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Background: Sepsis is a life-threatening disease associated with a high mortality 
rate, emphasizing the need for the exploration of novel models to predict the 
prognosis of this patient population. This study compared the performance of 
traditional logistic regression and machine learning models in predicting adult 
sepsis mortality.

Objective: To develop an optimum model for predicting the mortality of adult 
sepsis patients based on comparing traditional logistic regression and machine 
learning methodology.

Methods: Retrospective analysis was conducted on 606 adult sepsis inpatients 
at our medical center between January 2020 and December 2022, who were 
randomly divided into training and validation sets in a 7:3 ratio. Traditional 
logistic regression and machine learning methods were employed to assess 
the predictive ability of mortality in adult sepsis. Univariate analysis identified 
independent risk factors for the logistic regression model, while Least Absolute 
Shrinkage and Selection Operator (LASSO) regression facilitated variable 
shrinkage and selection for the machine learning model. Among various 
machine learning models, which included Bagged Tree, Boost Tree, Decision 
Tree, LightGBM, Naïve Bayes, Nearest Neighbors, Support Vector Machine 
(SVM), and Random Forest (RF), the one with the maximum area under the curve 
(AUC) was chosen for model construction. Model validation and comparison 
with the Sequential Organ Failure Assessment (SOFA) and the Acute Physiology 
and Chronic Health Evaluation (APACHE) scores were performed using receiver 
operating characteristic (ROC) curves, calibration curves, and decision curve 
analysis (DCA) curves in the validation set.

Results: Univariate analysis was employed to assess 17 variables, namely gender, 
history of coronary heart disease (CHD), systolic pressure, white blood cell (WBC), 
neutrophil count (NEUT), lymphocyte count (LYMP), lactic acid, neutrophil-to-
lymphocyte ratio (NLR), red blood cell distribution width (RDW), interleukin-6 
(IL-6), prothrombin time (PT), international normalized ratio (INR), fibrinogen 
(FBI), D-dimer, aspartate aminotransferase (AST), total bilirubin (Tbil), and lung 
infection. Significant differences (p < 0.05) between the survival and non-survival 
groups were observed for these variables. Utilizing stepwise regression with the 
“backward” method, independent risk factors, including systolic pressure, lactic 
acid, NLR, RDW, IL-6, PT, and Tbil, were identified. These factors were then 
incorporated into a logistic regression model, chosen based on the minimum 
Akaike Information Criterion (AIC) value (98.65). Machine learning techniques 
were also applied, and the RF model, demonstrating the maximum Area Under 
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the Curve (AUC) of 0.999, was selected. LASSO regression, employing the 
lambda.1SE criteria, identified systolic pressure, lactic acid, NEUT, RDW, IL6, INR, 
and Tbil as variables for constructing the RF model, validated through ten-fold 
cross-validation. For model validation and comparison with traditional logistic 
models, SOFA, and APACHE scoring.

Conclusion: Based on deep machine learning principles, the RF model 
demonstrates advantages over traditional logistic regression models in 
predicting adult sepsis prognosis. The RF model holds significant potential for 
clinical surveillance and interventions to enhance outcomes for sepsis patients.
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Introduction

Sepsis represents a critical condition marked by organ dysfunction 
resulting from an imbalanced host response to infection, leading to 
high mortality rates and substantial healthcare costs (1, 2). Despite the 
establishment of the initial consensus definitions (Sepsis-1) in 1991, 
the global incidence of sepsis continues to rise, making the true 
epidemiology of sepsis a subject of ongoing concern. Further 
exploration of high-risk factors associated with sepsis-related 
mortality is essential (3). In clinical settings, the evaluation of sepsis 
severity and the identification of risk factors for mortality often rely 
on scoring systems such as Sequential Organ Failure Assessment 
(SOFA), Quick Sequential Organ Failure Assessment (qSOFA), and 
Acute Physiology and Chronic Health Evaluation (APACHE) (4–6). 
However, these scoring systems involve numerous parameters, posing 
challenges for clinical practitioners. Consequently, there has been a 
growing interest in exploring the effectiveness of biomarkers and 
clinical prediction models in predicting the prognosis of sepsis 
patients (7–9).

