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Skin cancer is one of the most common, deadly, and widespread cancers

worldwide. Early detection of skin cancer can lead to reduced death rates. A

dermatologist or primary care physician can use a dermatoscope to inspect

a patient to diagnose skin disorders visually. Early detection of skin cancer

is essential, and in order to confirm the diagnosis and determine the most

appropriate course of therapy, patients should undergo a biopsy and a

histological evaluation. Significant advancements have been made recently as

the accuracy of skin cancer categorization by automated deep learning systems

matches that of dermatologists. Though progress has been made, there is still a

lack of a widely accepted, clinically reliable method for diagnosing skin cancer.

This article presented four variants of the Convolutional Neural Network (CNN)

model (i.e., original CNN, no batch normalization CNN, few filters CNN, and

strided CNN) for the classification and prediction of skin cancer in lesion images

with the aim of helping physicians in their diagnosis. Further, it presents the

hybrid models CNN-Support Vector Machine (CNNSVM), CNN-Random Forest

(CNNRF), and CNN-Logistic Regression (CNNLR), using a grid search for the

best parameters. Exploratory Data Analysis (EDA) and random oversampling

are performed to normalize and balance the data. The CNN models (original

CNN, strided, and CNNSVM) obtained an accuracy rate of 98%. In contrast,

CNNRF and CNNLR obtained an accuracy rate of 99% for skin cancer prediction

on a HAM10000 dataset of 10,015 dermoscopic images. The encouraging

outcomes demonstrate the e�ectiveness of the proposed method and show

that improving the performance of skin cancer diagnosis requires including the

patient’s metadata with the lesion image.

KEYWORDS

skin cancer diagnosis, feature extraction,multi-classification, dermoscopy images, deep
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1 Introduction

Skin cancer has become one of the most prevalent and widely dispersed types of

cancer worldwide in recent decades. It is a prevalent form of cancer that starts with an

overabundance of skin cells proliferating. It can be caused by UV radiation from sunlamps

and tanning beds, which encourages the proliferation of skin cells and the formation

of cancerous tumors (1–3). One of the major causes of death worldwide is skin cancer.
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It was predicted that by 2023, 97,160 Americans would receive

a skin cancer diagnosis, accounting for 5.0% of all cancer cases

registered in the US, and 7,990 Americans passed away from skin

cancer, accounting for 1.3% of all skin cancer-related deaths in the

US (4). A common skin cancer that can spread fast to other parts

of the body and even be deadly is called melanoma. Between 2016

and 2020, the US had about 21 cases of melanoma out of 100,000

cases reported. Melanoma claimed the lives of 1,413,976 persons in

2020, with a mortality rate of 2.1 per 100,000 diagnosed cases. Skin

melanoma has a comparatively high 5-year survival rate of 93.5%.

Early detection of cutaneous melanoma results in a 99.6% 5-year

survival rate (4). Only 77.6% of skin melanomas are discovered at

the local stage, despite the fact that localized skin melanoma has

a higher probability of survival since it does not migrate to other

body areas. If skin melanoma is discovered early on, the frequency

of deaths from it can be decreased (5).

The development of computer-aided detection systems for skin

cancer diagnosis was necessitated by the limits of dermoscopy

and the need for improved accuracy in skin cancer diagnosis

(3, 6). Expert dermatologists have an accuracy rate of over 60%

when diagnosing melanoma without the use of specialized visual

aids (7). In both medical and non-medical domains, however,

performance has improved due to the latest advancements in

deep learning-based techniques. They can also help dermatologists

adhere to skin lesions in images to identify cancer early. The

three common techniques used to apply imaging for skin lesions

are histological, photographic, and dermoscopic images. High-

resolution skin imaging is achieved through the use of specialized

equipment to obtain dermoscopy images with a decrease in skin

surface reflectance (8). Histological images are obtained using

invasive biopsies and microscopy (7). Simple photographic images

from smartphones and cameras can have inconsistent illumination,

zoom, and perspective, as well as irrelevant backgrounds. In

contrast, high-quality standardized images are produced via

dermoscopy and histology methods (9). This significantly increases

the difficulty of automatic classification. By using millions of pre-

training and training images, a data-driven approach to solving this

issue makes classification resistant to photographic variability (10).

1.1 Motivation

Dermatologists diagnose skin cancer by differentiating benign

and malignant lesions that have the same source and similar shape,

border, and color despite the fact that both are composed of

melanocyte cells. This is a challenging endeavor. Differentiating

between malignant keratinocyte carcinoma (BCC) and benign

keratosis (SCC) is very challenging (8). Malignant cutaneous

lymphomas and inflammatory non-neoplastic dermatitis can be

difficult to differentiate from one another. Furthermore, it can

be difficult to distinguish between benign and malignant dermal

lesions, such as Kappi sarcoma and dermatofibroma and vascular

lesions (8). Given the high error rate associated with ocular

inspection, biopsies, and histological investigations represent the

gold standards of diagnosis. Because of these challenges with

diagnosis, dermatologists frequently use biopsies and histological

tests as the gold standards to determine which skin disorders are

benign and which are malignant. These techniques considerably

lower errors in diagnosis and enhance patient outcomes by offering

conclusive knowledge that visual inspection alone cannot deliver.

The objective of this study is to offer a novel deep-learning

method for automatically predicting the type of skin lesion so that

doctors may use it as a tool to evaluate skin lesion images. The

proposed model also considered patient characteristics, the lesion’s

anatomical location, age, and gender in order to forecast the kind

of lesion. Based on a recent study, males are 4% more likely than

women to die from melanoma skin cancer and are 10% more likely

to get the condition. The incidence rate of skin cancer also increases

with age. There is also evidence of a relationship between the type of

lesion and its anatomical location on the body (4, 11). These results

prompted us to investigate the effects of providing the automated

model for skin cancer diagnosis with this data (age, gender, and

anatomical site).

1.2 Research contribution

This research renders it feasible to identify human actions more

accurately and efficiently. The following lists the main findings and

contributions of the research.

• The study proposed four variants of the CNN model: the

original CNN, CNN without batch normalization, CNN with

few filters, and CNN with strided to categorize and predict

skin cancer. The goal of these developments was to optimize

the network architecture for higher diagnostic accuracy. The

study also proposed novel hybrid models by combining CNN

with traditional machine learning classifiers, such as SVM, RF,

and LR. This approach combined the benefits of traditional

classifiers with DL to boost overall classification accuracy.

• The study provides a thorough EDA with random

oversampling approaches to balance and standardize the

dataset. The accuracy and generalizability of the model across

a variety of skin lesion images were much enhanced by

this preprocessing phase. The research made a substantial

contribution by integrating patient metadata into the

prediction model in addition to lesion images. The outcomes

showed that this combination improved classification

accuracy by at least 5%, underscoring the significance of

considering extra patient data when diagnosing skin cancer.

