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Introduction: ACE2 and TMPRSS2 represent the major gateways for SARS-
CoV-2 cell entry. The presence of functional ACE2 and TMPRSS2 genetic 
polymorphisms that affect gene expression may affect the risk of severe form of 
COVID-19 and its fatal outcome.

Material and patients: This observational study enrolled 178 hospitalized 
patients diagnosed with SARS-CoV-2 infection at the University Clinical Centre 
of Kragujevac, Serbia. Demographic, clinical, and laboratory data were gathered 
at admission. Genotyping for single nucleotide polymorphisms of ACE2 
(rs2106809 and rs2074192) and TMPRSS2 (rs2070788 and rs4818239) was 
performed using the Real-Time PCR method with TaqMan assays.

Results: Controlling for other factors of influence, such as CCI, N/L ratio, LDH 
level, and pO2, we showed that females with TMPRSS2 rs2070788 A/A genotype 
were less likely to develop severe COVID-19 (odds ratio [OR] [95% confidence 
interval (95% CI)]: 0.030 [0.001; 0.862]). Additionally, the likelihood of dying 
of SARS-CoV-2 infection was lower in female carriers of at least one ACE2 
rs2106809 C allele (OR [95% CI]: 0.004 [0.000; 0.981]).

Conclusion: Our findings indicate TMPRSS2 rs2070788 and ACE2 rs2106809 
polymorphisms as independent predictors of severity and outcome of 
COVID-19 in females.
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1 Introduction

Since the beginning of the COVID-19 pandemic, angiotensin-
converting enzyme 2 (ACE2) has emerged as one of the key proteins 
in the pathogenesis of this infectious disease. This transmembrane 
protein, predominantly expressed on alveolar lung cells (1), assumes 
the role of a receptor for the SARS-CoV-2 virus and enables its entry 
into human cells (2). Variations in ACE2 gene are known to affect the 
ability of ACE2 to bind to coronaviruses (3), and vast inter-ethnic 
differences in minor allele frequencies of its polymorphisms suggest 
their impact on the differences in development, course, and outcome 
of SARS-CoV-2 infection among populations. The possible 
significance of ACE2 genotype is further supported by recent 
preliminary reports of an association between severe COVID-19 (4). 
On the other hand, the clinical effects of some of the frequent and 
functional ACE2 SNPs, such as rs2106809 and rs2074192, have been 
associated with circulating ACE2 levels only in females (5). The 
observed difference in ACE2 expression in males as compared to 
females, which could be explained by on the X ACE2 gene location on 
the X chromosome (6), is expected to contribute to sex-related 
disparities in COVID-19 outcomes.

The fusion of SARS-CoV-2 with the host cell and the subsequent 
onset of infection is facilitated by several types of proteases, the most 
important being transmembrane serine protease (TMPRSS2) (7). Like 
ACE2, TMPRSS2 is mainly expressed on the alveolar lung cells surface 
(8), but also in many other tissues and organs that could become the 
loci of complications in severe forms of COVID-19 (9). The role of 
TMPRSS2  in COVID-19 is further confirmed by the fact that 
TMPRSS2 inhibitors approved for clinical use (such as camostat 
mesylate—a drug used in the treatment of chronic pancreatitis) can 
block SARS-CoV-2 virus infection (7). The TMPRSS2 gene is 
polymorphic, and some of its SNPs, such as rs2070788, have already 
been confirmed as a significant risk factor for influenza (10). Similarly, 
recent in silico analyses have introduced the possibility that many 
other TMPRSS2 polymorphisms, including rs4818239, may affect 
COVID-19 infection (11). Having in mind the difference between 
sexes in terms of COVID-19 susceptibility and outcome (12, 13), the 
possible role of TMPRSS2 genotype in this disease is further supported 
by its androgen-dependent regulation (14).

Given that ACE2 and TMPRSS2 represent the major gateways for 
SARS-CoV-2 cell entry, their sex-dependent expression strongly 
advocates for COVID-19 studies which would take sex into account 
when investigating the role of ACE2 and TMPRSS2 polymorphism. To 
meet these expectations, we  evaluated the association of 
polymorphisms of ACE2 and TMPRSS2 genes with the likelihood of 
severe COVID-19 and fatal outcome, separately in females and males.