Over the past few years, linear regression models have dominated 
the clinical landscape for predicting sepsis mortality (10, 11). However, 
their limitations, including the inability to handle non-linearity 
among variables, sensitivity to outlier values, and the need to meet the 
linear regression hypothesis, constrain their utility with non-linear 
and imbalanced datasets (12). Machine learning (ML) is a subfield of 
artificial intelligence (AI) that focuses on developing systems capable 
of learning from data or improving performance. Specifically, machine 
learning is a technique that enables computers to create models by 
training algorithms using datasets (13). Previous studies had indicated 
that ML models play a crucial role in predicting the prognosis of sepsis 
patients. ML models had demonstrated superior predictive accuracy 
compared to traditional statistical methods. By leveraging complex 
algorithms, these models can identify non-linear relationships and 
interactions between variables that may be overlooked by simpler 
models, leading to more precise predictions of sepsis mortality (14, 
15). On the other hand, the key strengths of ML models is their ability 
to handle high-dimensional data effectively. They can incorporate a 
vast array of clinical variables, which allows for a more comprehensive 
understanding of the patient’s condition and the factors contributing 
to mortality risk (16, 17). Consequently, these above benefits position 
ML as an essential tool in the prediction of sepsis mortality, aiding in 
the improvement of clinical decision-making and patient outcomes.

Based on the methodological review mentioned above, 
we employed both traditional generalized linear regression and ML 

models to assess their predictive capabilities in adult sepsis’s mortality 
during their hospitalization duration. Notably, we conducted internal 
validation for both models and compared their performance with 
SOFA and APACHE scores in terms of discrimination, calibration, 
and clinical practicality. This comprehensive analysis offers profound 
insights into mortality risk adjustment for observational adult sepsis 
datasets, contributing valuable information to the understanding of 
predictive models and their applicability in clinical settings. This study 
closely complied with TRIPOD guidelines (18) and the PROBAST risk 
of bias tool (19).

Methods

Source of clinical data

The clinical data for this cross-sectional study were obtained from 
the electronic medical records of Huadu District People’s Hospital of 
Guangzhou, Southern Medical University. The study focused on adult 
patients diagnosed with sepsis during hospitalization from January 
2020 to December 2022, adhering to the Sepsis-3 definition (20, 21). 
Exclusion criteria included patients under 18 years old, those with 
malignant tumors, individuals with immunosuppression, those who 
died or withdrew treatment within 24 h of admission, and cases where 
clinical data could not be extracted. Following these criteria, 606 cases 
of adult sepsis were included in the study. Due to it directly reflects the 
sepsis patient’s survival and is a key performance indicator during the 
hospitalization duration, we define the mortality as the outcome of 
this study.

Variables extraction

Variable extraction involved retrieving general information (gender, 
age, and body mass index), medical history [hypertension, diabetes, and 
coronary heart disease (CHD)], clinical signs (temperature, heart rate, 
systolic pressure, and infection site), laboratory examination results 
[white blood cell count (WBC), platelet count, neutrophil (NEUT) and 
lymphocyte (LYMP) counts, neutrophil-to-lymphocyte ratio (NLR), red 
cell distribution width (RDW), C-reactive protein, procalcitonin, lactic 
acid, prothrombin time (PT), international normalized ratio (INR), 
fibrinogen (FIB), D-dimer, creatinine, alanine transaminase (ALT), 
aspartate transaminase (AST), total bilirubin (Tbil), and interleukin-6 
(IL-6)], etiologic detection (Gram-positive bacteria, Gram-negative 
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bacteria, or fungal), and severity scores of sepsis (SOFA and APACHE) 
from the electronic medical record system. All data were extracted 
within the first 24 h of patient admission. For missing values, multiple 
imputation was performed using the “mice” package in R software.

Model construction of logistic regression

The study divided the 606 adult sepsis cases randomly into a 
training set (n = 435) and a validation set (n = 171) at a ratio of 7:3. 
Based on whether the patient died or not between 24 h after admission 
and discharge, participants were categorized into a survival group 
(421) and a non-survival group (185). For traditional logistic 
regression model construction, univariate analysis identified 
significant risk factors (p < 0.05), which were then included in binary 
logistic regression. The stepwise regression with the “backward” 
method was employed to achieve the optimal model with the least 
AIC value.

Machine learning model selection and 
construction

For ML model selection, eight integrated algorithms, including 
Bagged Tree, Boost Tree, Decision Tree, LightGBM, Naïve Bayes, Nearest 
Neighbors, Support SVM, and RF, were considered. In the “tidymodels” 
framework of R software, workflow sets were used to compare these 
models, perform resampling, and tune parameters. Because of its 
ability to provide a comprehensive measure of a model’s performance 
across all classification thresholds, we select AUC as an optimum 
index in order to offer more nuanced view of model performance. The 
ML model with the highest AUC value was chosen for model 
construction. In order to perform variable shrinkage and selection, 
which may avoid the overfitting of the ML model, we utilized LASSO 
regression with ten-fold cross-validation. The count of variables in the 
ultimate model was ascertained based on the specific location of 
lambda.1SE, a coefficient that signifies the ideal equilibrium between 
model intricacy and forecasting accuracy.