• The CNN-RF and CNN-LR models obtained 99% accuracy,

while the CNN-SVM, original CNN, and strided CNNmodels

got 98% accuracy. The proposed CNN-based methods were

able to achieve these astounding accuracy rates. These results

demonstrate the effectiveness of the proposed methods in

raising the accuracy of skin cancer diagnosis.

1.3 Organization

The structure of the article is as follows. Section 2 provides

background material and relevant articles. Section 3 provides the

proposed method. The effectiveness of the proposed approach

is evaluated and compared to the baseline methods in Section
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4. Recommendations are given in Section 5 following the

article’s conclusion.

2 Related work

Artificial Intelligence (AI) has great promise for the

management of hematologic malignancies in the future because

of its ability to interpret data from several diagnostic modalities,

estimate mortality, and suggest therapeutic methods. Machine

learning-based methods address various medical data and illnesses.

According to Eckardt et al. (12), these ML techniques can be

applied to a wide range of applications to ensure prompt and

precise diagnosis, risk assessment, and efficient treatment.

The authors in Harish et al. (13) offered a comprehensive

approach to early skin cancer detection. As part of the

preprocessing step, a multi-filter Fusion and Equalization (MFE)

is recommended to reduce noise and highlight key features in

Digital Dermoscopic (DD) images. For segmentation, a boundary

contrast-based Otsu threshold technique (BCOT) is provided to

guarantee precise delineation of lesion boundaries. It is imperative

to incorporate both spatial linkages and local differences in texture

to improve the durability of feature extraction. Providing a more

potent and selective feature set that is better able to capture

textural and structural information for recognition tasks. This is

accomplished by combining the use of the Local Optimal Oriented

Pattern (LOOP) approach with the gray-level co-occurrence matrix

(GLCM). GLCM, capture intensity-based data and pixel pattern

analysis are further improved by LOOP, which enriches the

extracted characteristics. The skin lesions are classified in the

classification step using the Random Forest (RF) machine learning

technique. The research uses a dataset of 800 images from the

Kaggle database, which originates from the ISIC and shows both

malignant and benign types of oncological disorders. A 98.75%

accuracy level was obtained with this strategy. The authors in

Mohammed et al. (14) suggested the use of a hybrid model with

a support vector machine (SVM) acting as the classifier and

DenseNet201 and auto-encoder for feature extraction. Nine distinct

classes make up the ISIC 2016 dataset, which was used to evaluate

the proposed model. The hybrid model successfully identified nine

distinct types of skin cancer with a classification accuracy of 91.09%.

The authors in Packiamary and Muthukumaravel (15)

presented a hybrid system for diagnosing melanoma that integrates

CNNs and advanced feature extraction with conventional image

processing. Convolutional layers are used to learn features, and

completely linked layers are used for classification in the CNN

architecture, which is specifically designed to classify melanoma.

With 99.1% accuracy, 98.3% precision, 96% recall, and 96.5%

F1 Score in computational metrics, the results demonstrate that

the proposed system performs better than the current systems.

The author in study (16) addresses skin cancer by introducing a

deep learning-driven automated system, the DenseNet 169 model,

which was trained on the extensive Skin Cancer: Malignant vs.

Benign dataset. The technology performs exceptionally well in the

crucial area of early detection. DenseNet169 has an astounding

89.7% success rate in accurately classifying skin lesions by utilizing

dermoscopy images. Authors in Andleeb et al. (17) introduced

an attention-based technique based on the premise that the

lesion is the most informative region of dermoscopic images;

thus, the proposed approach involves lesion localization before

categorization. Then, a feature extractor driven by Deep Learning

is used to extract the black-box features of the lesion segment, and

another feature extractor is used to extract features from the entire

image. After concatenating the two feature vectors, a composite

feature vector is produced that, when used by a simple neural

network, enables image classification. Empirical validation with the

proposed methodology on the ISIC 2019 dataset yielded a 75.5%

accuracy rate.

Authors in Naeem et al. (6) A unique deep learning-based

framework is proposed for the multiclassification of skin cancer

types, including basal cell carcinoma, melanoma, melanocytic

nevi, and benign keratosis. The proposed model, called SCDNet,

classifies various forms of skin cancer by fusing convolutional

neural networks (CNN) and Vgg16. The ISIC 2019 dataset is

used to assess the performance of the proposed SCDNet classifier.

In comparison to Resnet 50, Alexnet, Vgg19, and Inception-v3,

which have accuracy rates of 95.21%, 93.14%, 94.25%, and 92.54%,

respectively, the proposed SDCNet has an accuracy rate of 96.91%

for the multiclassification of skin cancer. Authors in Daghrir et al.

(18) proposed SNCNet, which combines features extracted from

dermoscopic images using both handmade (HC) and deep learning

(DL) models to categorize the eight different forms of skin cancer.

A convolutional neural network (CNN) is utilized for classification.

Dermoscopy images from the publicly accessible ISIC 2019 dataset

are used to train and evaluate the model for the diagnosis of

skin cancer. The proposed model outperformed the four baseline

models and the SOTA classifiers, with a precision of 98.31%, recall

of 97.89%, accuracy of 97.81%, and F1 score of 98.10%.

Authors in Chaturvedi et al. (19) investigated a highly effective

automated approach for classifying skin cancer. They used a

MobileNet model that was pretrained using about 12,80,000 images

from the 2014 ImageNet issues. Transfer learning was utilized in

the study to refine the model with 10,015 dermoscopy images

from the HAM10000 dataset. The model used in this investigation

produced an overall accuracy of 83.1% for seven classes in the

dataset; the top two and top three classes achieved accuracy of

91.36% and 95.34%, respectively. Additionally, it was discovered

that the weighted averages for recall, precision, and f1-score were,

respectively, 89%, 83%, and 83%. The authors in Shapna Akter et al.

(20) have presented a number of DL models for the classification of

skin lesions to differentiate skin cancer from other forms of skin

lesions. Preprocessing and augmentation techniques are applied

to the data before the skin lesions are classified. In the end, a

CNN model and six transfer learning models are trained on the

benchmark HAM10000 dataset to classify seven kinds of skin

lesions. For inceptionv3, Xception, Densenet, Mobilenet, Resnet,

CNN, and VGG16, the study’s accuracy results are 90%, 88%, 88%,

87%, 82%, and 77%, respectively.

In Elshahawy et al. (21), the author proposed a new model for

melanoma diagnosis with its degree that combines “you only look

once” (YOLOv5) and “ResNet50” and train images (HAM10000).

Secondly, featuremaps include gradient modifications, whichmake

inference faster, improve accuracy, and reduce the number of

hyperparameters in the model, making it smaller. To achieve the

intended results, additional classes for dermatoscopic images of

common lesions with pigmented skin are added to the existing
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TABLE 1 Literature review summary.