2 Material and patients

2.1 Study population

This prospective observational study included 178 COVID-19 
patients, hospitalized at the University Clinical Center Kragujevac 
(UKCKG), Serbia. The sample size calculations were based on the 
study by Abdelsattar et al. (15), where TMPRSS2 gene polymorphism 
has been assessed as a potential determinate on COVID-19 infection 
severity. In this study, genotyping of COVID-19 patients for TMPRSS2 

rs12329760 revealed significantly higher frequency of homozygous 
carriers of variant allele among severe as compared to mild cases (16.4 
and 2.6%, respectively). Assuming type I error rate of 0.05 and 90% 
power level, minimum sample size for our study was thus estimated 
to 89 subjects per group, i.e., to 178 in total.

In this study, patients were diagnosed with COVID-19 by analysis 
of pharyngeal or nasopharyngeal swabs, using either reverse-
transcriptase polymerase chain reaction (RT-PCR) as a gold-standard 
method (16), or rapid antigen test (RAT) as an alternative. Although 
sensitivity of 69.86% generally precludes the routine use of RAT for 
diagnosis and surveillance of COVID-19 (17), due to high specificity 
(99.61%) i.e., low rate of false positive results (18), it was considered 
valid and reliable to confirm SARS-CoV-2 infection in our study 
participants, including those who were asymptomatic. Patients 
included in the study were Caucasians of Serbian nationality, 18 years 
of age or older; pregnancy and breastfeeding served as exclusion 
criteria. A signed written informed consent was obtained from all 
patients or their legal representatives, and all necessary demographic 
and clinical data were taken from the electronic medical records. The 
study was conducted under the ethical standards outlined in the 
Declaration of Helsinki and Good Clinical Practice. The local Ethics 
Committee of UKCKG, Serbia, approved the study protocol by 
decision no. 01/20–405.

2.2 Data collection

The data for each individual were collected from hospital medical 
records, and included age, sex, symptoms and signs of COVID-19, 
radiological imaging results, and laboratory parameters. Pre-existing 
medical conditions (subsequently used to calculate the Charlson 
Comorbidity Index, CCI), as well as prior therapy, were assessed 
at admission.

Study patients were classified according to the World Health 
Organization (WHO) guidelines into either mild/moderate, or severe/
critically severe COVID-19 cases, with the latter distinguished from 
the former by compromised respiratory function. All participants 
were followed up until hospital discharge or in-hospital death, with 
severity classification performed based on the worst clinical condition 
observed during hospitalization. Blood samples used for DNA 
extraction and genotyping was obtained during routine 
laboratory analyses.

2.3 DNA extraction and SNPs genotyping

Genomic DNA was extracted from 200 μL of whole EDTA blood 
using a commercial PureLink Genomic DNA Mini Kit (Invitrogen), 
according to the manufacturer’s recommendations. The quantity and 
quality of DNA samples were determined by spectrophotometry, 
using standard absorbance measurements at A260nm and A280nm 
on a Cary 300 UV–Vis spectrophotometer (Agilent Technologies). 
Samples having A260/A280 ratios ranging from 1.7 to 1.9 were 
suitable for genotyping (19).

Genotyping for ACE2 and TMPRSS2 gene polymorphisms was 
performed on Mic qPCR 48-well thermal cycler (BioMolecular 
Systems) using predesigned, commercially available TaqMan 
genotyping assay mix (20X; C__16098179_20 for rs2106809; 
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C__16163821_10 for rs2074192; C___2592038_1_ for rs2070788 and 
C___3080270_20 for rs4818239; Applied Biosystems, Foster City, 
United  States). TaqMan Genotyping Master Mix (2X; Applied 
Biosystems, Foster City, United  States) was used to amplify DNA 
segments of interest. The final volume of the reaction mixture of 20 μL 
contained 10 μL TaqMan Genotyping Master Mix (2X), 0.5 μL 
TaqMan genotyping assay mix (20X), 0.5 μL deionized water, and 9 μL 
genomic DNA (or deionized water as non-template control). Two 
researchers independently determined the genotype calls, and 
repeated samples revealed no inconsistencies.

2.4 Statistical analyzes

Genotyping results were presented as absolute and relative 
frequencies of alleles and genotypes, using additive, dominant, and 
recessive genetic models to capture different inheritance pattern. To 
assess the consistency of TMPRSS2 genotype frequencies with 
Mendelian inheritance, testing for the deviations from Hardy–Weinberg 
equilibrium (HWE) was performed by the chi-square (χ2) test with one 
degree of freedom (df = 1). Due to its location on the X chromosome, 
ACE2 was tested for HWE using χ2—maximum-likelihood test (χ2-ML) 
with df = 1, which compares the observed with the expected genotype 
frequencies, where latter is calculated based on both male and female 
data (20). Testing for linkage disequilibrium (LD) between 
polymorphisms of the same gene was conducted using Haploview 
software, version 4.2 (Broad Institute, Cambridge, MA, United States), 
providing insight into non-random associations between loci.