Models validation and comparison

Models were validated and compared using discrimination, 
calibration, clinical benefit, and generalization. Discrimination was 
assessed by calculating the AUC of the ROC, while calibration was 
evaluated using calibration curves and the Hosmer-Lemeshow test. 
Decision curve analysis (DCA) curves were employed to assess the 
clinical benefit of the models. To estimate generalization, logistic 
regression, and ML models were compared with SOFA and APACHE 
scores using discrimination, calibration, and DCA for both the 
training and validation sets. The research design flowchart is depicted 
in Figure 1.

Variables importance

During traditional logistic regression, the importance of 
variables is determined by assessing the absolute value of each 

regression coefficient from the covariate. A larger absolute value 
indicates a more significant and important predictor. Variable 
importance is a key characteristic of ML models. In ML models, if 
changing the value of a variable leads to false prediction results, it 
implies that the variable is sensitive to classification outcomes and 
holds greater importance. The calculation of variable importance in 
the ML model such as RF involves determining the importance of 
each single decision tree, and by considering the number of trees 
set in the RF, the average of these values yields the overall variable 
importance of the RF model (22, 23).

Ethics statement

Data extraction and collection for this study were approved by 
the Ethics Committee of Huadu District People’s Hospital of 
Guangzhou (Registration Number: 2023088). Due to the 
retrospective nature of the study, the Ethics Committee of Huadu 
District People’s Hospital of Guangzhou waived the need of 
obtaining informed consent. And we  had confirmed that the 
method of this research was performed in accordance with the 
regulation of Ethics Committee of Huadu District People’s Hospital 
of Guangzhou.

Statistical analysis

R version 4.1.3 was used for data analysis and the creation of 
statistical figures. Missing values in this cross-sectional study were 
addressed through multiple imputations using the “mice” package. 
The study population of adult sepsis patients was divided into training 
and validation sets using the “caret” package. Descriptive statistics, 
including mean ± standard deviation for continuous data with normal 
distribution and median (upper and lower quartiles) for non-normally 
distributed data, were employed to characterize average values. For 
univariate analysis, the Chi-square test was used to analyze differences 
in categorical data, while t-tests and Mann–Whitney U tests were 
employed for normally and non-normally distributed continuous 
data, respectively.

For logistic regression model construction, the “glm” function was 
used to conduct univariate analysis and binary logistic regression. The 
final model was determined by stepwise regression with the least AIC 
value using the “backward” method. For machine learning models, the 
Least Absolute Shrinkage and Selection Operator (LASSO) regression 
was utilized for variable shrinkage and selection, and the “glmnet” 
package was employed with parameter tuning using lambda.1SE 
under ten-fold cross-validation to remove irrelevant variables. The 
framework of “tidymodels” facilitated model selection, construction, 
workflow settings, validation, and comparison of predictive 
capabilities. Random forest was selected as the machine learning 
model based on the highest AUC and accuracy values, and the 
“randomForest” package was used to fit the model. To optimize the 
out-of-bag (OOB) error and improve predictive efficacy, the “tuneRF” 
function was employed.

Discrimination of the models was investigated using ROC and 
AUC with the “pROC” package. Calibration was assessed using the 
“calibration” function from the “rms” package, and the Hosmer-
Lemeshow test was performed. Net benefits, reflecting model clinical 

https://doi.org/10.3389/fmed.2024.1496869
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wu et al. 10.3389/fmed.2024.1496869

Frontiers in Medicine 04 frontiersin.org

practicality, were calculated and compared using DCA with the 
“ggDCA” package.

Results

Baseline analysis and data splitting

The study included a total of 606 patients diagnosed with sepsis, 
categorized into a survival group (n = 421) and a non-survival group 
(n = 185) based on hospital stay duration. To facilitate model 
construction and validation, a random allocation resulted in a training 
set (n = 435) and a validation set (n = 171) at a 7:3 ratio. Details of the 
baseline analysis and data splitting are presented in Table 1.

Logistic regression model construction

We initially conducted univariate analysis for risk factor 
selection in the training set for the logistic regression model. The 
results of the univariate analysis revealed that with significant 
differences (p < 0.05) between the survival and non-survival groups 
for including variables, gender, CHD, systolic pressure, WBC, 
NEUT, LYMP, lactic acid, NLR, RDW, IL6, PT, INR, FBI, D-dimer, 
AST, Tbil, and lung infection were brought into multiple variable 
regression (Table 2). Based on these 17 variables, we utilized logistic 
step regression (backward step method) to optimize the model 
according to the Akaike Information Criterion (AIC). The results 
showed that with the least AIC value (98.65), the logistic model (OR: 
1.012, 95% CI: 2.218–3.216) included systolic pressure, lactic acid, 

FIGURE 1

Flowchart illustrating the research design.
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TABLE 1 Baseline analysis and data splitting.

