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Background: Pathologic myopia (PM) associated with myopic maculopathy 
(MM) is a significant cause of visual impairment, especially in East Asia, where its 
prevalence has surged. Early detection and accurate classification of myopia-
related fundus lesions are critical for managing PM. Traditional clinical analysis 
of fundus images is time-consuming and dependent on specialist expertise, 
driving the need for automated, accurate diagnostic tools.

Methods: This study developed a deep learning-based system for classifying 
five types of MM using color fundus photographs. Five architectures—ResNet50, 
EfficientNet-B0, Vision Transformer (ViT), Contrastive Language-Image Pre-
Training (CLIP), and RETFound—were utilized. An ensemble learning approach 
with weighted voting was employed to enhance model performance. The 
models were trained on a dataset of 2,159 annotated images from Shenzhen 
Eye Hospital, with performance evaluated using accuracy, sensitivity, specificity, 
F1-Score, Cohen’s Kappa, and area under the receiver operating characteristic 
curve (AUC).

Results: The ensemble model achieved superior performance across all metrics, 
with an accuracy of 95.4% (95% CI: 93.0–97.0%), sensitivity of 95.4% (95% CI: 
86.8–97.5%), specificity of 98.9% (95% CI: 97.1–99.5%), F1-Score of 95.3% (95% 
CI: 93.2–97.2%), Kappa value of 0.976 (95% CI: 0.957–0.989), and AUC of 0.995 
(95% CI: 0.992–0.998). The voting ensemble method demonstrated robustness 
and high generalization ability in classifying complex lesions, outperforming 
individual models.

Conclusion: The ensemble deep learning system significantly enhances the 
accuracy and reliability of MM classification. This system holds potential for 
assisting ophthalmologists in early detection and precise diagnosis, thereby 
improving patient outcomes. Future work could focus on expanding the 
dataset, incorporating image quality assessment, and optimizing the ensemble 
algorithm for better efficiency and broader applicability.
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1 Introduction

Pathologic myopia (PM) is one of the leading causes of visual 
impairment and blindness worldwide (1, 2). Over the past half-century, 
the prevalence of myopia has increased significantly, particularly in 
East Asia, where the proportion of high myopia cases has also risen. In 
these regions, up to 80% of 18-year-old high school graduates are 
myopic, with 20% of these cases classified as high myopia (3). The 
higher the degree of myopia, the greater the risk of developing PM. The 
growing incidence of PM, along with its associated severe ocular 
complications, underscores the critical need for effective screening and 
management strategies in global public health.

According to the meta-analysis for pathologic myopia (META-
PM) classification system proposed by Ohno-Matsui et  al., PM is 
defined as the presence of severe ocular lesions in fundus photographs 
that are equivalent to or exceed diffuse chorioretinal atrophy, or 
features such as lacquer cracks, myopic choroidal neovascularization 
(CNV), and Fuchs’ spots (4). Due to the irreversible pathological 
changes in the shape and structure of the myopic eye, effective 
treatment options for PM remain limited, and the prognosis for 
PM-related complications is generally poor. Additionally, the slow 
progression of PM often leads patients to overlook symptoms, 
attributing them instead to issues with their corrective lenses, thus 
delaying diagnosis (5). Early diagnosis allows timely intervention and 
follow-up screenings, helping patients understand their condition and 
take a proactive role in managing their health. This is key to preventing 
further deterioration and improving outcomes. Therefore, regular 
screening of myopic individuals to detect PM early and prevent its 
progression is of paramount importance.

Fundus imaging has become a vital tool in ophthalmic diagnostics 
for common eye diseases due to its non-invasive, accessible, and easily 
processed nature (6). However, traditional clinical image analysis 
heavily relies on doctors’ expertise and experience and is time-
consuming (7). This has driven the development of efficient, 
automated, and accurate fundus image analysis systems, which are 
critical strategies for the future of preventing and treating eye diseases.

