation for 2 h, absorbance 
was measured automatically at 450 nm using a microplate reader 
(Infinite F50, Tecan Group Ltd., Mannedorf, Switzerland). The assay 
was performed continuously for 6 days. The proliferation ability of the 
cells was detected according to the EDU datasheet (Epizyme, 
Shanghai, China). Proliferation rate of cells = EdU-positive cells/
Hoechst-stained cells × 100%.

2.14 Colony formation experiments

Cells were seeded in 6-well plates with 1,000 cells per well. Follow 
up with regular observations and liquid changes. When the number 
of cells in a single clone was observed to be greater than 50 under the 
microscope, the culture was stopped. The cells were washed by PBS 
for 3 times, fixed by 4% paraformaldehyde for 30 min, washing by 
PBS for 3 times, then 1 mL of crystal violet staining solution was 
added to each well, stained for 30 min. PBS washed the cells for 
several times, and then pictures were taken and counted by Image 
J analysis.
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2.15 Migration and invasion testing

A549 and PC9 cells were cultured in six-well plates and treated 
with siRNAs for 24 h. The Transwell chambers (BD Biosciences, NY, 
United States) were pretreated or untreated with Matrigel (Corning, 
NY, USA) to assess the invasive and migratory capacity of the cells. 
A total of 3*104 cells were seeded into the upper chamber in 200ul of 
serum-free medium. The lower chamber was supplemented with 
700ul of medium containing 10% FBS. The transwell chambers were 
placed in clean 24-well plates and incubated for 24 h. Migrating or 
invasive cells were fixed and stained, then photographed under 
a microscope.

2.16 Statistical analysis

Data analysis and image production were done using R software 
(version 4.1.3) and Graphpad Prism 9. Cell counting and assays were 
conducted using Image J software. Statistical tests included Wilcoxon 
and chi-square tests, log-rank test for survival analysis, and Spearman 
rank correlation for correlation analysis.

3 Results

3.1 Characterization of 
lysosome-associated genes

By comparing the differences between tumor and normal tissues 
in TCGA and taking intersections with lysosome-related genes, a total 
of 18 key LAGs were obtained (Figure  1A), and the volcano plot 
demonstrates the extent of their differences (Figure 1B). Seventeen of 
the 18 LAGs had more gene CNV gain than loss, and only AP1S2 had 
more CNV loss (Figure 1C). The distribution of these 18 genes on 
different chromosomes was shown in Figure  1D. In terms of 
expression, only four LAGs were more highly expressed in tumors 
(Figure 1E), whereas three of the histones that play key degradative 
roles in lysosomes (CTSG, CTSH, CTSS, and CTSW) were more 
highly expressed in normal lung tissues, and only CTSV was 
significantly upregulated in tumors. Analysis by GO and KEGG 
enrichment revealed that the functions of these genes were mainly 
focused on the structure of lysosomes, apoptosis, and autophagy 
(Figures 1F,G).

3.2 Construction and validation of LAG risk 
signature

Univariate cox regression analysis revealed that only 7 of the 
18 key LAGs were significantly associated with prognosis 
(Figure  2A), and these 7 genes were enrolled in the lasso cox 
regression (Figures  2B,C), and the formula for the LAG risk 
signature was obtained in the case of optimal lambda value: 
score = AP1S1*0.15664495-CTSG*0.01797917- CTSH*0.04960209 
+ CTSV*0.09786986-CTSW*0.06713002-DNASE2B*0.13696602- 
NAPSA*0.03425495. In the TCGA training set, the LAG risk 
signature was able to well identify patients with different prognostic 

status (Figure 2D), and patients in the high-risk group had a higher 
mortality rate (Figure 2E), and the expression levels of different 
genes in the two risk groups are shown in Figure  2F. In two 
validation cohorts, the distributions of KM survival analysis, 
mortality, and gene expression levels were almost identical to the 
training set, suggesting that our LAG risk signature had strong 
predictive performance (Figures  2G–L). In addition, we  also 
analyzed the relationship between different clinical information 
subgroups of patients and LAG risk signature. The low-risk group 
has more TNM stages with lower levels (Supplementary Figure S1). 
The KM curve indicated that LAG risk signature can accurately 
predict the prognosis of patients without being affected by age, 
gender, and TNM stage (Supplementary Figure S2).