Characteristics All patients
(n = 606)

Survival
(n = 421)

Non-survival
(n = 185)

Training set
(n = 435)

Validation set
(n = 171)

p-value

Gender 0.914

  Female n (%) 269 (44.4%) 207(49.2%) 62(33.5%) 192 (44.1%) 77 (45.0%)

  Male n (%) 337 (55.6%) 214(50.8%) 123(66.5%) 243 (55.9%) 94 (55.0%)

Age *x  ± sd 64.0 ± 17.5 63.6 ± 16.5 64.9 ± 17.6 64.7 ± 18.2 63.2 ± 15.8 0.163

Infection site 0.806

  Respiratory system n (%) 232 (38.3%) 132(31.4%) 100(54.1%) 166 (38.2%) 66 (38.6%)

  Urinary system n (%) 161 (26.6%) 100(23.6%) 61(33.0%) 113 (26.0%) 48 (28.1%)

  Digestive system n (%) 213 (35.1%) 189(45.0%) 24(12.9%) 156 (35.9%) 57 (33.3%)

Pathology 0.332

  Gram-positive n (%) 331 (54.6%) 223(53.0%) 108(58.4%) 230 (52.9%) 101 (59.1%)

  Gram-negative n (%) 252 (41.6%) 180(42.8%) 72(38.9%) 189 (43.4%) 63 (36.8%)

  Fungal n (%) 23 (3.80%) 18(4.2%) 5(2.7%) 16 (3.68%) 7 (4.09%)

Diabetes 0.632

  No n (%) 411 (67.8%) 288(68.4%) 123(66.5%) 298 (68.5%) 113 (66.1%)

  Yes n (%) 195 (32.2%) 133(31.6%) 62(33.5%) 137 (31.5%) 58 (33.9%)

Hypertension 0.193

  No n (%) 360 (59.4%) 262(62.2%) 98(53.0%) 266 (61.1%) 94 (55.0%)

  Yes n (%) 246 (40.6%) 159(37.8%) 87(47.0%) 169 (38.9%) 77 (45.0%)

CHD 0.304

  No n (%) 390 (64.4%) 298(70.8%) 92(49.7%) 274 (63.0%) 116 (67.8%)

  Yes n (%) 216 (35.6%) 123(29.2%) 93(50.3%) 161 (37.0%) 55 (32.2%)

BMI x  ± sd 24.3 ± 4.6 24.3 ± 4.6 24.3 ± 4.7 24.2 ± 4.7 23.9 ± 4.5 0.693

Systolic pressure (mmHg) x  ± sd 124 ± 23.5 131.1 ± 18.0 93.66 ± 24.7 124.8 ± 19.2 124.6 ± 20.3 0.907

Heart rate (time/min) x  ± sd 122 ± 9.6 116.9 ± 11.58 118.1 ± 9.1 122 ± 8.8 121 ± 10.2 0.887

Temperature (°C) x  ± sd 38.5 ± 0.7 38.3 ± 0.7 38.3 ± 0.6 38.3 ± 0.6 38.5 ± 0.5 0.387

WBC (×109/L) *M[P25;P75] 12.7 [7.6;18.2] 11.9 [7.5;16.1] 15.0 [8.2;23.4] 12.9 [8.1;18.3] 11.8 [6.9;17.6] 0.107

Platelet (×109/L) M[P25;P75] 172 [111;249] 180.0 [125.0;252.0] 150.0 [63.0;242.5] 172 [114;246] 169 [95.5;263] 0.715

NEUT (×109/L) M[P25;P75] 10.6 [6.2;16.0] 9.8 [5.9;14.2] 14.1 [7.6;20.6] 10.7 [6.54;16.2] 9.85 [5.35;15.2] 0.149

LYMP (×109/L) M[P25;P75] 0.85 [0.5;1.4] 1.0 [0.7;1.5] 0.5 [0.3;0.6] 0.86 [0.5;1.4] 0.85 [0.5;1.4] 0.973

(Continued)
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TABLE 1 (Continued)

Characteristics All patients
(n = 606)

Survival
(n = 421)

Non-survival
(n = 185)

Training set
(n = 435)

Validation set
(n = 171)

p-value

NLR M[P25;P75] 12.5 [6.6;22.1] 10.3 [5.5;16.0] 26.2 [13.0;46.5] 12.4 [6.8;22.8] 12.7 [5.9;20.4] 0.431

RDW x  ± sd 44.7 ± 8.4 45.2 ± 8.2 50.5 ± 10.5 44.3 ± 8.7 45.2 ± 9.4 0.368

CRP (mg/ml) M[P25;P75] 117 [47.6;179] 112.3 [40.5;166.7] 135.0 [56.9;194.2] 119 [46.6;179] 117 [54.9;176] 0.957