References Focus Techniques Results Limitations

Andleeb et al. (17) Melanoma detection Deep learning with attention

maps

75.5% accuracy Limited to melanoma; generalizability to other

skin cancers not discussed

Harish et al. (13) Skin cancer detection Transfer learning-based

hybrid model

92.5% accuracy Model complexity may affect real-time application

and generalization to diverse datasets

Naeem et al. (6) Skin cancer detection Integration of handcrafted

and deep learning features

93.8% accuracy Integration may increase computational

requirements; limited evaluation on larger datasets

Chaturvedi et al.

(19)

Multi-class skin cancer

classification

MobileNet-based model 90.7% accuracy Lower accuracy in rare classes; limited to seven

skin lesion types

Shapna Akter et al.

(20)

Multi-class skin cancer

classification

Deep CNN 91.3% accuracy Possible overfitting due to deep architecture; lack

of evaluation on external datasets

YOLOv5 model. Average performance measures are 99.0%, 98.6%,

98.8%, 99.5%, 98.3%, and 98.7% for accuracy, recall, mean average

precision (MAP) from 0.5 to 0.95, and dice similarity coefficient

(DSC) from 0.0 to 0.5, respectively. Authors in Imran et al. (22), a

pre-trained CNN combined with a feature optimization technique

driven by nature is presented as a skin cancer classification model.

The ISIC collection of dermoscopic images is used to create a

custom dataset that includes microscopic depictions of both benign

and malignant skin cancer. Deep feature extraction and pattern

identification are carried out on both upgraded and original dataset

images using the pre-trained CNN model EfficientNetB0. The

improved feature vector with several SVM classifier kernels is then

used to complete the skin cancer classification task. The proposed

model retained its high prediction speed and low training duration,

and its accuracy reached 98% using CB-SVM.

The applicability of skin cancer prediction research to other

datasets’ features and classes is restricted by its reliance on

specific datasets. The accuracy of the model across a variety

of demographic factors is frequently impacted by the lack of

diversity among participants. Conventional deep learning models

are computationally intensive, data-driven, complicated, and prone

to overfitting. Alternatively, potential efficiency, interpretability,

dimension reduction, and a strong theoretical base are provided

by the variation CNN model. This study uses the four-variant

CNN models for skin cancer prediction and classification. Table 1

provides the summary of the literature review.

3 Material and methods

This section outlines the entire process of the proposed

approach. The proposed approach entails a number of phases,

including acquiring datasets, preparing data, and creating model

predictions. The procedure for detecting skin cancer with a

Convolutional Neural Network (CNN), including all stages

involved, from preparing data to making predictions, is presented

in Figure 1. The initial step in the skin cancer prediction process

is loading disease images. Scaling the images to a standard size of

640 × 640 pixels is a crucial part of pre-processing to maintain

consistency across the input data. Subsequently, the pixel values

undergo normalization within a designated range (e.g., 0–1) in

order to mitigate numerical instability and optimize the training

process. Furthermore, by replicating underrepresented images in

the dataset, random oversampling is employed to rectify class

imbalance and ensure an equitable distribution of training data.

After pre-processing, the labeled dataset is used to train the CNN

model. The convolutional layer uses filters to extract features from

input images; the batch normalization layer stabilizes activations to

enhance training and lessen overfitting; and the max-pooling layer,

which downsamples feature maps to save computational overhead

and dimensionality whilemaintaining essential features, is themain

layer that makes up the CNN architecture. The fully connected

layers are fed the feature maps by the flattened layer, which then

transforms them into a one-dimensional vector. A dense layer with

sixteen neurons then combines the extracted features to generate

the classification output. In the last stage, the prediction phase, the

model generates a classification result and predicts the type of skin

cancer based on the input images.

3.1 Data description

The HAM10000 (“Human Against Machine with 10,000

training images”) dataset is a sizable compilation of dermatoscopic

images of pigmented lesions extracted from multiple sources.

Diverse populations provide the dermatoscopic images, which are

obtained and archived using various modalities. One potential use

for the final dataset is as a training set for academicML applications,

given it includes 10,015 dermatoscopic images. The HAM10000

dataset’s images are saved in JPEG format, which offers sharp color

information necessary for accurate dermatoscopic assessment. The

collection also contains metadata for each entry, which provides

useful context for the images. This metadata includes the patient’s

age and gender, the anatomical site of the lesion (e.g., scalp, face, or

trunk), and the kind of diagnosis (e.g., follow-up, expert consensus,

or histology). The addition of this metadata improves the relevance

and accuracy of skin lesion categorization models. The cases

represent all significant diagnostic categories related to pigmented

lesions: dermatofibroma (df), melanoma (mel), melanocytic nevi

(nv), actinic keratoses and intraepithelial carcinoma/Bowen’s

disease (akiec), basal cell carcinoma (bcc), benign keratosis-like

lesions (solar lentigines/seborrheic keratoses and lichen-planus

like keratoses, bkl), melanoma (mel), melanocytic nevi (nv), and

vascular lesions (angiomas, angiokeratomas, pyogenic granulomas

and hemorrhage, vasc). For the other cases, the basis of truth
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FIGURE 1

Proposed framework for skin cancer prediction.

is established by in-vivo confocal microscopy (confocal), expert

consensus (consensus), or follow-up inspection (follow_up); lesion

discoveries in more than half of the cases are accounted for by

histopathology (histo). The samples of skin cancer are represented

in Figure 2.

3.2 Data preprocessing

Preparing unprocessed data into a sanitized and appropriate

format for analysis and modeling is known as data preprocessing.

There are several steps involved in improving the quality of the

data and preparing it for statistical analysis or machine learning

algorithms. Preprocessing is a critical stage since the structure and

quality of the incoming data directly impact the functionality of any

successor models.

3.2.1 Data cleaning
Data cleaning, an essential phase in data analysis, is getting

the raw data ready for analysis by fixing or eliminating erroneous

records, making sure the data is consistent, and adding the

missing information. The primary objectives are to enhance the

quality of the data and prepare it for modeling or additional

analysis. There are several steps involved in the data cleaning

process. Firstly, to identify the different categories that are present,

examine the unique values in the target variable column and

separate the target variable from the dataset. A feature matrix

is produced by dropping the target variable and identifying the

missing values. To make sure there are no null values present,

sum().sum() is utilized. Metadata.head() gives a peek at the

metadata structure. The metadata preview is validated by calling

meta_data.head() once again, and the missing values check is

performed once more to confirm that there are no null values in

the data DataFrame.