3.3 Construction and validation of the 
nomogram

Both univariate and multivariate cox regression analyses 
confirmed that LAG risk signature was an independent prognostic 
risk factor (Figures  3A,B). To make a better clinical application 
scenario for LAG risk signature, we  integrated the signature and 
clinical characteristics and constructed a visualized nomogram 
prediction model (Figure 3C) 0.1-, 3-, 5-year area under the curve 
were 0.741, 0.742 and 0.716, respectively (Figure  3D). And the 
calibration curves also showed the consistency between the nomogram 
prediction results and the actual results (Figure 3E).

3.4 Potential functional pathways between 
different risk groups

GSEA-GO analysis showed that the high-risk group was mainly 
involved in the activation of cell cycle signaling, in response to DNA 
damage (Figure 4A), which suggested that the high-risk group was in 
a state of continuous cellular proliferation (24), and thus had a worse 
prognosis. In contrast, extensive activation of the immune status and 
modulation of the apoptosis was present in the low-risk group 
(Figure 4B), which apparently inhibited tumor progression and thus 
improved the prognosis of the patients. The results of GO-KEGG 
analysis similarly confirmed the above results (Figures 4C,D).

3.5 The high-risk group had higher TMB

Genetic mutations were one of the key factors influencing tumor 
prognosis (25), and we analyzed TMB in patients from different risk 
groups. In the high-risk group, the top  5 genes with the highest 
mutation rates were TP53, TTN, CSMD3, MUC16, and RYR2 
(Figure 5A), whereas in the low-risk group they were MUC16, TP53, 
TTN, KRAS, and CSMD3 (Figure 5B). The incidence of mutation in 
TP53, which regulates aberrant cell proliferation, between different 
risk groups also confirmed that the cell proliferation process was more 
active in the high-risk group. In terms of overall TMB, the high-risk 
group had a higher tumor mutation load (Figure 5C), and we found a 
significant positive correlation between risk score and TMB 
(Figure 5D).
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3.6 Analysis of the immune 
microenvironment and prediction of 
immunotherapy response

The results of GSEA suggested that the low-risk group was in a 
state of immune activation, and we hypothesized that the low-risk 
group had a richer immune cell infiltration. We first analyzed the 
extent of immune cell infiltration in the different subgroups. Not 
surprisingly, there were more abundant immune cells in the low-risk 
group (Figure 6A). The ESTIMATE algorithm also showed that the 
low-risk group had higher immune and mesenchymal scores, while 
the high-risk group had higher tumor purity (Figures 6B–E). We also 
analyzed the expression differences of some important immune 

related molecules between different groups, and it is evident that 
most molecules that promote immune response are highly expressed 
in the low-risk group (Supplementary Figure S3). The degree of 
immune cell infiltration largely determines the therapeutic effect of 
ICIs (26). We used the TIDE algorithm to simulate the prediction of 
the effect of immunotherapy received by LUAD patients, and the 
high-risk group had higher TIDE as well as exclusion score 
(Figure 6F), which implied that they were more likely to be resistant 
to immunotherapy when receiving ICIs treatment. In the prediction 
of response to immunotherapy, a significantly higher proportion of 
the low-risk group responded to immunotherapy than the high-risk 
group (Figure 6G). Similarly, more people in the high-risk group did 
not benefit from immunotherapy (Figure 6H).

FIGURE 1

Genomic characteristics of LAGs. (A) 18 differentially expressed LAGs were screened. (B) Volcano map showing the fold change of LAGs. (C) Gain and 
loss of copy number for 18 key genes. (D) Localization of key genes on chromosomes. (E) Differential expression of key LAGs in LUAD and normal lung 
tissue. (F) GO and KEGG enrichment analysis of key LAGs confirmed that these genes were related to the structure and function of lysosome. 
****p < 0.0001.
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3.7 Characteristics of LAG risk signature in 
tumor microenvironment