PCT (ng/ml) M[P25;P75] 12.0 [2.42;41.1] 9.1 [1.6;36.0] 18.0 [6.3;53.5] 12.0 [2.49;40.7] 12.0 [2.20;39.5] 0.879

Lactic acid (mmol/L) M[P25;P75] 2.20 [1.5;4.4] 1.9 [1.4;2.6] 4.8 [3.1;8.7] 2.15 [1.6;4.2] 2.50 [1.5;5.3] 0.390

PT (S) x  ± sd 15.1 ± 2.4 14.9 ± 2.2 18.9 ± 8.8 15.1 ± 3.1 14.9 ± 3.4 0.811

INR M[P25;P75] 1.19 [1.1;1.4] 1.2 [1.1;1.3] 1.3 [1.2;1.7] 1.19 [1.08;1.35] 1.17 [1.08;1.38] 0.634

FIB x  ± sd 4.8 ± 1.6 5.2 ± 1.8 4.4 ± 2.1 4.91 ± 1.7 4.6 ± 1.9 0.181

D dimer (ng/m) M[P25;P75] 2,532 [1,230;4,955] 2,183 [1,190;4,197] 3,365 [1,597;7,461] 2,544 [1,233;5,239] 2,251 [1,232;4,607] 0.569

Creatinine (μmol/L) M[P25;P75] 125 [74.0;246] 106.0 [70.0;214.8] 162.0 [92.5;289.0] 117 [72.6;234] 131 [79.3;272] 0.099

ALT (U/L) M[P25;P75] 28.0 [16.5;52.0] 24.0 [15.7;43.1] 36.0 [20.1;74.0] 29.0 [16.7;52.6] 26.0 [15.7;49.9] 0.350

AST (U/L) M[P25;P75] 31.0 [20.0;62.0] 26.0 [18.9;47.0] 57.1 [29.2;156.5] 31.0 [20.2;61.0] 31.5 [19.6;67.2] 0.859

Tbil (μmol/L) M[P25;P75] 15.6 [10.2;24.6] 14.5 [9.9;21.9] 18.0 [10.9;34.2] 15.7 [10.3;25.0] 14.5 [9.28;23.4] 0.428

IL6 (pg/ml) M[P25;P75] 3.70 [2.30;5.80] 3.0 [1.9;4.2] 6.5 [5.1;7.7] 3.70 [2.30;5.75] 3.70 [2.30;5.90] 0.696

SOFA M[P25;P75] 6.1 [4.2;9.5] 5.0 [4.0;6.1] 12.0 [9.1;14.0] 6.00 [4.0;9.0] 6.0 [4.0;9.0] 0.369

APACHE x  ± sd 32.0 ± 8.1 29.2 ± 7.5 40.9 ± 9.1 31.0 ± 78.3 34.0 ± 8.6 0.052

*x  ± sd: mean ± standard deviation; M[P25;P75]: M, median; P25, Lower quartile; P75, Upper quartile.
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TABLE 2 Univariate analysis of risk factors between the survival group and non-survival group.