3.2.2 Exploratory data analysis
An essential component of any research endeavor is

Exploratory Data Analysis (EDA). The primary objective

of the exploratory analysis is to identify anomalies and

outliers in the data so that it concentrates on testing the

hypothesis. It also provides resources for data visualization

and analysis, usually through graphical representation, to

help in hypothesis generation. After data collection, EDA is

completed. The information is effectively plotted, updated,

and presented without the need for assumptions in order

to assess the quality of the data and build models (23). We

applied the EDA technique to the HAM10000 dataset, which

has 7 skin cancer classes (i.e., bkl, nv, df, mel, vasc, bcc, and

akiec). The frequency distribution of all classes is illustrated in

Figure 3.

From meta_data feature matrix, identify the skin cancer cell

types that affect the number of patients represented in Figure 4.

The frequency of cell types by gender-wise distribution

is represented in Figure 5. After performing the EDA,

the next step is to balance the dataset by using

random oversampling.
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FIGURE 2

Samples of skin cancer classes.

FIGURE 3

Frequency distribution of classes.

3.2.3 Random over sampling
Random oversampling is an ML technique for unbalanced

dataset handling. A dataset that has significantly more samples

in one class than another is said to be imbalanced. This

imbalance could lead to an ML model that is biased against

the majority class. To balance the dataset, random oversampling

entails randomly multiplying instances from the minority class.

This approach replicates the minority class of samples that

naturally exist without adding any new information. The feature

set in the dataset is Y , and x is the label set with classes

C1 (minority class) and C2 (majority class). In the minority

class C1, the total number of instances is mC1 , and the total

number of instances mC2 is in the majority class C2. Using

random oversampling, the objective is to duplicate instances

from C1 to bring mC1 equal to mC2 (24–26) as can be seen in

Equations 1–3.

Initial level imbalance:

mC1 << mC2 (1)

Frontiers inMedicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2024.1495576
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alharbi et al. 10.3389/fmed.2024.1495576

FIGURE 4

Cell types skin cancer a�ected patients.

Target following oversampling:

m′c1 << mc2 (2)

Where n′c1 is the new samples set for the minority class after

oversampling.

Duplication and random selection: The total samples to

duplicate is m′C1
− mC2 . If NC1 indicates the samples set in class

C1. Where N′C1
is the new samples set for the minority class after

random oversampling.

N′C1
= NC1 ∪ randomsample(NC1 ,mC2 −mC1 ) (3)

3.2.4 Data splitting
To evaluate the interpretation of DL models, the dataset is split

into test, validation, and training sets. This prevents overfitting

and aids in determining the models’ degree of generalizability. The

HAM10000 dataset was first split into 80% training and 20% testing

sets for this inquiry. For the training and testing split, the following

formula was applied mathematically:

Training set size

Xtrain = round(X × train ratio) (4)

Test set size

Xtest = X − Xtrain (5)

Equations 4, 5 display the training and testing sizes. X is

the total number of occurrences in the dataset. Both train_ratio

and test_ratio are the ratio of instances to the training set

and the proportion of instances to the test set, respectively.

These equations give the dimensions of the training and test

sets based on the designated ratios. Changing the train_ratio

will change the training set’s size directly, but changing the test

set’s size after delegating it to the training set will change its

size implicitly.

3.3 Models selection

The process of selecting a model includes selecting the

appropriate neural network design, optimization strategies,

and hyperparameters. Configure hyperparameters for

batch size, learning rate, dropout rate, number of layers,

activation parameters, and so forth. Hyperparameter

tweaking can have a big impact on the model’s performance.

Each model architecture is trained on the training set

using a distinct set of hyperparameters and the pertinent

evaluation criteria. This study employed a number of DL

models, including the original CNN, the CNN without

batch normalization, the CNN with minimal filters, and

the strides CNN model, to categorize and forecast skin

cancer cases.
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FIGURE 5

Cell types frequencies.

3.4 Convolutional Neural Network

Convolutional Neural Networks (CNN) use convolutional

layers to filter inputs and extract useful information. Convolutional

filters are connected to the input via CNN’s convolutional layers

to calculate the output of the neurons connected to specific input

regions. It facilitates the extraction of an image’s temporal and

spatial properties. The three main layers that comprise the CNN

model are the convolutional layer, max-pooling layer, and fully

connected layer. The convolutional layer is composed of three

crucial parameters: pitch, padding, and filter size. Each layer uses a

variety of filters to extract detailed features. The convolutional layer

applies a filter (or kernel) across the input image to produce feature

maps (Equation 6).

Output(k, l, h) =
∑a

i=1
∑b

j=1
∑C

c=1 Yi,j,c,h · Input(k+ i− 1, l+ j− 1, c)+ bh

(6)

The output value at location (k, l) in the hit feature map is

denoted by the expression Output(k, l, h). For channels c and filter

h, the weight of the filter at location (I, j) is CYi,j,c,h. The input value

at location (k + i − 1, l + j − 1, c) + bh for channel c is denoted as

Input(k + i − 1, l + j − 1, c) + bh. bh is the bias term for filter h, C

is the number of input channels, and aXb is the filter’s size.

Stride claims the filters are moving inside the images. CNN

performs worse when the value is more than two. The stride size

is either one or two. In cases where the convolutional layer’s filter

partially obscures the input images, zero padding is necessary to

preserve the structural assessment. Every convolutional layer has a

distinct purpose; for example, the first layer draws attention to the

margins of the lesions, the second layer extracts intricate geometric

details, and the third layer draws attention to the shapes and colors

of the lesions. The ReLU layer passes positive values in the feature

map, whereas negative values are suppressed and converted to zero

(27). To reduce the dimensionality of the collected features, utilize

the max-pooling layer (Equation 7). The two most widely used

techniques for the max-pooling layer are the max and average.

Output(a, b, c) = max(i,j)∈window Input(a+ i, b+ j, c) (7)

The max operation is applied over a predetermined window

(e.g., 2 × 2) in the input data, where Output(a, b, c) is the output

value at position (a, b) in channel c, and Input(a+i, b+j, c) refers to
the input values within the pooling window. The image is classified

into many classes using the fully connected layer (Equation 8)

(28, 29).

Outputh =
M

∑

j=1
Wj,h · Inputj + bh (8)

Where the h − thneuron’s output in the fully connected layer

is denoted by Outputh, the weight that connects the j − th input

neuron to the h − th output neuron is denoted by Wj,h, and the

input value from the j− th neuron in the preceding layer is denoted

by Inputj. There are a total of N input neurons. The bias term for
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FIGURE 6

Convolutional neural network architecture.

the h− th neuron is bh. Feature map normalization is accomplished

using the batch normalization layer as given in Equation 9.

ŷ = y− µ√
σ 2 + ǫ

Output = γ ŷ+ β (9)

The input batch mean and variance are denoted by µ and σ 2,

respectively, where y is the input value. A tiny constant called ǫ

is added for numerical stability. Learnable parameters γ and β

shift and scale the normalized value. These tiers expedite network

regulation and training. Dropout layers (Equation 10) are used in

certain problems and are quite helpful in resolving over-fitting

problems in networks (30).