After data quality control, we obtained a total of 97,019 cells. Based 
on typical markers, we defined 7 subgroups, including T/NK, myeloid, 
epithelial, B/plasma, endothelial, mast, and fibroblast (Figures 7A,B). 
The distribution of all cells in different samples and tissue types was 
shown in the Supplementary Figure S4, and the umap plot indicated 

that batch effects have been well removed. Subsequently, we analyzed 
the expression of seven key genes in the LAG risk signature in the 
TME. AP1S1, CTSG, CTSV, and DNASE2B were scattered in the 
TME. CTSH was mainly distributed in epithelial cells and myeloid 
cells, CTSW was mainly distributed in T/NK cells, and NAPSA was 
mainly distributed in epithelial cells (Figures 7C–I). Subsequently, 
we calculated the LAG risk signatures of different cell subpopulations, 
with epithelial cells having the highest signature (Figure 7J).

FIGURE 2

Construction and validation of LAG risk signature. (A) Univariate cox regression survival analysis of 18 key LAGs. (B) The LASSO Cox regression model 
was utilized for parameter (lambda) adjustment through 10-fold cross-validation. (C) Identification of five key LAGs and their corresponding 
coefficients. (D) KM survival analysis in TCGA dataset. (E) The relationship between mortality rates and risk scores in the TCGA dataset. (F) The heatmap 
visualizes the expression patterns within the key LAGs in TCGA dataset. (G) KM survival analysis in GSE72094. (H) The relationship between mortality 
rates and risk scores in the GSE72094. (I) The heatmap visualizes the expression patterns within the key LAGs in GSE72094. (J) KM survival analysis in 
GSE68465. (K) The relationship between mortality rates and risk scores in the GSE68465. (L) The heatmap visualizes the expression patterns within the 
key LAGs in GSE68465.
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3.8 Cell communication analysis in 
different LAG risk groups

We used the median LAG signature score obtained from 
scRNA-seq of 10 LUAD patients to divide them into LAG high and 
LAG low groups. LAG_low had the lowest LAG risk signature, even 
lower than normal tissue (Figure 8A), while a lower LAG risk score 
meant better prognosis. Then we  used CellChat to compare the 
pathway differences between the LAG_high and LAG_low groups in 
tumor samples. Overall, compared to the LAG_ high group, the 
LAG_ low group had a richer intracellular communication network, 
including both quantity and strength (Figures 8B,C). In terms of 
specific pathways, the LAG_Low group had a richer activation of 
inflammatory pathways, such as CXCL, GAS, IL6, IL16, IFN-II and 
TNF (Figure 8D). Next, we focused on the ligand- receptor differences 
between epithelial cells and other cell types. It is evident that more 
ligand receptors were activated in the LAG_Low group, especially in 
myeloid cells, endothelial cells, and fibroblasts (Figure 8E). We also 
visualized some pathways between the LAG_high and LAG_low 
groups, and it was evident that LAG_low group has a richer 
inflammatory function and chemokine pathway 
(Supplementary Figure S5), further validating the potential 
mechanism of better prognosis in the LAG_low group.

3.9 CTSH inhibited proliferation and 
invasion of LUAD

Due to the fact that most of the genes composed of LAG 
signature belong to the cathepsin family, we focus more on the 

role of proteases. Normally, the cathepsin comes from lysosomes 
in cells and play an important role in tumors by regulating cell 
proliferation, autophagy, angiogenesis, invasion, and metastasis 
(27). Recent studies have found that tissue proteases can also 
regulate immune responses, especially in tumor-associated 
macrophages (28). In this study, only CTSH was widely expressed 
in tumors and myeloid cells, and it may play a more important 
role in the tumor microenvironment, we further validated the role 
of CTSH in vitro, and bioinformatics analysis showed that it is 
highly expressed in normal tissues and considered as an oncogene. 
CTSH was first knocked down in A549 and PC9 (Figure  9A), 
followed by CCK8 experiments, which showed that knocking 
down CTSH significantly enhanced cell proliferation in A549 and 
PC9 (Figure  9B), similarly, the results of colony formation 
experiment as well as EdU suggested that the proliferation of 
LUAD was significantly enhanced after knocking down CTSH 
(Figures  9C,D). In subsequent migration and invasion 
experiments, knocking down CTSH promoted the progression of 
lung adenocarcinoma (Figures 9E,F). These results confirm that 
CTSH plays an important role as a tumor suppressor gene in the 
development of LUAD.