Data were analyzed using the statistical program SPSS version 26 
(IBM, Armonk, NY, United  States). The association between 
independent variables and the risk of severe disease development or 
in-hospital death was first tested by univariable logistic regression; this 
analysis was used to evaluate the individual effect of each of the 
independent variables, and to select those deemed relevant to undergo 
subsequent analyses. To further assess the simultaneous effect of 
multiple factors on the outcomes of interest, the stepwise backward 
multivariable logistic regression was performed, with an aim to 
indentify predictors to be included in the statistical model that will 
provide best prediction of a probability of COVID-19 progression or 
death. To determine the strength of the observed association, odds 
ratios (OR) with corresponding 95% confidence intervals (CI) were 
calculated for each independent variable. Hosmer-Lemeshow 
goodness-of-fit test was used to assess the prediction model’s quality. 
The significance level (p) for all tests was set at less than 0.05.

3 Results

Genotyping of study participants for TMPRSS2 and ACE2 
polymorphisms resulted in minor allele frequencies of 45.8, 46.9, 17.6, 
and 42.7% for rs2070788, rs4818239, rs2106809, and rs207419, 
respectively. Corresponding frequency distributions of alleles and 
genotype groups were separated according to sex, and presented in 
Supplementary Tables 1, 2. TMPRSS2 genotype frequencies were 
consistent with HWE for both rs2070788 (χ2(1) = 0.043, p = 0.836) 
and rs4818239 (χ2(1) = 0.303, p = 0.582). Similar was observed for 
ACE2 rs2074192 (χ2(1) = 2.705, p = 0.05), but not for rs2106809, 
which showed statistically significant difference between expected and 

observed genotype frequencies (χ2(1) = 9.255, p = 0.01). Testing for 
LD between polymorphisms at ACE2 and TMPRSS2 loci 
(Supplementary Figure 1) revealed very low and moderate linkage 
disequilibrium between rs2106809 and rs2074192, and between 
rs2070788 and rs4818239, respectively.

Tables 1–4 present the frequency distribution of allele and 
genotype groups of ACE2 and TMPRSS2 polymorphisms, stratified by 
sex, according to the severity of SARS-CoV-2 infection and its 
outcome. Univariate logistic regression did not detect any significant 
association of ACE2 alleles and genotype groups with either severity 
(Table 1) or outcome (Table 3) of COVID-19. Contrarily, TMPRSS2 
rs2070788 A and rs4818239 C alleles were significantly associated with 
a two- to three-fold decrease in the likelihood of developing severe 
COVID-19 in both females and males (Table 2), while the odds for 
in-hospital death decreased in the presence of rs2070788 A and 
rs4818239 C in females and males, respectively (Table 4).

Multivariable logistic models, developed to evaluate the 
association of genetic polymorphisms in ACE2 and TMPRSS2 genes, 
laboratory and clinical parameters at admission, and the likelihood of 
developing severe COVID-19 and lethal outcome in female and male 
patients separately (Table  5; Supplementary Table  3), revealed 
significance of tested polymorphisms only in female population. The 
final model of highest predictive quality (Hosmer-Lemeshow test: 
χ2(7) = 4.016, p = 0.778; Nagelkerke R2 = 75.2%, correctly classified 
83.3% of cases) showed that females carrying both major alleles of 
TMPRSS2 rs2070788 were less likely to develop severe COVID-19. On 
the other hand, the best fitting model for outcome prediction 
(Hosmer-Lemeshow test: χ2(7) = 0.341, p = 1.000; Nagelkerke 
R2 = 77.2%; adequately classified 92.4% of cases) revealed that the 
likelihood of surviving SARS-CoV-2 infection was 95% higher in 
females carrying at least one minor allele of ACE2 rs2106809 
compared to those carrying two major alleles.

4 Discussion

Although the WHO announced in May 2023 that COVID-19 no 
longer represents a public health emergency of international concern, 
the increase in the frequency of new subvariants of Omicron SARS-
CoV-2 continue to attract public attention (21). These new strains, 
especially BA.2.86 (Pirola) and JN.1, are characterized by more than 
30 mutations on the spike (S) protein (22), which heighten their ability 
to evade vaccine-induced immunity and increase the prevalence of 
COVID-19 worldwide (23). Therefore, even 4 years after the initial 
outbreak, the clinical presentation of SARS-CoV-2 infection is still 
variable, ranging from completely asymptomatic, to critically severe 
forms that are potentially life-threatening (24).