Characteristics *B *SE *OR 95%CI Z P-value

Gender 0.699 0.303 2.01 1.11–3.65 2.308 0.021

Age 0.014 0.008 1.01 1–1.03 1.605 0.108

Diabetes −0.142 0.336 0.87 0.45–1.68 −0.424 0.671

Hypertension −0.016 0.308 0.98 0.54–1.8 −0.052 0.959

CHD 0.663 0.302 1.94 1.07–3.51 2.198 0.028

BMI −0.033 0.033 0.97 0.91–1.03 −0.974 0.33

Systolic pressure −0.104 0.014 0.9 0.88–0.93 −7.444 <0.001

Heart rate 0.001 0.016 1 0.97–1.03 0.091 0.928

Temperature 0.015 0.239 1.02 0.64–1.62 0.064 0.949

WBC 0.055 0.018 1.06 1.02–1.09 3.051 0.002

Platelet −0.002 0.001 1 1–1.02 −1.643 0.1

NEUT 0.068 0.02 1.07 1.03–1.11 3.446 0.001

LYMP −1.605 0.35 0.2 0.1–0.4 −4.586 <0.001

NLR 0.066 0.013 1.07 1.04–1.1 5.167 <0.001

RDW 0.071 0.018 1.07 1.04–1.11 4.016 <0.001

CRP 0.004 0.002 1 1–1.01 1.957 0.05

PCT 0.005 0.004 1.01 1–1.01 1.354 0.176

Lactic acid 0.496 0.084 1.64 1.39–1.94 5.929 <0.001

PT 0.529 0.093 1.7 1.41–2.04 5.686 <0.001

INR 2.751 0.613 15.65 4.71–52.05 4.49 <0.001

FIB −0.172 0.079 0.84 0.72–0.98 −2.188 0.029

D dimer 0 0 1 1.23–2.45 4.438 <0.001

Creatinine 0.001 0.001 1 1–1.02 1.408 0.159

ALT 0.004 0.002 1 1–1.01 1.261 0.175

AST 0.005 0.001 1 1–1.01 3.198 0.001

Tbil 0.015 0.005 1.01 1–1.02 2.719 0.007

IL-6 0.728 0.102 2.07 1.7–2.53 7.157 <0.001

Infection site

  Respiratory system 1.839 0.325 6.29 3.33–11.89 5.664 <0.001

  Urinary system −0.17 0.349 0.84 0.43–1.67 −0.487 0.626

(Continued)
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NLR, RDW, IL6, PT, and Tbil as the final determinants 
(Supplementary Table S1).

Machine learning model and variables 
selection

As depicted in Supplementary Figure S1, a comprehensive 
comparison of various machine learning models revealed that RF 
stood out with high accuracy and an AUC value of 0.99. Therefore, RF 
was chosen as the preferred methodology for model construction. 
Regarding variable selection, LASSO regression, employing ten-fold 
cross-validation with lambda.1SE criteria, identified systolic pressure, 
lactic acid, NEUT, RDW, IL6, INR, and Tbil as the chosen variables 
for RF model construction (Figure  2). During the RF modeling 
process, we  initially set 500 decision trees for preliminary model 
calculation in the training set. To determine the optimal parameter for 
mortality prediction in sepsis patients, we utilized the OOB error as a 
measure of the model’s performance index. The results demonstrated 
that when the iteration reached 141 decision trees, the error rates of 
both OOB and model classification showed a noticeable decrease, 
reaching a stable state. This observation illustrated that the RF model 
achieved the most stable and optimal situation (Figure 3).

Model validation and multi-models 
comparison

To assess the predictive efficacy of traditional logistic and RF 
models, we conducted assessments of discrimination, calibration, and 
clinical net benefits. Additionally, we compared the performance of 
logistic regression and RF models with SOFA (4) and APACHE (6) to 
explore clinical practicality. Discrimination results indicated that the 
among the predictive models of RF, logistic, SOFA, and APACHE, the 
AUCs and their corresponding 95% confidence intervals (CIs) were 
significantly larger (PDelong’s test < 0.05) in both training and validation 
sets compared to other three models (Figures  4A,B). For model 
calibration, we observed that calibration curves of RF were notably 
closer to the ideal reference line compared to other models in both 
training and validation sets, which indicated that comparing to other 
models, the RF model associated with better fitting goodness and 
predictive ability (Figures 5A,B). Results of clinical practicality, as 
indicated by the Area Under Decision Curve (AUDC), showed that in 
the training set (Figure 6A) and validation set (Figure 6B), comparing 
with other three models, the AUDCs of RF model were with the 
highest values. These findings illustrated that the RF model yielded 
optimal clinical net benefit for predicting mortality in adult 
sepsis patients.

Variables importance of logistic and RF 
models

The variable importance calculations from both the logistic 
regression and RF models are presented in Supplementary Figure S2. 
In predicting mortality in the adult sepsis cohort, the logistic 
regression model identified systolic pressure, lactic acid, IL6, and NLR 
as the most important variables, followed by Tbil, PT, and T
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FIGURE 2

Variable shrinkage and selection by LASSO regression. (A) Shrinkage pathway of LASSO regression. (B) Based on ten-fold cross-validation, seven 
variables, including systolic pressure, lactic acid, NEUT, RDW, IL6, INR, and Tbil, were chosen using the lambda.1SE criteria.

FIGURE 3

Error rate chart of RF model. As the iteration reached 141 decision trees, the error rates of both out-of-bag (OOB) and model classification showed a 
noticeable decrease, eventually reaching a steady state.
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RDW. Consistently, the RF model also highlighted systolic pressure, 
lactic acid, IL6, and NLR as the most crucial variables for predicting 
mortality. However, the variables with relatively less importance in the 
RF model were RDW, NEUT, and Tbil, in contrast to the logistic 
regression model.

Discussion

In this study, we  investigated the risk factors predicting the 
mortality of adult patients with sepsis, employing both the traditional 
logistic regression approach and the RF approach. Overall, both models 

FIGURE 4

Comparison of discriminative ability among RF, logistic regression, SOFA, and APACHE scoring system. (A) Training set; (B) validation set. The blue solid 
ROC curves with the largest AUC values both in training set and validation set represented that RF associated with the best discrimination among the 
four models. AUC, area under curve; SOFA, sequential organ failure assessment scoring; APACHE, acute physiology and chronic health evaluation 
scoring.