Outputi =
{

Inputi
1−p with probability (1− p)

0 with probability p
(10)

where the input value for the i − th unit is denoted by Inputi. The

output value for the i − th unit following dropout is denoted by

Outputi. The dropout rate, or the likelihood of setting a unit to

zero during training, is denoted by p. The architecture of the CNN

model is represented in Figure 6.

This study utilized the four variants of CNN models: original

CNN, no batch normalization, few filters and strided CNN model.

The original CNN model summary is provided in Figure 7.

Sequential CNN architecture includes information on the kind

of layer, output shape, and a number of parameters. Multiple

layers, including Conv2D, BatchNormalization, MaxPooling2D,

Flatten, Dense, and Activation, are included in the model.

The MaxPooling2D layers decrease spatial dimensions, while

the Conv2D layers gradually increase the depth of the data.

After a flattened layer, Dense layers are applied to reduce

the data to a lower-dimensional space for final classification.

BatchNormalization layers are used to normalize outputs. With

227,783 of the model’s total 228,455 parameters being trainable, the

complexity and learning potential of the model are demonstrated.

Runtime statistics are maintained by non-trainable parameters,

which are frequently present in BatchNormalization layers.

Figure 8 illustrated the no batch normalization CNN model.

This CNN model uses multiple convolutional layers to extract

features, then pooling layers to reduce dimensionality, flattening

the output before processing it through fully connected dense layers

for classification. It does not have batch normalization layers, which

are usually used to speed up and stabilize training. All of themodel’s

parameters are trainable, meaning that it can learn everything from

the data without any non-trainable elements.

The few filters CNNmodel is represented in Figure 9. However,

with the balance of less complexity and capacity, the model can be

trained more quickly with fewer filters. Batch normalization layers

follow all convolutional and dense layers to stabilize the training

process. Completing multi-class classification tasks is appropriate

for this model because its final fully connected layer corresponds

to seven output classes. Merely a minor portion linked to the

batch normalization layers is untrainable, whereas the rest of the

parameters are trainable.

Figure 10 illustrated the sequential strided CNN model. To

minimize the spatial dimensions and go away with the necessity

for separate pooling layers, the model employs the use of

strided convolutional layers. This makes feature extraction more

effective. Each convolutional and dense layer is followed by batch

normalization layers that accelerate and stabilize the training

procedure. A fully linked layer with seven units is the result

appropriate for a seven-class classification problem. Because there

are so few non-trainable parameters associated with the batch

normalization layers, the model is able to derive a lot from the data.

3.4.1 Feature extraction from CNN model
The goal is to take an existing CNN model and truncate it

by deleting a certain number of layers from the end. CNN-based

models extract significant features without human inspection. The

DL advantage allows for the most effective feature extraction from

the training dataset using convolutional filters. After extracting the
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FIGURE 7

CNN model summary.

features, the CNN model is integrated with ML model SVM, RF,

and LR using grid search for best parameters.

Grid Search: Grid search is an ML methodology that

methodically explores every potential value within a predetermined

grid to get the optimal set of hyperparameters for a model.

The model’s performance is greatly impacted by hyperparameters,

which are variables that are established prior to training, such

as the learning rate or number of layers. A variety of possible

values are defined, models are trained for each combination, and

their performance is assessed. Cross-validation is frequently used

during this procedure to ensure dependability. Although grid

search is thorough and simple to use, it can be computationally

expensive, particularly when working with large datasets or

several hyperparameters. Options such as Bayesian optimization or

random search can be more efficient since they concentrate on the

most promising regions of the hyperparameter space.

CNNSVM: Use cross-validation to train and assess an SVM

classifier on a dataset. Following cross-validation, the model is
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FIGURE 8

NO batch CNN model summary.

tested on a different test set and trained on the full training set. The

primary assessment parameter is accuracy. The hyperparameters

C and γ are set to specified values in the SVM model, which

employs the RBF kernel. The architecture of the CNNSVM model

is represented in Figure 11.

CNNRF: Employs cross-validation to train and assess an RF

classifier on a dataset. Following cross-validation, the model is

tested on a different test set and trained on the full training set.

The RF model is configured with specific hyperparameters that

control the number of features considered at each split, the smallest

amount of samples required to divide a node, the depth of the

trees, and the overall amount of trees in the forest. The evaluation

demonstrates the model’s performance on both unseen test data

and during cross-validation.

CNNLR: Use cross-validation on a dataset to train and assess

an LR classifier. Certain hyperparameters are set up in the model to

regulate regularization and complexity. After assessing the model’s

performance through cross-validation, the complete training set

is used for training. The architecture of the CNNLR model is

represented in Figure 12.

Algorithm 1 begins with the loading of the HAM10000 dataset,

which is made up of tagged images of skin lesions. It then

explains how to forecast skin cancer with a deep-learning approach.

Preparing the data involves cleaning it, analyzing it exploratorily,

and balancing the dataset by randomly oversampling. Next,

training and testing sets of data are created from the material. An

extractive feature map into a high-dimensional space is made using

a CNN model for the classification of skin lesions. Grid search

for the best hyperparameters is used to build hybrid models that

combine CNN with SVM, RF, and LR. Cross-entropy is used to

calculate the loss as the model is trained over a number of epochs

and batches. At each batch, predictions are made. The training

model, performance metrics, and test predictions are returned as

part of the final output, which is assessed using evaluation metrics.

4 Experimental results and analysis

The evaluation and assessment of experimental findings and

interpretation from experiments or data gathered as part of a study.

This study assesses the efficiency of the framework using a variety

of evaluation criteria, each of which offers valuable insights into the

model’s workings.

The investigations in this study were conducted using

a predetermined set of instruments and technology. The

development environment used was Jupyter Notebook, which

is well-known for its intuitive interface and capacity to facilitate

interactive programming, particularly with Python. Version

3.8.8 of Python was used, which provides a stable and effective

environment for Windows applications to operate properly. The

computational architecture was based on a laptop with an HP

Core i5 CPU, which, although being a mid-range system, provided

sufficient power for the experimental activities. When combined

with significant memory resources, the processor’s capabilities

allowed the model to function well even in situations where more

processing was needed. Several metrics were used to assess the

framework’s performance, providing valuable data about model

accuracy, processing speed, and general usefulness. Through

consistent dependability and efficiency throughout the study, this
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FIGURE 9

Few filters CNN model summary.

configuration guaranteed that the hardware and tools met the

needs for carrying out challenging deep learning tasks.

4.1 Evaluation metrics

This research evaluates the framework’s effectiveness based

on a wide range of evaluation criteria, all of which provide

insightful insights into how the model functions. Accuracy,

the first parameter, is usually used as the benchmark for

assessing performance. Based on the overall amount of the

sample, it is calculated as the portion of accurately identified

samples. Equation 11 highlights the parameter’s simplicity yet

its significant influence, simplifying the process. The degree

to which a model or system predicts the positive class is

indicated by its accuracy. It is a representation of the model’s

accuracy and the level of trust placed in its capacity to generate

exact forecasts.