Despite well-established risk factors like age, sex, and chronic 
diseases, early identification of individuals at risk for severe viral 
infections remains important clinical challenge. Genetic variations, 
particularly of genes coding for receptors and enzymes responsible for 
viral entrance into the human organism, can significantly influence 
host response to SARS-CoV-2 infection (25). Our research highlights 
the potential of genetic markers associated with ACE2 and TMPRSS2 
in predicting the severity and outcome of COVID-19, especially in 
females. Specifically, our results indicate that female carriers of both 
major A alleles of TMPRSS2 rs2070788 and at least one minor G allele 
of ACE2 rs2106809 have lower odds of severe COVID-19 and fatal 
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outcome, respectively. To our knowledge, our study is the first to 
report the association of ACE2 rs2106809 with SARS-CoV-2 infection 
outcome, and one of the very few to describe the protective role of the 
TMPRSS2 rs2070788 A/A genotype on COVID-19 severity, both in 
females. Additionally, our study reaffirms the significance of certain 
clinical factors, such as CCI, N/L ratio (26), LDH level (27), and pO2 
at admission, in predicting COVID-19 severity and mortality.

ACE2 gene maps to X chromosome and codes for transmembrane 
protein ACE2 (28). There are two known forms of human ACE2: 
membrane-bound (mACE2) and soluble (sACE2), latter arising from 
the former by ADAM17-mediated cleavage and subsequent shedding 
of its extracellular catalytic domain from the membrane (28, 29). In 
the context of SARS-CoV-2 infection, mACE2 is identified as a 
receptor (7) that triggers conformational change of the virion (30), 
fostering its TMPRSS2-mediated proteolytic cleavage and consequent 
entry into the target cell (31). At the same time, sACE2 competes with 
mACE2 for binding to SARS-CoV-2, but without prompting entrance 
to the cell; this reduces the number of viral particles that will attach to 
the cell surface, providing protective effect against SARS-CoV-2 
infection (8, 31). In the context of COVID-19 severity and mortality, 
both mACE2 and sACE2 counteract the effects of its homolog 

angiotensin-converting enzyme (ACE) within renin-angiotensin-
aldosterone system (RAAS) axis, decreasing the level of angiotensin 
(Ang) II in favor of Ang (1–7). This leads to an increased activation of 
MAS instead of AT1R receptor, creating vasodilatatory and anti-
inflammatory effects that decrease the risk of severe form of the 
disease and its fatal outcome (32). Both of these cascades of events 
correspond well to the suggested considering COVID-19 as a dual 
phase phenomenon: in the first phase of infection, ACE2 promotes 
viral entry, but in the later phase, it acts protectively against respiratory 
failure and COVID-19-related death (33). However, upon infection, 
virion-bound mACE2 gets internalized along with the viral particle, 
decreasing the number of available ACE2 molecules on the cell 
membrane (34). Moreover, during the course of the disease, SARS 
coronaviruses, including SARS-CoV-2, downregulate ACE2 cell 
surface expression (35, 36). Within RAAS, reduction of mACE2 gives 
advantage to ACE, which shifts abovementioned Ang II/Ang (1–7) 
proportion toward the former, prompting its binding to ATR1. This 
further downregulates mACE2 (37), but also initiates a crucial 
mechanism of ADAM17 activation (38), which in turn triggers an 
increase in sACE2 level at the expense of mACE2 (28, 29). In line with 
these observations, previous studies reported elevated levels of 

TABLE 1 ACE2 frequency of allele and genotype group in male and female according severity of SARS-CoV-2 infection.

Male Female

Mild 
disease; 
n = 52

Severe 
disease; 
n = 54

OR [95%CI]a p
Mild 

disease; 
n = 39

Severe 
disease; 
n = 33

OR [95%CI]a p

Allele

rs2106809
T 73.1(38) 77.8(42) 1 ref. 89.7(70) 84.8(56) 1 ref.

C 26.9(14) 22.2(12) 0.776 [0.319; 1.883] 0.978 10.3(8) 15.2(10) 1.563 [0.578; 4.221] 0.379

rs2074192
G 62.2(28) 69.2(36) 1 ref. 51.3(40) 51.5(34) 1 ref.