In recent years, artificial intelligence (AI) and deep learning 
technologies have advanced rapidly in the field of medical image 
processing (8–10), leading to the emergence of new techniques for 
analyzing fundus images related to high myopia (11, 12). AI can utilize 
structural changes in the eye, particularly those linked to high myopia, 
to predict specific conditions. High myopia is typically associated with 
the elongation of the eyeball and alterations in the retina, which can lead 
to various retinal complications. The correlation between ocular 
structure and conditions like high myopia highlights the significance of 
analyzing fundus images for predictive diagnostics. For instance, a recent 
study demonstrated that fundus photography can estimate corneal 
curvature, a crucial factor in refractive errors, showcasing AI’s ability to 
extract valuable insights from these images (13). By recognizing these 
structural variations, AI models can greatly enhance their predictive 
accuracy and improve patient outcomes in myopic disease contexts.

These technologies hold significant potential in assisting 
ophthalmologists by enhancing diagnostic efficiency and accuracy. 
For instance, Cen et al. developed a deep learning platform capable of 
detecting 39 different fundus diseases and conditions, demonstrating 
excellent performance in multi-label classification tasks (14). Similarly, 
Li et al. proposed the MyopiaDTER model, which introduced a novel 
attention feature pyramid networks (FPN) architecture and generated 
multi-scale feature maps for the traditional detection transformer 

(DETR), enabling the detection of normal myopia, high myopia, and 
pathologic myopia regions in fundus photographs, achieving three-
class classification (15).

Moreover, due to the often limited availability of medical data, self-
supervised learning is expected to gain significant traction in the field 
(16). In this regard, Zhou et al. introduced the RETFound model, trained 
on 1.6 million unlabeled retinal images using self-supervised learning 
and later adapted for disease monitoring tasks with labeled data (17). The 
model demonstrated superior performance compared to several 
baselines in diagnosing and predicting sight-threatening eye diseases, 
establishing itself as a foundational tool for ophthalmic image analysis.

Ensemble learning has demonstrated significant potential in various 
medical applications. For instance, Namamula and Chaytor proposed an 
ensemble learning approach that combined the results of the Edge 
Detection Instance Preference (EDIP) algorithm with Extreme Gradient 
Boosting (XGBoost), leading to enhanced accuracy in analyzing large-
scale medical datasets. Their method achieved impressive success rates 
in diagnosing conditions such as blood cancer and diabetes (18).

In this study, we explore an effective automatic recognition system 
for pathologic myopia-related fundus lesions. We utilize five deep 
learning architectures to train models capable of recognizing five types 
of myopic maculopathy (MM) using color fundus photographs. The 
five architectures include ResNet50 (19) and EfficientNet-B0 (20), 
both of which have been proven effective in medical classification 
tasks; Vision Transformer (ViT) (21), which utilizes advanced 
transformer units for image feature extraction and analysis; 
Contrastive Language-Image Pre-Training (CLIP) (22) model, which 
enhances image understanding through language-vision alignment; 
and RETFound (17), which has been pre-trained on a large dataset of 
fundus images.

To enhance the system’s accuracy and reliability, we employ an 
ensemble learning approach, integrating the outputs of these models 
through a weighted voting strategy (23). This research not only aims 
to reduce the workload of clinicians and address the shortage of 
medical resources but also enables rapid screening of pathologic 
myopia-related fundus lesions, serving a wide population and 
providing significant clinical and social value.

2 Materials and methods

2.1 Data

This study collects a total of 2,159 original color retinal fundus 
images from Shenzhen Eye Hospital, with analysis commencing in 
June 2024. The images are captured using a desktop non-mydriatic 
retinal camera. All images are with a field of view 45 degrees, centered 
on the macula or on the connecting center of optic disc and macula. 
There are no quality issues in the images collected, such as images with 
obscured macular areas due to severe artifacts, defocus blurring or 
inadequate lighting, and with incorrect field position.