FIGURE 5

Comparison of calibration curves among RF, logistic regression, SOFA, and APACHE scoring system. (A) Training set; (B) validation set. The blue solid 
calibration curves which were notably closer to the ideal reference line both in training set and validation set represented that RF associated with the 
best goodness-of-fit and accuracy of prediction among the four models. SOFA, sequential organ failure assessment scoring; APACHE, acute 
physiology and chronic health evaluation scoring. The left x-axis represents the observed probability; the right x-axis represents the sample size, y-axis 
represents the predicted probability.
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yielded similar results, with only slight differences in the included 
variables, with the inclusion of PT as a risk factor in the logistic 
regression model, while NEUT was included in the RF model. To assess 
the predictive capabilities of these models for adult sepsis prognosis, 
we conducted comprehensive validations, considering discrimination, 
calibration, and clinical benefits. Among the three above criterion of 
model assessment, calibration is a critical aspect of evaluating the 
performance of clinical prediction models. It refers to the degree to 
which the predicted probabilities of an event match the actual observed 
outcomes. A well-calibrated model is one where the predicted 
probabilities are reliable indicators of the likelihood of the event 
occurring in practice. This is particularly important in clinical settings, 
where accurate predictions can guide treatment decisions and patient 
management. Additionally, we compared the models with the widely 
used SOFA and APACHE scoring systems based on these criteria. The 
results of model validation and comparison demonstrated that the RF 
model exhibited significant superiority over the logistic regression 
model, as well as over the SOFA and APACHE scoring systems, in 
predicting mortality in adult sepsis patients.

Application of biomarkers in adult sepsis 
prediction

Sepsis represents an aberrant inflammatory response triggered by 
pathogenic microorganism infection. There is an increasing consensus 
suggesting that the immune system’s activation in the early stages and 
its subsequent inhibition in the later stages can both contribute to 
alterations in circulating levels of inflammatory mediators (24–26). 
While the exact mechanisms of sepsis remain incompletely 
understood, studies have highlighted the crucial role of biomarkers in 

sepsis diagnosis and prognosis prediction, significantly impacting the 
risk of mortality (27–29). Our study exhibited that besides systolic 
pressure, biomarkers such as lactic acid, RDW, NLR, IL6, NEUT, and 
Tbil were incorporated into the traditional logistic and RF models 
we constructed. A closer examination through variable importance 
analysis revealed that lactic acid, NLR, and IL6 played pivotal roles in 
determining the significance of variables in both models.

Lactic acid, a metabolic byproduct of anaerobic glucose 
fermentation, poses a threat to the human body when present at 
elevated levels. High concentrations of lactic acid not only inhibit the 
activity of various essential enzymes but also mitigate the sensitivity 
of endothelial cells to vasoactive drugs (30). Furthermore, in the 
context of microbial infection or sepsis, lactic acid assumes a critical 
role in suppressing immune cells, potentially leading to immune 
suppression and severe consequences for the individual (31). Elevated 
levels of lactic acid in patients with sepsis are associated with poor 
outcomes, as they reflect inadequate perfusion and oxygen delivery to 
tissues. Studies have shown that high lactate levels correlate with 
increased mortality rates in septic patients, making it a valuable 
prognostic marker. Over the years, numerous studies have 
underscored the association between elevated lactic acid levels and 
increased mortality rates in sepsis (4, 32, 33).

The NLR serves as a biomarker calculated by the ratio of 
neutrophil to lymphocyte counts, encompassing both the innate 
immune response, primarily mediated by neutrophils, and adaptive 
immunity, supported by lymphocytes (34). Neutrophils act as the 
frontline defenders against pathogen invasion through processes like 
chemotaxis and phagocytosis. Upon activation by pathogens, various 
cytokines, granular proteins, and reactive oxygen species (ROS) are 
produced and released by neutrophils (35). While this activation is 
crucial for pathogen resistance, excessive activation leading to 

FIGURE 6

Comparison of decision curve analysis among RF, logistic regression, SOFA, and APACHE scoring system. (A) Training set; (B) validation set. With the 
highest value of AUDC and net benefit both in training set and validation set, RF was considered as the optimum model which associated with the best 
clinical practicality. SOFA, sequential organ failure assessment scoring; APACHE, acute physiology and chronic evaluation scoring. AUDC, area under 
DCA curve.
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increased production of ROS and cytokines may damage vascular 
endothelial cells through different mechanisms, resulting in tissue 
hypoperfusion and life-threatening organ failure (36). Consequently, 
an elevated neutrophil count, or a decreased lymphocyte count, 
contributes to an increased NLR, serving as a predictor of disease 
severity and poor prognosis in various conditions such as severe 
trauma (37), stroke (38), malignant tumor (39, 40) and sepsis (41, 42). 
Previous studies on NLR in predicting sepsis prognosis have 
demonstrated its independent association with high in-hospital 
mortality rates, showcasing significant advantages over conventional 
scores like SOFA or APACHE (43, 44). In summary, NLR stands out 
as a valuable biomarker for predicting mortality in sepsis patients.