A 37.8(17) 30.8(16) 0.732 [0.315; 1.700] 0.574 48.7(38) 48.5(32) 0.991 [0.514; 1.909] 0.978

Genotype group

Additive genetic model

rs2106809

T/T

NA

84.6(33) 72.7(24) 1 ref.

T/C 10.3(4) 24.2(8) 2.75 [0.742; 10.196] 0.130

C/C 5.1(2) 3(1) 0.688 [0.059; 8.026] 0.765

rs2074192

G/G

NA

30.8(12) 24.2(8) 1 ref.

G/A 41(16) 54.5(18) 1.687 [0.551; 5.171] 0.360

A/A 28.2(11) 21.2(7) 0.955 [0.259; 3.514] 0.944

Dominant genetic model

rs2106809
T/T

NA
84.6(33) 72.7(24) 1 ref.

T/C + C/C 15.4(6) 27.3(9) 2.062 [0.647; 6.573] 0.221

rs2074192
G/G

NA
30.8(12) 24.2(8) 1 ref.

G/A + A/A 69.2(27) 75.8(25) 1.389 [0.487; 3.957] 0.539

Recessive genetic model

rs2106809
T/T + T/C

NA
94.9(37) 97.0(32) 1 ref.

C/C 5.1(2) 3.0(1) 0.578 [0.050; 6.677] 0.661

rs2074192
G/G + G/A

NA
71.8(28) 78.8(26) 1 ref.

A/A 28.2(11) 21.2(7) 0.685 [0.231; 2.033] 0.496

The results are presented as relative (%) and absolute (n) frequency; p, probability; ref., reference category; NA, not applicable.
aunivariable logistic regression.
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sACE2  in COVID-19 patients that did not survive the infection, 
suggesting its potential role as an independent biomarker of 
COVID-19 mortality (39). The persistency of high sACE2 throughout 
hospitalization in SARS-CoV-2 non-survivors, as well as the clear 
disparity in its level observed between males and females, point 
toward the role of both ACE2 genetic polymorphism and sex in 
determining the proposed prognostic value of sACE2 in COVID-19.

ACE2 rs2106809 is an intronic variant that alters gene splicing 
efficiency (5, 40), with minor C allele being associated with increased 
ACE2 expression in multiple tissues (41). In female carriers of the 
same allele, reduced levels of sACE2, but higher levels of Ang (1–7) 
were previously detected (5), indicating an increase in mACE2/sACE2 
ratio that is probably due to impediment in either ADAM17 docking 
on mACE2 cleavage site, or its efficacy in ectodomain shedding (29). 
In contrast to several earlier reports of rs2106809 C/C genotype 
connection with higher risk of hospitalization and ICU admission (42, 
43), we  failed to observe any significant association between this 
polymorphism and a severe form of COVID-19. However, our results 
suggest the presence of variant rs2106809 C allele as a prominent 
protective factor for in-hospital death due to COVID-19, but only 
among females. While this finding corresponds well to the expected 

genotype-related change in mACE2 and sACE2 levels, as well as to its 
inverse association with COVID-19 mortality, question arises why it 
applies to female population only. One of the plausible explanations 
we propose considers the location of ACE2 gene on the X chromosome 
(28) within a region of incomplete X-chromosome inactivation (XCI) 
(44). Namely, for most of the X-linked genes, one allele is normally 
inactivated to balance its expression between females and males (45). 
However, some of them, including ACE2 (44), escape XCI, resulting 
in female-biased ACE2 gene expression (46), and thus a more 
pronounced effect of any functional ACE2 genetic polymorphism, 
including rs2106809, in females. Finally, it should be noted that in our 
study ACE2 rs2106809 deviates from HWE. Although HW 
disequilibrium in genetic studies could indicate issues like selection 
bias, population stratification, or genotyping errors (47), we assume 
the departure we  observed is due to location of ACE2 on the X 
chromosome, as it causes violation of one of the basic assumptions 
that HW principle relies on—that the locus should be autosomal (48).

TMPRSS2 gene is located on chromosome 21 and encodes 
transmembrane protease TMPRSS2 (7). This enzyme represents one 
of the key factors for penetration of various viruses, including SARS-
CoV-2, into the cells: upon binding to the ACE2 receptor, TMPRSS2 

TABLE 2 TMPRSS2 frequency of allele and genotype groups in male and female according severity of SARS-CoV-2 infection.