4 Discussion

Lysosomes are the hub of cell survival and cell death, repairing 
or promoting the death of cells and their organelles in a timely 
manner in the event of abnormalities, such as injury and senescence, 
to maintain cellular homeostasis and inhibit tumor development 
(11). However, in cancer cells, where the demand for energy is greatly 

FIGURE 3

The nomogram was developed to predict the prognosis of LUAD. Univariate (A) and multivariate (B) Cox regression analysis suggests that risk score is 
an independent risk factor. (C) Constructing a nomogram for quantifying a patient’s likelihood of survival. (D) ROC curves were used to evaluate the 
performance of the nomogram. (E) Calibration curves were used to measure the agreement between predicted and true values. ***p < 0.001.
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increased due to their own proliferation, the process of autophagy 
carries out self-digestion through lysosomes, which breaks down 
unnecessary organelles, thus increasing the efficiency of nutrient 
utilization, and thus sustaining and promoting tumor progression 
(29). In addition, the lysosome contains a large number of tissue 
proteases, some of which are involved in the degradation of the 
extracellular matrix, a key step in the process of tumor metastasis 
(30). Given the remarkable contribution of lysosomes to the 

malignant phenotype of tumors, understanding the characterization 
of lysosomes in cancer progression was important for the 
development of therapeutic strategies that target aberrantly activated 
lysosomes (31, 32).

In this study, we constructed the lysosome risk signature using 
key LAGs, which has superior ability to predict LUAD prognosis and 
was validated in independent datasets. For increasing the possibility 
of clinical application, we combined TNM staging and constructed 

FIGURE 4

GSEA confirms that the high-risk group was closely related to tumor progression, while the low-risk group was related to immune activation status. 
GO enrichment in high-risk group (A) and low-risk group (B). KEGG enrichment in high-risk group (C) and low-risk group (D).

https://doi.org/10.3389/fmed.2024.1497312
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chang et al. 10.3389/fmed.2024.1497312

Frontiers in Medicine 09 frontiersin.org

a quantifiable nomogram. The results of GSEA indicated that the 
high-risk group was in a state of intense proliferation, and 
we  speculated that this phenotype was closely related to cellular 
senescence, which was an unavoidable process; however, in tumors 
this process is inhibited, and there is an increase in the expression of 
cell-cycle checkpoints and lysosomal genes (33), which resists 
cellular senescence from being cleared. In addition, deletion or 
mutation of proto-oncogenes or tumor suppressor gene can also 
cause abnormal changes in lysosomes. TP53 protein can affect the 
function and stability of lysosomes by regulating the expression of 
LAGs, influencing the intracellular environment, modulating 
autophagy processes and regulating the cellular life cycle. Mutations 
in TP53 may lead to aberrations in these regulatory mechanisms, 
which in turn affect the degradation and removal of intracellular 
waste products, thus contributing to tumor progression and 
therapeutic challenges (34). Our findings revealed that patients in 
the high-risk group had a disproportionately high rate of TP53 
mutations (64% vs. 33%), which clearly affected lysosomal function 
in tumors.

The LAG risk signature contains seven genes. AP1S1 encoded the 
shell of a lattice protein, and its down-regulation leads to the 
degradation of EGFR-containing lysosomes in NSCLC, affecting the 

intracellular transport of EGFR, which in turn decreases cell-surface 
levels of EGFR and affects the therapeutic efficacy of EGFR-TKI (35). 
CTSG, CTSH, CTSW, and CTSV are all cathepsin proteases in 
lysosomes, and they play different roles in different tumors. The 
exertion of pro-tumor or anti-tumor effects mainly depends on the 
differences in tissues and environments (27, 36). Zhu et  al. 
demonstrated that CTSV exerts a pro-metastatic effect in vitro and 
in vivo, which may be related to its inhibition of T cell activity (37). 
CTSW has been implicated in the process of killing T cells and NK 
cells, but its role in tumors is not well understood (38). It has been 
reported that CTSH plays a metastasis-promoting role in 
hepatocellular carcinoma (39), whereas its role in lung cancer is not 
clear. In our study, we found that it plays a cancer-suppressing role in 
LUAD, which may be related to the differences in tumor type and 
microenvironment. CTSG exerts anti-tumor effects in colorectal 
cancer by negatively regulating the Akt/mTOR/Bcl-2 signaling 
pathway, and its overexpression promotes apoptosis (40). We analyzed 
the in  vitro functional assay of CTSH and found that it exerts 
inhibitory effects on the proliferation, migration and invasion of 
LUAD cells, which suggested that it may be a potential lysosomal-
associated target for LUAD, and had certain significance for the 
development of lysosomal-associated targeted therapies.