According to the META-PM classification system (4), MM is 
categorized into five grades (shown in Figure 1): no myopic retinopathy 
(C0), tessellated fundus (C1), diffuse chorioretinal atrophy (C2), patchy 
chorioretinal atrophy (C3), and macular atrophy (C4). Additionally, 
lacquer cracks, CNV, and Fuchs’ spots are defined as “Plus” lesions. 
Grade C1 is characterized by distinct choroidal vessels visible around 
the fovea and arcade vessels. Grade C2 presents with a yellowish-white 
appearance of the posterior pole, with atrophy assessed relative to the 
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optic disc area. Grade C3 is marked by well-defined gray-white lesions 
in the macular region or around the optic disc. Grade C4 features well-
defined, gray-white or white, round atrophic lesions in the foveal 
region. Grades C0 and C1 indicate low-risk high myopia, while Grades 
C2-C4 represent high-risk high myopia, also known as PM. In PM 
fundus images, “Plus” lesion features may be observed, which are not 
specific to any particular grade but can develop from or occur within 
any grade. This study primarily focuses on the five-class classification 
task among Grades C0-C4.

The color fundus photographs are annotated by two professional 
ophthalmologists according to the aforementioned classification 
system, with the distribution of the dataset detailed in Table 1.

2.2 Image preprocessing

To minimize the interference of black regions in fundus images 
on feature extraction, redundant black areas in the images are cropped. 
First, the images are loaded using the OpenCV library and converted 
to grayscale as follows:

 ( ) ( ) ( )0.299 , 0.587 , 0.114 ,gray R G BI I x y I x y I x y= × + × + ×

where ( ),RI x y , ( ),GI x y , and ( ),BI x y  respectively represent the 
value of pixel ( ),x y  in the red, green and blue channels. Subsequently, 
a binary mask ( ),M x y  is generated using thresholding:

 
( ) ( )255 , 20

,
0

grayI x y
M x y

otherwise
 ≥

= 


By detecting the largest contour in the mask, the coordinates of its 
minimum bounding box ( ), , ,m mx y w h  are calculated, and the region 
within this bounding box is cropped:

 [ ]: , :m m m mROI I y y h x x w= + +

This process results in a fundus image with black regions removed, 
preserving the relevant retinal information. Prior to developing the 
deep learning system, image normalization is performed. All fundus 
images are normalized to pixel values within the range of 0–1 and 
resized to a resolution of 224 × 224 pixels.

2.3 Development of the deep learning 
system

During the system development, the test set is constructed using 
a stratified random sampling method, where 20% of data from each 
category is randomly selected to form the test set. The remaining data 
is used for model training and validation through five-fold cross-
validation. Specifically, the remaining data is randomly divided into 
five equally sized folds, ensuring that each image appeared in only one 
fold. The training process is conducted in two steps: first, four folds 
are selected for algorithm training and hyperparameter optimization, 
while the remaining fold is used for validation. This process is repeated 
five times, ensuring that each fold served as a validation set. This 
approach aims to ensure balanced data distribution across folds and 
effectively evaluate the model’s generalization ability.

The model training involves five different architectures: ResNet50 
(19), EfficientNet-B0 (20), ViT (24), CLIP (22), and RETFound (17). 
These architectures are chosen due to their superior performance in 
visual tasks and their success in similar research. Specifically, ResNet50 
and EfficientNet-B0 excel in feature extraction and computational 
efficiency, Vision Transformer is effective in handling global image 
information, CLIP performs well in image-text matching and image 
understanding, and RETFound demonstrates outstanding performance 
in retinal image analysis. To initialize weights and leverage existing 
knowledge, the first four models are pre-trained on the ImageNet Large 
Scale Visual Recognition Challenge (25), a comprehensive database 
with 1.28 million images classified into 1,000 categories. The RETFound 
model is pre-trained through self-supervised learning on 1.6 million 
retinal images and validated across various disease detection tasks.

For the CLIP model, fine-tuning is performed by aligning image and 
text features through contrastive learning. Class labels are used as textual 
descriptions during training, enabling the model to adapt to our specific 

FIGURE 1

Representative images of five myopic macular degeneration categories. (a) no myopic retinopathy, (b) tessellated fundus, (c) diffuse chorioretinal 
atrophy, (d) patchy chorioretinal atrophy, (e) macular atrophy.

TABLE 1 Distribution of the dataset.

Category Number

C0 510

C1 678

C2 401

C3 408

C4 162

Total 2,159
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task even with limited data. Similarly, other models are fine-tuned by 
initializing from pretrained weights and applying transfer learning, with 
five-fold cross-validation used to adapt them to our classification problem.