Male Female

Mild 
disease; 
n = 52

Severe 
disease; 
n = 54

OR [95%CI]a p
Mild 

disease; 
n = 39

Severe 
disease; 
n = 33

OR [95%CI]a p

Allele

rs2070788
G 36.5(38) 50.9(55) 1 ref. 35.9(28) 63.6(42) 1 ref.

A 63.35(66) 49.1(53) 0.555 [0.32; 0.961] 0.036 64.1(50) 36.4(24) 0.320 [0.162; 0.633] 0.001

rs4818239
T 45.1(47) 62(67) 1 ref. 43.6(34) 62.1(41) 1 ref.

C 54.8(57) 38(41) 0.505 [0.292; 0.873] 0.014 56.4(44) 37.9(25) 0.471 [0.241; 0.92] 0.027

Genotype groups

Additive genetic model

rs2070788

GG 25.0(13) 22.2(12) 1 ref. 12.8(5) 24.2(8) 1 ref.

GA 53.8(28) 46.3(25) 0.967 [0.373; 2.506] 0.945 43.6(17) 51.5(17) 0.625 [0.17; 2.302] 0.480

AA 21.2(11) 31.5(17) 1.674 [0.562; 4.986] 0.355 43.6(17) 24.2(8) 0.294 [0.073; 1.19] 0.086

rs4818239

TT 26.9(14) 27.8(15) 1 ref. 38.5(15) 24.2(8) 1 ref.

TC 48.1(25) 50(27) 1.008 [0.406; 2.502] 0.986 43.6(17) 48.5(16) 1.765 [0.589; 5.283] 0.310

CC 25.0(13) 22.2(12) 0.862 [0.295; 2.513] 0.785 17.9(7) 27.3(9) 2.411 [0.652; 8.92] 0.187

Dominant genetic model

rs2070788
GG 25(13) 22.2(12) 1 ref. 12.8(5) 24.2(8) 1 ref.

GA + AA 75(39) 77.8(42) 1.167 [0.475; 2.862] 0.736 87.2(34) 75.8(25) 0.460 [0.134; 1.574] 0.216

rs4818239
TT 26.9(14) 27.8(15) 1. ref. 38.5(15) 24.2(8) ref. ref.

TC + CC 73.1(38) 72.2(39) 0.958 [0.408; 2.251] 0.921 61.5(24) 5.8(25) 1.953 [0.701; 5.442] 0.200

Recessive genetic model

rs2070788
GG + GA 78.8(41) 68.5(37) 1 ref. 56.4(22) 75.8(25) 1 ref.

AA 21.2(11) 31.5(17) 1.713 [0.711; 4.125] 0.230 43.6(17) 24.2(8) 0.414 [0.15; 1.145] 0.089

rs4818239
TT + TC 80.8(42) 70.4(38) 1 ref. 84.6(33) 72.7(24) 1 ref.

CC 19.2(10) 29.6(16) 1.768 [0.716; 4.366] 0.216 15.4(6) 27.3(9) 2.062 [0.647; 6.573] 0.221

Bold values are statistically significant. The results are presented as relative (%) and absolute (n) frequency; p, probability; ref., reference category.
aunivariable logistic regression.
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initiates fusion machinery between the viral particle and cell 
phospholipid membranes, and delivers the virion into the cytoplasm 
(7). TMPRSS2 is expressed in many human organs and tissues (49–
51), and in most it is colocalized with ACE2, making them more 
susceptible targets for SARS-CoV-2 (52). Previous observations of 
more severe forms of COVID-19 in men as compared to women (53), 
as well as of decreased risk of severe respiratory illness in SARS-CoV-
2-infected infants and children (54), led to speculations about the 
critical influence of well-known androgen-dependent upregulation of 
TMPRSS2 expression (55) on the clinical course of this disease. 
However, TMPRSS2 expression is regulated in organ- and tissue-
specific manner (56), with inducing effect of male hormones being 
mainly responsible for prostate localization (14). In lungs, on the other 
hand, TMPRSS2 displays less prominent androgen responsiveness 
(56), and gene expression to a significant extent depends on the 
presence of genetic polymorphisms (10, 57).