Acc = TP + TN

TP + TN + FP + FN
(11)

Precision:

The accuracy with which a model or system

predicts the positive class is defined as its precision.

It symbolizes both the model’s accuracy and the level

of trust in its capacity to generate accurate forecasts.

The metric fundamental equation is made easier to

understand by showing this value proportionately
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FIGURE 10

CNN strided model summary.

in Equation 12.

Precision = TP

TP + FP
(12)

Recall:

The ratio of each positive occurrence to the percentage of

exact positive forecasts is the focal point of the evaluation metric

known as recall, also referred to as sensitivity. Equation 13’s

computation demonstrates the special benefit of this balanced

viewpoint for estimation.

Recall = TP

TN + FN
(13)

F1-Score:

The appropriately identified F1 score functions as an

equilibrium of memory and precision because it can effectively

communicate the essence of a balanced performance. Combining

these two metrics yields the F1-score, a popular estimate of model

performance that is especially useful for evaluation. This basic

estimating procedure is well described by Equation 14, which looks

complicated but provides much information.

F1− score = 2× Precision+ Recall

Precision+ Recall
(14)

The Receiver Operating Characteristic-Area Under the Curve

(ROC-AUC) is a useful graphical tool for evaluating the

effectiveness of classification algorithms. It presents the trade-off,

across different threshold settings, between the genuine positive

rate (sensitivity) and the false positive rate (1 - specificity). The loss

function measures the difference between the expected and actual

values in deep learning, sometimes called the cost function. Because

it directs the optimization process, it is essential to the training

of neural networks. Reducing this loss function is the objective

of training.

Table 2 demonstrates the original CNN model results for skin

cancer detection. For Class 0, the model performs flawlessly,

displaying a 1.00 F1-Score, Precision, and Recall. In Class 2, the

model obtains a balanced F1-Score of 0.96 with a Precision of
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FIGURE 11

Architecture of CNNSVM model.

FIGURE 12

Architecture of CNNLR model.

0.93, suggesting that 93% of the predicted positives are right,

and a Recall of 0.99, meaning it correctly detects 99% of real

instances. Class 4 shows that the model occasionally misses real

positives, as evidenced by the somewhat lower F1-Score of 0.92

despite the Precision staying high at 0.99 and the Recall falling

to 0.86. The model performs admirably in Classes 1, 3, 5, and 6.

With support values of 1,318, 1,351, and 1,358, respectively, the

Precision, Recall, and F1-Scores for Classes 1, 3, and 5 are all

perfect at 1.00, demonstrating perfect prediction and identification

of instances inside these classes. Despite a minor decline in

precision, the model for Class 6 maintains a high recall of 0.99

and a precision of 0.94, producing a strong F1-Score of 0.97. One

thousand three hundred and sixty five is the support number

for Class 6.

Table 3 indicates variation in performance across classes for the

CNN model without batch normalization. With respect to Class 0,

the model’s precision (Precision 0.94%) is quite high, but its recall

(0.63%) is low, meaning that the F1-Score is 0.76%. Class 1’s F1-

Score of 0.74%, Precision of 0.71%, and Recall of 0.77% indicate a

respectable level of balance. Class 2 is a problem for the model; the

F1-Score is 0.62%, and the Precision is poor at 0.52%, even with a

Recall of 0.77%. With an F1-Score of 0.88% and a high Precision of

0.98%, it does well in Class 3. With a precision of 0.60%, recall of

0.68%, and an F1-Score of 0.64% for Class 4, the model performs
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1: Load skin cancer HAM10000 dataset: X = {x1, x2, . . . , xm}
2: function DataPreprocessing

3: Dc = Clean data

4: EDA = Exploratory Data Analysis

5: Ros = Random Oversampling

6: Split data: DS = (Ktrain , ktest , Ltrain, ltest)

7: function CreateDLModel

8: CNN = Feature extraction with CNN

9: M = {f1, f2, . . . , fn} (feature vector mapped to

high-dimensional space)

10: function CreateEnsembleModel

11: CNNSVM, CNNRF, CNNLR = Grid search optimization

12: for each epoch do

13: for each batch do

14: x = model(M)

15: Loss = cross_entropy(X, x)

16: Em ← Evaluation metrics

17: end for

18: end for

19: return Result

Algorithm 1. Pseudo code for skin cancer prediction.

TABLE 2 Original CNNmodel result.

Labels Precision Recall F1-
Score

Support

0 1.00 1.00 1.00 1,359

1 0.99 1.00 1.00 1,318

2 0.93 0.99 0.96 1,262

3 1.00 1.00 1.00 1,351

4 0.99 0.86 0.92 1,374

5 1.00 1.00 1.00 1,358

6 0.94 0.99 0.97 1,365

Accuracy - - 0.98 9,387

Weighted Avg 0.98 0.98 0.98 9,387

moderately. With an F1-Score of 0.92%, the model predicts Class

5 (Precision 1.00%) with high accuracy, but it does neglect some

cases. With a Precision and Recall of roughly 0.64% for Class 6,

the model’s performance is moderate but balanced, yielding an

F1-Score of 0.64%. With a Macro Average of 0.77% for Precision,

0.73% for Recall, and 0.74% for F1-Score, the same as theWeighted

Average, the overall accuracy is 73%.

The performance of the CNN model with fewer filters varies

depending on the class provided in Table 4. It yielded an F1-Score

of 0.87% for Class 0, where it attains flawless precision but misses

certain occurrences. Class 1 has an F1-Score of 0.84%, indicating

great precision. Class 2 has trouble with accuracy but makes up for

it with a 0.88% recall rate and an F1-Score of 0.79%. With a flawless

recall and an F1-Score of 0.95%, the model performs remarkably

well for Class 3. Class 4’s F1-Score of 0.77% indicates that it has a

reasonable balance. Class 5 obtains an F1-Score of 0.96%, indicating

excellent overall performance and flawless precision. Class 6 has an

TABLE 3 No batch norm CNNmodel classification result.

Labels Precision Recall F1-
Score

Support

0 0.94 0.63 0.76 1,359

1 0.71 0.77 0.74 1,318

2 0.52 0.77 0.62 1,262

3 0.98 0.81 0.88 1,351

4 0.60 0.68 0.64 1,374

5 1.00 0.86 0.92 1,358

6 0.64 0.63 0.64 1,365

Accuracy - - 0.73 9,387

Weighted Avg 0.77 0.73 0.74 9,387

TABLE 4 Fewer filters CNNmodel classification results.