Our training platform utilize the PyTorch framework, with all 
deep learning algorithms run on a NVIDIA 4090 graphics processing 
unit (GPU) (26). The batch size is set to 32, and model parameters are 
updated based on the mean of the samples. The training process 
employ the AdamW (27) optimizer with weight decay, with a learning 
rate set at 0.001. Each model is trained for 50 epochs, and performance 
is monitored at the end of each epoch using metrics including loss, 
accuracy, sensitivity, specificity, F1-Score, Kappa, and AUC on the 
validation dataset. The best model parameters that show the highest 
AUC on the validation set are saved.

Finally, we  employ an ensemble learning approach using the 
voting strategy to combine the predictions of ResNet50 (19), 
EfficientNet-B0 (20), ViT (24), CLIP (22), and RETFound (17). The 
predictions are combined through weighted voting, where each 
model’s voting weight is adjusted according to its average AUC score 
on the five-fold validation sets. The final classification result is 
determined by the ensembled prediction probability finalprob .

 
{ }1 ResNet50,EfficientNet B0,ViT,CLIP,RETFound

5

5
,

1
w AUC mm m v

v
= ∈ −

=
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5
,final m m v

m v
prob w prob= ⋅∑∑

where mw  represents the weight of the method m. v denotes the vth 
fold. ,m vAUC  represents the AUC on the verification set for the model 
under the vth fold among the method m. ,m vprob  is the probability of 
the model under the vth fold among the method m. This method is 
expected to enhance the overall accuracy and robustness of the system 
and improve the model’s generalization ability on the test set.

2.4 Evaluation of the AI system

To comprehensively evaluate the classification performance of the 
models, this study employs a range of metrics including accuracy, 
sensitivity, specificity, F1-Score, weighted Cohen’s Kappa, and AUC, 
with 95% confidence intervals (CI) calculated for all metrics. All 
metrics are derived from the results of five-fold cross-validation, and 
the average values are computed across the folds.

In multi-category classification task, sensitivity and specificity are 
calculated using a one-vs-rest strategy. The 95% CI for accuracy, 
sensitivity, and specificity are estimated using the Wilson Score 
method implemented in the Statsmodels package (version 0.13.5). For 
the F1-score, weighted Cohen’s Kappa, and AUC, the 95% CI are 
calculated using the empirical Bootstrap method (28), with 1,000 
resamples performed to ensure the robustness of the results.

In addition to numerical metrics, model performance is assessed 
through visualization techniques. The receiver operating characteristic 
(ROC) curve illustrates the model’s performance across different 
threshold values, with an AUC value closer to 1.0 indicating better 
classification capability. The confusion matrix compares the true labels 

with the predicted labels, clearly displaying the number of correct and 
incorrect classifications for each category. The ROC curves and 
confusion matrices are plotted using Matplotlib (version 3.8.3) and 
Scikit-learn (version 1.4.1) libraries.

2.5 Interpretability of AI system

To better understand the impact of different regions of fundus 
images on classification results, identify the causes of misclassification, 
and enhance the interpretability of the model, we employ visualization 
techniques to analyze the convolutional network model used in our 
experiments. Class Activation Mapping (CAM) (29) is a visualization 
technique that aggregates feature maps weighted by network 
parameters to generate heatmaps, which highlight the importance of 
each pixel in the image classification process. In these heatmaps, more 
important regions are indicated with warmer colors. However, CAM 
requires modifications to the network architecture and retraining of 
the model. To simplify implementation, this study utilizes Grad-
CAM++ (30), which does not require any changes to the network 
structure. Grad-CAM++ provides a clear visualization of the features 
learned by the model while maintaining classification accuracy, 
making the model more transparent and interpretable.

3 Results

3.1 Evaluation of deep learning models

This study evaluates the performance of five deep learning models 
(ResNet50, EfficientNet-B0, ViT, CLIP, and RETFound) and their 
ensemble results for classifying five types of MM. All models are 
trained and validated using five-fold cross-validation and assessed on 
an independent test dataset. Evaluation metrics include accuracy, 
sensitivity, specificity, F1-Score, weighted Cohen’s Kappa, and AUC, 
all reported with 95% CI. The models are then combined using a 
weighted voting ensemble approach. Table 2 presents the performance 
of each model as well as the results of the weighted voting ensemble.