TMPRSS2 rs2070788 represents a regulatory intron variant, whose 
ancestral G allele leads to higher gene expression in lungs (57, 58). In 
line with the role of TMPRSS2 in SARS-CoV-2 infection, rs2070788 
G allele has been repeatedly (10, 59, 60), although not consistently 

(61), associated with severe clinical presentation and increased 
mortality of several respiratory infectious diseases, including COVID-
19. In our study, homozygous carriers of variant A allele were less 
likely to develop severe clinical presentation after SARS-CoV-2 
infection. This finding corresponds well to the expected genotype 
effect, as well as to most of the previous studies investigating the risk 
of severe COVID-19  in the presence of variant rs2070788 allele. 
However, after controlling for other factors of influence, the genotype–
phenotype association we observed remained significant only among 
females. Similar reports in the literature are not many, but the 
protective role of rs2070788 A/A genotype in female COVID-19 
patients has been described previously (62). We believe the observed 
sex-related difference has a hormonal background: genetically 
determined decrease in TMPRSS2 levels appears more evident in 
females as compared to males, because females lack androgen-
dependent upregulation of TMPRSS2 gene expression.

There are several limitations in our study. Firstly, it was designed 
as a single centre study, which included only one population of 
respondents. Furthermore, our relatively small sample size could have 
reduced statistical power, while other potentially functional ACE2 and 

TABLE 3 ACE2 frequency of allele and genotype group in male and female according outcome of SARS-CoV-2 infection.

Male Female

Hospital-
discharged; 

n = 85

In-
hospital 
death; 
n = 21

OR [95%CI]a p
Hospital-

discharged; 
n = 54

In-
hospital 
death; 
n = 18

OR [95%CI]a p

Allele

rs2106809
T 72.9(62) 85.7(18) 1 ref. 87(94) 88.9(32) 1 ref.

C 27.1(23) 14.3(3) 0.449 [0.121; 1.669] 0.232 13(14) 11.1(4) 0.839 [0.258; 2.735] 0.771

rs2074192
G 68.8(53) 55.0(11) 1 ref. 50.9(55) 52.8(19) 1 ref.

A 31.2(24) 45.0(9) 1.807 [0.662; 4.933] 0.248 49.1(53) 47.2(17) 0.929 [0.436; 1.976] 0.847

Genotype group

Additive genetic model

rs2106809

T/T

NA

77.8(42) 83.5(15) 1 ref.

T/C 18.5(10) 11.1(2) 0.560 [0.110; 2.854] 0.485

C/C 3.7(2) 5.6(1) 1.400 [0.118; 16.581] 0.790

rs2074192

G/G

NA

27.8(15) 27.8(5) 1 ref.

G/A 46.3(25) 50.0(9) 1.080 [0.304; 3.834] 0.905

A/A 25.9(14) 22.2(4) 0.857 [0.191; 3.853] 0.841

Dominant genetic model

rs2106809
T/T

NA
77.8(44) 83.3(15) 1 ref.

T/C + C/C 22.2(12) 16.7(3) 0.700 [0.173; 2.827] 0.616

rs2074192
G/G

NA
27.8(15) 27.8(5) 1 ref.

G/A + A/A 72.2(39) 72.2(13) 1.000 [0.304; 3.290] 1.000

Recessive genetic model

rs2106809
T/T + T/C

NA
96.3(52) 94.4(17) 1 ref.

C/C 3.7(2) 5.6(1) 1.529 [0.130; 17.939] 0.735

rs2074192
G/G + G/A

NA
74.1(40) 77.8(14) 1 ref.

A/A 25.9(14) 22.2(4) 0.816 [0.230; 2.898] 0.754

The results are presented as relative (%) and absolute (n) frequency; p, probability; ref., reference category; NA, not applicable.
aunivariable logistic regression.
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TABLE 4 TMPRSS2 frequency of allele and genotype groups in male and female according to outcome of SARS-CoV-2 infection.

Male Female

Hospital-
discharged; 

n = 85

In-
hospital 
death; 
n = 21

OR [95%CI]a p
Hospital-

discharged; 
n = 54

In-
hospital 
death; 
n = 18

OR [95%CI]a p

Allele

rs2070788
G 43.5(74) 45.2(19) ref. 42.6(46) 66.7(24) ref.

A 56.5(96) 54.8(23) 0.933 [0.473; 1.84] 0.842 57.4(62) 33.3(12) 0.371 [0.168; 0.818] 0.014

rs4818239
T 49.4(84) 71.4(30) ref. 50.0(54) 58.3(21) ref.

C 50.6(86) 28.6(12) 0.391 [0.188; 0.814] 0.012 50.0(54) 41.74(15) 0.714 [0.333; 1.531] 0.387

Genotype groups

Additive genetic model

rs2070788

GG 23.5(20) 23.8(5) ref. 13.0(7) 33.3(6) ref.