FIGURE 5

The high-risk group LUAD has higher TMB. Genes with the top 20 mutation frequencies in high-risk group (A) and low-risk group (B). (C) Comparison 
of TMB in different risk groups. (D) Correlation analysis between risk score and TMB.
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Immunotherapy for cancer was an emerging and exciting 
therapeutic approach, and PD-1/PD-L1-based immune checkpoint 
inhibitors have demonstrated superior therapeutic efficacy in a 
variety of solid tumors (41). However, due to lack of 
immunogenicity, insufficient cytotoxic T-cell infiltration, and 

acquired resistance, the vast majority of patients do not respond to 
ICIs (42, 43). Our study analyzed the components of the immune 
microenvironment by multiple methods and found that patients in 
the low-risk group were in a state of immune activation with a 
higher degree of immune cell infiltration, and thus had better 

FIGURE 6

TME assessment and prediction of immunotherapy response. (A) Relative infiltration levels of 28 immune cells by ssGSEA. ESTIMATE algorithm for 
evaluating tumor microenvironment, including immune score (B), stromal score (C), ESTIMATE score (D), and tumor purity (E). (F) The difference of 
TIDE score. (G) Prediction of response to immunotherapy through TIDE algorithm. (H) No benefits rate to immunotherapy by TIDE algorithm. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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treatment response in the prediction of treatment response to ICIs 
(46.9% vs. 28.1%) (20).

There are some limitations of our study. First, RNA-seq was 
derived from public databases, and further prospective clinical 
trials are needed to obtain real-world data. Second, the potential 

link between lysosomal risk signature and the immune 
microenvironment as well as immunotherapeutic response needs 
further experimental exploration. Finally, further animal 
experiments are still needed to verify that CTSH exerts an 
oncogenic role in LUAD.

FIGURE 7

Analysis of tumor microenvironment based on scRNA-seq of LUAD. (A) Umap dimensionality reduction maps for 7 cell types. (B) Marker for identifying 
different cell subtypes. Expression of 7 key LAG signature genes at the single-cell level, including AP1S1 (C), CTSG (D), CTSG (E), CTSV (F), CTSW (G), 
DNASE2B (H), NAPSA (I). (J) Comparison of LAG risk scores for different cells.
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FIGURE 8

Differences in cellular communication between different risk groups based on scRNA-seq. (A) The differences in normal tissue, LAG_low, and LAG_
high group. (B) The number and strength of cell interactions between different cell types. (C) The number and strength of cell interactions in LAG_ low 
and LAG_ high group. (D) Differences of different pathways in LAG_ low and LAG_ high groups. (E) Differences and correlations of ligands and 
receptors in LAG_ low and LAG_ high groups.
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FIGURE 9

CTSH inhibited the progression LUAD in vitro experiments. (A) Western blotting demonstrated the knockdown efficiency of CTSH. (B) The CCK8 
proliferation experiment showed that inhibiting the expression of CTSH enhanced the proliferation of LUAD. (C) Plate cloning indicates significant 
strengthening of clone formation ability after knockdown. (D) EDU experiments showed a significant increase in the proportion of LUAD cells in 
proliferative state after CTSH knockdown. The migration (E) and invasion (F) ability of LUAD cells increased significantly after CTSH knockdown. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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5 Conclusion

In conclusion, we developed a lysosomal risk signature, which is a 
reliable predictor of prognosis in LUAD patients and evaluates the efficacy 
of treatment with ICIs in LUAD patients. In addition, CTSH inhibits the 
progression of LUAD and is expected to be  a new target for 
LUAD treatment.
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