The voting ensemble algorithm shows the best performance 
across all evaluation metrics. Specifically, the voting algorithm 
achieves an accuracy of 95.4% (95% CI: 93.0–97.0%), sensitivity of 
95.4% (95% CI: 86.8–97.5%), specificity of 98.9% (95% CI: 97.1–
99.5%), F1-Score of 95.3% (95% CI: 93.2–97.2%), Kappa value of 0.976 
(95% CI: 0.957–0.989), and AUC of 0.995 (95% CI: 0.992–0.998).

Figures 2, 3 display the performance of the five deep learning 
models and their voting ensemble results on the test set. From the 
confusion matrix (Figure 2), EfficientNet-B0 and RETFound models 
achieve the highest classification accuracy in the C0 class; the CLIP 
model performs best in the C1 class; EfficientNet-B0 model and voting 
strategy excel in the C2 class; ViT model and voting strategy are the 
best in the C3 class; and ResNet50 performs best in the C4 class. 
Although the voting strategy does not show the highest accuracy in 
every category, its accuracy is consistently high across categories, 
demonstrating strong robustness. Furthermore, from the ROC curves 
for each category (Figure  3), the voting ensemble method also 
performs better, with the highest AUC values for all categories, further 
confirming its effectiveness in complex lesion classification tasks. 
Additionally, it can be observed that most of the misclassified images 
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were assigned to adjacent categories, which were largely due to the 
visual similarity between categories, making it difficult for the model 
to distinguish between them.

The inference time of the ensemble model is the sum of the 
inference times of the individual models, plus the time required for 
the ensemble process following each model’s prediction. Table  3 
provides detailed timing for each fold of every model when processing 
individual images. The ensemble process itself takes approximately 
5.7 ms, demonstrating that the computational cost and time required 
for weighted voting in the ensemble are minimal.

t-SNE (34) is a commonly used technique for dimensionality 
reduction and visualization of high-dimensional data, helping us to 
visually observe the distribution of different categories in the feature 
space. Figure 4 shows the t-SNE plots for each model, which reveal 
that the scatter points for each category are relatively concentrated, 
with some overlap between adjacent categories. For example, the red 
points (C4) contain many yellow points (C3), indicating that the C3 
class is prone to being misclassified as C4. However, the t-SNE plot for 
the CLIP model shows that points of the same category also appear in 
multiple clusters. Particularly, the boundary between red (C4) and 

TABLE 2 Performance of individual models and their voting ensemble for classifying myopic maculopathy.

Model Accuracy  
(95% CI)

Sensitivity  
(95% CI)

Specificity  
(95% CI)

F1-Score 
(95% CI)

Kappa  
(95% CI)

AUC  
(95% CI)

ResNet50 91.8% 91.8% 97.9% 91.7% 0.958 0.991

(90.5, 92.8%) (87.4, 93.0%) (97.2, 98.5%) (90.5, 92.8%) (0.948, 0.966) (0.988, 0.993)

EfficientNet-B0 91.2% 91.2% 97.8% 91.0% 0.964 0.990

(89.9, 92.3%) (86.4, 92.0%) (97.0, 98.4%) (89.8, 92.3%) (0.956, 0.970) (0.987, 0.992)

ViT 92.4% 92.4% 98.1% 92.3% 0.960 0.986

(91.2, 93.5%) (86.9, 92.7%) (97.3, 98.6%) (91.2, 93.5%) (0.950, 0.968) (0.982, 0.989)

CLIP 91.7% 91.7% 97.9% 91.6% 0.961 0.989

(90.5, 92.8%) (85.4, 91.4%) (97.2, 98.5%) (90.3, 92.8%) (0.952, 0.968) (0.987, 0.992)

RETFound 91.8% 91.8% 97.9% 91.6% 0.962 0.990

(90.5, 92.8%) (85.6, 91.4%) (97.2, 98.5%) (90.4, 92.7%) (0.954, 0.970) (0.987, 0.992)

Voting 95.4% 95.4% 98.9% 95.3% 0.976 0.995

(93.0, 97.0%) (86.8, 97.5%) (97.1, 99.5%) (93.2, 97.2%) (0.957, 0.989) (0.992, 0.998)

Bold indicates the best result.