GA 50.6(43) 47.6(10) 0.93 [0.281; 3.081] 0.906 48.1(26) 44.4(8) 0.359 [0.093; 1.382] 0.136

AA 25.9(22) 28.6(6) 1.091 [0.288; 4.135] 0.898 38.9(21) 22.2(4) 0.222 [0.048; 1.023] 0.054

rs4818239

TT 28.2(24) 23.8(5) ref. 37(20) 16.7(3) ref.

TC 50.6(43) 42.9(9) 1.005 [0.302; 3.342] 0.994 44.4(24) 50.0(9) 2.500 [0.595; 10.500] 0.211

CC 21.2(18) 33.3(7) 1.867 [0.509; 6.851] 0.347 18.5(10) 33.3(6) 4.000 [0.824; 19.423] 0.086

Dominant genetic model

rs2070788
GG 23.5(20) 23.8(5) ref. 13.0(7) 33.3(6) ref.

GA + AA 76.5(65) 76.2(16) 0.985 [0.321; 3.025] 0.978 87.0(47) 66.7(12) 0.298 [0.084; 1.051] 0.060

rs4818239
TT 28.2(24) 23.8(5) ref. 37.0(20) 16.7(3) ref.

TC + CC 13.8(61) 76.2(16) 1.259 [0.415; 3.819] 0.684 63.0(34) 83.3(15) 2.941 [0.757; 11.426] 0.119

Recessive genetic model

rs2070788
GG + GA 74.1(63) 71.4(15) ref. 61.1(33) 77.8(14) ref.

AA 25.9(22) 28.6(6) 1.145 [0.395; 3.319] 0.802 38.9(21) 22.2(4) 0.449 [0.130; 1.549] 0.205

rs4818239
TT + TC 76.5(65) 71.4(15) ref. 83.3(45) 66.7(12) ref.

CC 23.5(20) 28.6(6) 1.300 [0.445; 3.795] 0.631 16.7(9) 33.3(60) 2.50 [0.743; 8.413] 0.139

Bold values are statistically significant. The results are presented as relative (%) and absolute (n) frequency; p, probability; ref., reference category.
aunivariable logistic regression.

TABLE 5 Summary of variable estimates from the best fitting models of multiple logistic regression analysis regarding severity and outcome of SARS-
CoV-2 infection in females.

Variables B S.E. Wald p OR [95%CI]

Severity LDH 0.007 0.004 4.172 0.041 1.007 [1.000; 1.015]

pO2 −1.859 0.742 6.272 0.012 0.156 [0.036; 0.668]

ACE2 rs2074192a 2.729 1.648 2.743 0.098 15.317 [0.606; 386.952]

TMPRSS2 rs2070788b −3.521 1.721 4.186 0.041 0.030 [0.001; 0.862]

Constant 10.687 5.486 3.795 0.051 43772.445

Outcome CCI 1.863 0.719 6.714 0.010 6.445 [1.575; 26.385]

N/L 0.442 0.214 4.268 0.039 1.556 [1.023; 2.365]

ACE2 rs2106809c −5.502 2.797 3.868 0.049 0.004 [0.000; 0.981]

ACE Inhibitorsd 2.952 1.710 2.979 0.084 19.149 [0.670; 547.169]

Constant −11.122 3.963 7.877 0.005 0.000

Values in bold indicate statistically significant results. LDH, lactat dehydrogenase; pO2, partial pressure of oxygen; CCI, Charlson comorbidity index; N/L, neutrophil to lymphocyte ratio; B, 
the regression coefficient; S.E., the standard error; Wald χ2, Wald test statistics for the degree of freedom of 1 (df = 1); OR, odds ratio; 95% CI, the 95% confidence interval for the estimated 
OR; p, the probability.
adominant model, C/C as reference category.
brecessive model, G/G + G/A as reference category.
cdominant model, A/A as reference category.
dno ACE inhibitors as reference category.
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TMPRSS2 SNPs, which we did not genotype for, could have affected 
our results. Most importantly, we  could not collect data on 
confounding variables, such as level of viral exposure, viral load, 
patient health habits, environmental influences, and the use of other 
drugs, which could have influenced the outcome.

5 Conclusion

In conclusion, our study highlights association between the 
presence of TMPRSS2 rs2070788 and ACE2 rs2106809 
polymorphisms, and the severity and outcome of COVID-19, 
respectively, among female patients. These genetic variations may 
serve as important markers for identifying individuals at higher risk 
for severe disease and unfavorable outcomes, potentially guiding 
personalized treatment approaches in the future.
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