Pro-inflammatory cytokines play a critical role in sepsis 
pathogenesis. IL-6, a member of the 4-helical cytokine family, activates 
signaling pathways by binding to an 80-kDa cytokine receptor 
(IL-6R). IL-6 plays a pivotal role in the immune response to infection, 
and it is released by various cells, including macrophages and T cells, 
in response to inflammatory stimuli. During sepsis, IL-6 is produced 
in response to pathogenic stimuli, and IL-6R is generated by 
neutrophils. Consequently, the IL-6/IL-6R complex triggers the 
phosphorylation and redistribution of VE-cadherin, leading to 
vascular endothelial damage and leakage (45). Excessive vascular 
endothelial damage and leakage in sepsis patients can result in blood 
pressure decline, hemodynamic collapse, irreversible septic shock, and 
even death. Clinical predictive models have consistently shown that 
IL-6 holds favorable predictive value for sepsis severity and prognosis. 
Elevated levels of IL-6 suggest severe illness and poor prognosis (46, 
47). Moreover, studies have indicated that immunotherapeutic 
blockade of IL6 could reduce the mortality rate in sepsis (48).

Application of advanced statistical 
methods to complement common 
approaches

The RF algorithm possesses numerous statistical and 
computational advantages. This algorithm employs integrated 
learning, wherein its fundamental component is typically a decision 
tree, placing it within the broader category of integrated learning 
methods (49, 50). The terminology “random” and “forest” in RF 
signifies the amalgamation of classifiers, where each tree functions as 
an individual classifier. Notably, RF operates with hundreds of trees in 
parallel, collectively forming a forest. RF consolidates the results of all 
classification votes, designating the category with the highest votes as 
the final output, aligning with the Bagging concept and reflecting the 
core idea of RF (51). In contrast to the traditional logistic regression 
algorithm, RF demonstrates several distinct advantages: (1) RF 
employs an integrated algorithm with exceptionally high accuracy; (2) 
The randomness in model construction reduces susceptibility to 
overfitting; (3) It can handle discrete, continuous, or high-dimensional 
data without requiring data normalization; (4) The OOB feature 
allows obtaining unbiased estimates of true errors during model 
generation without losing training data. In the present study, the RF 
model demonstrated its superiority in predicting the prognosis of 
adult sepsis, exhibiting better discrimination, calibration, and clinical 
decision-making compared to traditional statistical methods (52, 53). 
Although RF model improves prediction accuracy by integrating 
multiple decision trees, but this also makes their decision-making 

process relatively complex and difficult to explain. Each decision tree 
is trained based on a randomly selected subset of features, which 
increases the model’s diversity but also makes it challenging to 
interpret. So as to address these limitations, we  can solve these 
problems by conducting feature importance analysis, visualizing 
individual decision trees, employing local explainability methods, and 
integrating doctors’ experiences and expertise, it is possible to address 
the limitations of interpretability to a certain extent.

However, the present study has limitations that should 
be acknowledged. Firstly, being retrospective and cross-sectional, it 
relies on some laboratory results reflecting the patient’s condition at 
specific time points, which may not be generalizable to the entire 
population. We expect to validate the current research and strengthen 
the impact of this study through prospective research. Secondly, 
we explicitly state that our initial predictor selection was based on 
univariate analysis, which may not capture the full complexity of the 
relationships between the predictors and the outcome variable. 
Thirdly, despite RF’s significant advantages in predicting sepsis 
mortality compared to traditional regression, its interpretability 
limitation remains noteworthy. Finally, due to this is a single center 
study and without testing on an independent dataset, the model’s 
accuracy could be artificially inflated, reducing its generalizability. 
Therefore, integrating RF with traditional regression approaches could 
enhance the predictive capabilities of healthcare research in the future.

Conclusion

In conclusion, logistic regression and RF models were developed 
to predict mortality in adult sepsis patients, with both models 
identifying consistent risk factors. The RF model outperformed 
traditional regression and the SOFA and APACHE scoring systems, 
highlighting its superiority in mortality prediction.
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