FIGURE 2

Confusion matrices for five models and their voting ensemble.
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yellow (C3) points is not very clear, suggesting that distinguishing 
between these two categories is challenging. This overlap suggests that 
the visual similarity between these categories affects the 
model’s performance.

Additionally, the dataset predominantly contains images with 
single lesions, which may limit the model’s ability to generalize to 
cases with coexisting multiple lesions. Expanding the dataset to 
include such cases would improve model robustness and applicability 
in real-world clinical scenarios.

3.2 Classification errors

The test set contains 432 images, with 20 images (4.63% of the 
total) showing inconsistencies between the Voting ensemble 
results and the reference standards. Specifically, the voting 
ensemble method misclassified 1 image from class C0, 3 images 
from class C1, 2 images from class C2, 10 images from class C3, 
and 4 images from class C4. These errors were mainly due to the 
visual similarity of features between certain classes, making it 
challenging for the model to distinguish them. Figure 5 provides 

examples of typical images incorrectly classified by the 
voting ensemble.

3.3 Visual interpretation of models

Grad-CAM works by calculating feature maps from convolutional 
layers and highlighting the areas the model focuses on through 
weighted summation, which means it only applies to convolutional 
neural network (CNN) models. In this study, ResNet50 and 
EfficientNet-B0 are the CNN models used. We input original images 
of different types of MM into these models and use the Grad-CAM++ 
algorithm to generate heatmaps. The heatmaps highlight the areas 
most important for classification with bright colors like red and 
yellow. The study shows that the heatmaps effectively highlight lesion 
areas in the fundus images, such as retinal vessels, choroidal atrophy, 
and the macula. Figure 6 shows representative examples of heatmaps 
for MM levels C0-C4.

4 Discussion

Based on fundus images, this study developed artificial 
intelligence models to identify no myopic retinopathy, tessellated 
fundus, diffuse chorioretinal atrophy, patchy chorioretinal 
atrophy, and macular atrophy. The outputs of these models are 
fused using the weighted voting method from ensemble learning. 
Subsequently, all models and their ensemble results are evaluated. 
Our findings reveal that after ensembling, the models outperform 
all individual deep learning models (ResNet50, EfficientNet-B0, 
ViT, CLIP, and RETFound), demonstrating robustness and 
generalization ability.

FIGURE 3

ROC curves for five models and their voting ensemble across five myopic maculopathy categories. C0 no myopic retinal pathology, C1 tessellated 
fundus, C2 diffuse chorioretinal atrophy, C3 patchy chorioretinal atrophy, and C4 macular atrophy.

TABLE 3 Inference times for individual models (per image).

Model Inference time per image 
(ms)

ResNet50 46.2

EfficientNet-B0 33.1

ViT 40.6

CLIP 49.6

RETFound 97.8

https://doi.org/10.3389/fmed.2024.1492808
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2024.1492808

Frontiers in Medicine 07 frontiersin.org

The advantage of this work lies in the adoption of multiple 
advanced classification models. For instance, ResNet50, a widely 
used and well-performing CNN model, is extensively applied in 
various visual tasks and demonstrates high accuracy and stability. 
EfficientNet is a lightweight model that enhances performance 
through compound scaling methods without increasing model 
complexity, making it particularly suitable for resource-constrained 
environments. ViT is a model based on the self-attention 
mechanism that challenges the dominance of traditional CNNs in 
visual tasks, effectively capturing global features in images and 
showing exceptional performance, especially when handling large-
scale datasets. CLIP is a multimodal model capable of processing 
both image and text data. Trained on a large-scale image-text paired 
dataset, it exhibits strong cross-modal transfer learning capabilities 
and can be applied to various downstream visual tasks. RETFound 
is a recently proposed model trained using self-supervised learning 
on 1.6 million unlabeled retinal images, then adapted to disease 
monitoring tasks with specific labels, making it particularly suitable 
for medical image analysis. Finally, this work innovatively employs 
a voting method in ensemble algorithms, integrating these different 
types of models, thereby enhancing the robustness and 
generalization of classification by ensuring diversity and 
complementarity among models.