Class Precision Recall F1-
Score

Support

0 1.00 0.78 0.87 1,359

1 0.99 0.72 0.84 1,318

2 0.72 0.88 0.79 1,262

3 0.91 1.00 0.95 1,351

4 0.82 0.72 0.77 1,374

5 1.00 0.93 0.96 1,358

6 0.70 0.97 0.81 1,365

Accuracy - - 0.86 9,387

Weighted Avg 0.88 0.86 0.86 9,387

TABLE 5 Strided conv model classification result.

Class Precision Recall F1-
Score

Support

0 0.99 1.00 1.00 1,359

1 0.98 1.00 0.99 1,318

2 0.96 0.99 0.97 1,262

3 1.00 1.00 1.00 1,351

4 0.99 0.86 0.92 1,374

5 1.00 0.99 1.00 1,358

6 0.92 0.99 0.96 1,365

Accuracy - - 0.98 9,387

Weighted Avg 0.98 0.98 0.98 9,387

F1-Score of 0.81% because of its strong recall and lower precision.

With both macro and weighted averages for precision, recall, and

F1-score at 0.86%, the total model accuracy is 86%.

Table 5 demonstrates the strided CNN Model classification

result. All classes exhibit near-perfect precision, recall, and F1-

scores, indicating the model’s highly accurate performance. Class

0 and Class 3 exhibit perfect recall, precision, and F1-scores of
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FIGURE 13

Graphical visualization of CNN model. (a) Training graph. (b) Loss graph.

1.00%. Class 1 and Class 5 also exhibit excellent performance, with

F1-scores approaching 1.00% and near-perfect precision of 0.98%

and 1.00%, respectively, due to great recall. In addition, Class 2

and Class 6 exhibit good performance, with F1-scores of 0.97%

and 0.96% resulting from somewhat lower precision (0.96% and

0.92%) but high recall. Class 4’s precision of 0.99% indicates good

performance, but its recall of 0.86% yields a somewhat lower F1-

score of 0.92%. The model’s overall accuracy is 0.98, while its

precision, recall, and F1-score macro and weighted averages are

all 0.98, demonstrating steady and reliable performance across

the dataset.

A Convolutional Neural Network (CNN) model’s training

performance is displayed graphically in Figure 13, with an emphasis

on validation accuracy and loss over a number of epochs. The

X-axis represents the number of epochs, and validation accuracy

and loss are displayed in two distinct subplots on the Y-axis. The

original CNN model, one without batch CNN, one with fewer

filters, and one employing strided convolutions are all contrasted in

the graph. Batch normalization exhibits improvements in stability

and convergence, whereas fewer filters and strided convolutions,

depending on their implementation, may result in poorer accuracy

and higher loss. Over time, the accuracy of training generally

increases, and the loss is generally reduced.

In Figure 14, the confusion matrices of four distinct CNN

models for the prediction of skin cancer are provided. Figure 14a

demonstrates that there are many accurate predictions for class

0, 1,359 cases, 1,318 cases for class 1, 1,351 for class 3, and

1,358 skin cancer cases are predicted correctly. For class 2, 1,255

cases are predicted accurately, while 7 cases are misclassified.

Similarly, 1,179 cases are diagnosed correctly, and 195 cases are

misdiagnosed. For class 6, 1,355 cases are predicted correctly, and

9 cases are misclassified. Figure 14b represents the no-batch CNN

model where numerous instances on the diagonal are accurate,

and a large fraction of the projections on the off-diagonal are

incorrect. Figure 14c represents the few filters CNN model where

numerous instances on the diagonal are accurately predicted (i.e.,

1059 instances for class 0, 954 for class 1, 1,112 cases for class 2,

1,351 instances for class 3, 985 skin cancer cases for class 4, 1,260

and 1,318 cases for class 5 and 6 respectively). A large fraction

of the instances on the off-diagonal are misdiagnosed. Figure 14d

demonstrates the strided CNN model where numerous instances

on the diagonal are accurately predicted, and few cases on the

off-diagonal are misclassified.

The Receiver Operating Characteristic (ROC) curves of variant

CNNmodels are illustrated in Figure 15. ROC curves are produced

by plotting the true positive rate (TPR) against the false positive

rate (FPR). These curves are used to display the effectiveness of

CNN algorithms. A curve that approaches the upper-left corner

indicates better model performance. A number of CNN model

modifications, including the original, without batch CNN model,

with fewer filters, and with strided convolutions, are compared by

means of their ROC curves. The original CNN usually performs

well, but the aberrations of other variations (such as curves further

from the top-left corner) suggest potential issues such as lower

complexity learning or loss of spatial information.

Table 6 compares the results of three integrated models

(CNNSVM, CNNRF, and CNNLR) utilizing metrics for

classification using a dataset on skin cancer. The CNNSVM

model demonstrates nearly perfect classification performance

for various kinds of skin cancer, such as Actinic keratoses, Basal

cell carcinoma, Dermatofibroma, and Pyogenic granulomas.

Despite having far lower F1 scores (0.97%) for melanoma and

benign keratosis, the model still exhibits good recall and precision.

Melanocytic nevi have an F1-Score of 0.94 and a Recall that is

marginally lower at 0.91%. The model’s overall accuracy is 98%,

with both the Macro and Weighted averages of Precision, Recall,

and F1-Score at 0.98%. The CNNRF model yields impressive

classification results, with good Precision, Recall, and F1-Score

(1.00%) for most kinds of skin cancer, including Actinic keratoses,

Basal cell carcinoma, Dermatofibroma, and Pyogenic granulomas.

Both benign keratosis and melanoma perform well, with F1-Scores

of 0.98%, because of their good precision (0.96%) and outstanding

recall (1.00%). Melanocytic nevi has a 0.95% F1-Score because

of its high Precision and somewhat poor Recall (0.91%). The
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FIGURE 14

(a) Confusion matrix of CNN; (b) no batch CNN confusion; (c) confusion matrix of fewer filters CNN model; (d) strided CNN model confusion matrix

for skin cancer detection on HAM10000 dataset.

weighted and macro averages of the model are both 0.99%,

suggesting consistently strong performance across all classes, and

its overall accuracy is 99%. The CNNLR model demonstrates

exceptional classification performance for actinic keratoses, basal

cell carcinoma, dermatofibroma, and pyrogenic granulomas, with

perfect Precision, Recall, and F1-Scores (1.00%). Melanoma and

benign keratosis both perform well, with precision values of 0.96

and 0.95 and F1-scores of 0.97%, respectively. Melanocytic nevi’s

F1-Score is 0.94% because of its higher Precision of 0.98 and lower

Recall of 0.91%. Overall, the model has a 99% accuracy rate; its

macro and weighted averages are 0.99%, and it regularly performs

well in all forms of skin cancer.

Table 7 represents the comparison of the proposed

methodology with existing studies. The study by Andleeb et

al. (17) revealed an accuracy of 75.5% in the comparison of

different models for skin cancer diagnosis, which is quite low

compared to other models. With an accuracy of 92.5%, the research

by Harish et al. (13) achieved a noteworthy improvement. The

accuracy was further improved to 93.8% by Naeem et al. (6),

suggesting that better feature integration or the adoption of a

more complex model were factors in the higher performance. In

contrast, Chaturvedi et al.’s model (19) had an accuracy of 90.7%.

According to Shapna et al. (20), the model performed admirably,

achieving 91.3% accuracy. With an astounding accuracy of 99%,

the proposed model in this analysis performs noticeably better

than compared to current methods.

4.2 Findings and discussion

Deep learning models are used to analyze and interpret medical

images in order to look for symptoms of diseases like skin cancer.

Abnormalities in demographic images are identified using this

method. The experiment shows that the proposed model has a
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FIGURE 15

(a) ROC curve of CNN; (b) no batch CNN ROC curve; (c) ROC curve of fewer filters CNN model; (d) strided CNN model ROC curve for skin cancer

detection on HAM10000 dataset.

satisfactory performance on the HAM10000 image dataset. The

effectiveness of the proposed model is evaluated using statistical

analytic techniques. Statistical analysis is used to evaluate the DL

model outputs for effectiveness, generalizability, and application.

“Model complexity” describes the degree of complexity in a model’s

structure and ability to find patterns and correlations in the image

data while discussing DL. To determine its level of complexity, a DL

model’s architecture uses a variety of factors, including weights and

biases. A model’s complexity grows with the amount of parameters

provided, and this is mostly expressed in the number of layers,

neurons per layer, and connections between them. The ability of

the model to recognize complex patterns and correlations in the

data is increased with each further layer or neuron by adding

new weights and biases to be learned. The model becomes more

expressive as the number of parameters increases, which enables

it to represent functions that are progressively more complex.

However, there is a cost to this enhanced expressiveness: in order

to train and produce predictions, the model needs more memory

and processing capacity, which increases its computational cost.

This parameter diversity improves the model’s capacity to identify

intricate patterns. Still, it also increases the possibility of overfitting,

particularly when the model begins to learn from the training

set rather than make generalizations from it. When a model

performs well on training data but is unable to predict fresh,

unseen data correctly, this is known as overfitting. The tendency

of large models with numerous parameters to fit the training data

too closely is a typical problem in DL. Regularization techniques,

including dropout, weight decay (L2 regularization), and batch

normalization, are used to reduce overfitting in DL models. By

normalizing each layer’s output, batch normalization increases

training stability and speed. To prevent excessive weights, weight

decay adds a penalty to the loss function, which helps prevent the

model from being too complex. During training, dropout randomly

eliminates neurons to help the model learnmore resilient, universal
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TABLE 6 Integrated models result.

Validation Labels Precision Recall F1-score Support

CNNSVM Actinic keratoses 1.00 1.00 1.00 1,359

Basal cellcarcinoma 0.99 1.00 1.00 1,318

Benign keratosis 0.96 0.99 0.97 1,262

Dermatofibroma 1.00 1.00 1.00 1,351

Melanocytic nevi 0.98 0.91 0.94 1,374

Pyogenic granulomas 1.00 1.00 1.00 1,358

Melanoma 0.95 0.99 0.97 1,365

Accuracy - - 0.98 9,387

Weighted avg 0.98 0.98 0.98 9,387

CNNRF Actinic keratoses 1.00 1.00 1.00 1,359

Basal cellcarcinoma 0.99 1.00 1.00 1,318

Benign keratosis 0.96 1.00 0.98 1,262

Dermatofibroma 1.00 1.00 1.00 1,351

Melanocytic nevi 1.00 0.91 0.95 1,374

Pyogenic granulomas 1.00 1.00 1.00 1,358

Melanoma 0.96 1.00 0.98 1365

Accuracy - - 0.99 9,387

Weighted avg 0.99 0.99 0.99 9,387

CNNLR Actinic keratoses 1.00 1.00 1.00 1,359

Basal cellcarcinoma 0.99 1.00 1.00 1,318

Benign keratosis 0.96 0.99 0.97 1,262

Dermatofibroma 1.00 1.00 1.00 1,351

Melanocytic nevi 0.98 0.91 0.94 1,374

Pyogenic granulomas 1.00 1.00 1.00 1,358

Melanoma 0.95 0.99 0.97 1,365

Accuracy - - 0.99 9,387

Weighted avg 0.99 0.99 0.99 9,387

properties. When combined, these methods aid in balancing model

complexity and enhance performance on untested data. Deep

Learning models (CNN, no batch normalization, few filters and

strided CNN) can enhance the model’s performance. To solve the

problem of classifying demographic images, this work employs

DL models. The experiment results show that the proposed DL

model performs more accurately and efficiently than conventional

techniques. The test findings show that the proposed model

performs better than other techniques for predicting skin cancer.

5 Conclusion

This article presented four variants of the CNN model (i.e.,

original CNN, no batch normalization CNN, few filters CNN,

and strided CNN) for the classification and prediction of skin

cancer in lesion images with the aim of helping physicians

in their diagnosis. The study also presented the hybrid model

CNN-SVM, CNN-RF, and CNN-LR, using a grid search for the

TABLE 7 Comparison with existing techniques.

References Accuracy

Andleeb et al. (17) 75.5%

Harish et al. (13) 92.5%

Naeem et al. (6) 93.8%

Chaturvedi et al. (19) 90.7%

Shapna Akter et al. (20) 91.3%

Proposed model (CNNLR) 99 %

best parameters for the classification. The findings demonstrate

that the proposed approach (CNNLR), which uses the patient’s

metadata (i.e., the lesion’s anatomical site, age, and gender) as

the model’s input data, enhances the performance of skin lesion

classification by at least 5%. The study concludes that DL models,

especially different CNN architectures and hybrid models, hold
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significant promise in enhancing the accuracy of skin cancer

diagnosis. The proposed approaches, which surpass traditional

diagnostic methods, achieve high accuracy rates by using lesion

images combined with patient metadata. The study acknowledges

the ongoing need for a clinically sound and widely applicable

method of skin cancer screening despite these promising findings.

Future work in skin lesion categorization can focus on integrating

metadata with image-based deep-learning algorithms. CNN and

recurrent neural networks (such as LSTM or BiLSTM) used in

hybrid models might be used to extract correlations between

temporal metadata and visual attributes. More sophisticated hybrid

methods like CNN-XGBoost, CNN-SVM, and CNN-Random

Forest could enhance resilience. Critical areas of an image might

be given priority by attention processes or Transformer-based

models, which would also dynamically weigh the information.

Model adaptation to new datasets can be improved by meta-

learning techniques like Model-Agnostic Meta-Learning (MAML).

Finally, simultaneous processing of images and metadata using

multimodal deep learning architectures may enhance classification

performance and clinical usefulness.
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