During the experiments, we observed that the model performed 
best on the training set, with performance on the validation set being 
similar to that on the test set. This consistency indicates that the model 
has a strong understanding of the features needed to classify myopic 
maculopathy. It means that the model can generalize to new data, 
which is important for clinical applications. Additionally, five-fold 

cross-validation helps ensure stable performance across different 
data splits.

In analyzing the misclassified images, we  noticed that many 
shared visual similarities with the incorrect categories. This overlap 
makes it hard for the model to distinguish between certain lesions. To 
tackle this, future research will focus on strategies like contrastive 
learning to improve classification of these challenging samples. 
Additionally, using hard sample mining could help the model better 
differentiate between similar categories, leading to improved accuracy 
in clinical applications.

Grad-CAM was applied to visualize the decision-making process. 
This technique helps identify the areas of the input image that the 
model focuses on when making predictions. This provides 
interpretability by revealing how models make decisions, helping 
clinicians understand and trust AI predictions, which is crucial for 
clinical adoption.

This study has some limitations. First, in the dataset used for 
the research, fundus images labeled as C0 (no myopic retinopathy) 
were defined as free of any lesions. However, in a real clinical 
setting, some eyes may not have high myopia-related maculopathy 
but may still have other types of retinal diseases. Similarly, for 
images of other disease levels, patients in the sample only had a 
specific single disease, meaning the model did not encounter cases 
with multiple coexisting retinal diseases during training. This may 
lead to inaccurate classifications in practical applications. Secondly, 
our dataset is sourced from a single device, performance may 
decline when validating images from different fundus cameras due 
to variations in imaging protocols and quality, which can affect the 
model’s ability to generalize. Additionally, although quality control 

FIGURE 4

t-SNE visualization of embedding features for five models. The embedding features learned by the deep learning models from the test dataset are 
projected into 2D using t-SNE, with points representing category distributions and different colors indicating different categories.
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FIGURE 5

Representative examples of misclassified images by voting ensemble. (a–e) Represent the misclassified images of C0-C4, respectively.

FIGURE 6

GradCam visualizations of ResNet50 and EfficientNet-B0 diagnoses for myopic maculopathy levels of C0-C4. The redder the area in the heatmap, the 
more it contributes to the model’s decision-making.
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measures were implemented in the study to exclude low-quality 
images, such image quality issues remain common in real-world 
scenarios. Finally, the application of automatic image quality 
assessment techniques (31, 32) is crucial, as they can help identify 
substandard images and alert operators. Finally, while the ensemble 
method improved diagnostic performance, integrating multiple 
models also reduced efficiency (33).

Future improvements could include the following: (1) expanding 
the dataset to enhance its diversity and improve the model’s 
generalization ability by acquiring fundus photographs from different 
imaging devices and including cases with various coexisting retinal 
diseases. Additionally, incorporating external validation is crucial to 
ensure that the model performs reliably across diverse clinical settings; 
(2) incorporating automatic image quality assessment techniques to 
automatically exclude substandard images; (3) optimizing the 
ensemble model’s algorithm by removing models that do not 
significantly contribute to the ensemble results or replacing them with 
more efficient models.

5 Conclusion

In conclusion, our study successfully developed an artificial 
intelligence model capable of automatically identifying no myopic 
retinopathy, tessellated fundus, diffuse chorioretinal atrophy, patchy 
chorioretinal atrophy, and macular atrophy from fundus images. By 
utilizing various advanced deep learning models, including ResNet50, 
EfficientNet-B0, ViT, CLIP, and RETFound, and innovatively 
employing a weighted voting ensemble algorithm, we  significantly 
enhanced the model’s classification accuracy and robustness. The 
results demonstrate that the ensemble model outperforms individual 
models across multiple metrics, particularly exhibiting strong 
robustness and generalization ability in the analysis of complex fundus 
images. This system has the potential to assist ophthalmologists in 
accurately and promptly identifying the causes of myopic macular 
lesions, thereby improving patient visual outcomes by enabling targeted 
treatment at an early stage.
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