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Background: With machine learning (ML) carving a niche in diverse medical 
disciplines, its role in sepsis prediction, a condition where the ‘golden hour’ 
is critical, is of paramount interest. This study assesses the factors influencing 
the efficacy of ML models in sepsis prediction, aiming to optimize their use in 
clinical practice.

Methods: We searched Medline, PubMed, Google Scholar, and CENTRAL 
for studies published from inception to October 2023. We  focused on 
studies predicting sepsis in real-time settings in adult patients in any hospital 
settings without language limits. The primary outcome was area under the 
curve (AUC) of the receiver operating characteristic. This meta-analysis was 
conducted according to PRISMA-NMA guidelines and Cochrane Handbook 
recommendations. A Network Meta-Analysis using the CINeMA approach 
compared ML models against traditional scoring systems, with meta-regression 
identifying factors affecting model quality.

Results: From 3,953 studies, 73 articles encompassing 457,932 septic patients 
and 256 models were analyzed. The pooled AUC for ML models was 0.825 and 
it significantly outperformed traditional scoring systems. Neural Network and 
Decision Tree models demonstrated the highest AUC metrics. Significant factors 
influencing AUC included ML model type, dataset type, and prediction window.

Conclusion: This study establishes the superiority of ML models, especially 
Neural Network and Decision Tree types, in sepsis prediction. It highlights the 
importance of model type and dataset characteristics for prediction accuracy, 
emphasizing the necessity for standardized reporting and validation in ML 
healthcare applications. These findings call for broader clinical implementation 
to evaluate the effectiveness of these models in diverse patient groups.

Systematic review registration: https://inplasy.com/inplasy-2023-12-0062/, 
identifier, INPLASY2023120062.
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1 Introduction

Sepsis is a critical medical condition characterized by a 
substantial risk of mortality (1). Prompt identification of sepsis is 
crucial for the successful treatment of this life-threatening condition. 
Adhering to the ‘golden hour’ principle, which suggests that patient 
outcomes are significantly improved when treatment is initiated 
within the first hour following diagnosis, is pivotal for enhancing 
patient survival rates. Concurrently, there is a robust endorsement 
for employing systematic screening procedures for early sepsis 
identification (2).

The accuracy of current clinical scales and diagnostic 
methodologies in detecting and predicting sepsis seems to 
be  significantly suboptimal, leading to delays in therapeutic 
interventions (3–5). Despite the widespread use of traditional 
sepsis scoring systems, such as SOFA, NEWS, MEWS, SIRS, and 
SAPS II, these tools exhibit several limitations, including their 
reliance on static thresholds and suboptimal predictive 
performance. As a result, traditional sepsis scoring systems often 
lack the sensitivity and specificity required for timely, accurate 
sepsis detection.

This gap underscores the urgent need for more precise and 
reliable diagnostic and prognostic tools. In this regard, there is a 
shift in focus towards innovative approaches such as 
machine learning (6–13). Particularly, right-aligned models are 
drawing significant attention for their capacity to predict the 
development of sepsis hours before its clinical confirmation (14). 
Evidence increasingly suggests that machine learning 
methodologies offer a distinct advantage over traditional sepsis 
scoring systems (6).

To date, three meta-analyses have been conducted in this area of 
study (6, 15, 16), with one demonstrating the superiority of machine 
learning over traditional clinical scales in sepsis prognosis (6). In 
second research, the evidence presented lacks robustness (16), 
whereas in a third investigation, the focus was solely on the 
comparative assessment of different machine learning methodologies 
(15). However, the significant clinical heterogeneity, not entirely 
unambiguous diagnostic criteria, diverse prognostic time frames, 
and differing approaches to data preprocessing and model 
development across patient populations preclude definitive 
conclusions about the prognostic efficacy of these machine 
learning models.

In response to these challenges, our objective was to conduct a 
pioneering network meta-analysis to address this heterogeneity and 
to surpass the confines of previous research. Through meta-regression, 
we aimed to identify key factors that influence the effectiveness of 
predictive models, thereby guiding the development of an optimal 
model for sepsis prognosis, tailored to the complexities of 
clinical scenarios.

2 Materials and methods

This study was conducted in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) Extension Statement for Reporting of Systematic 
Reviews Incorporating Network Meta-analyses of Health 
Care Interventions (PRISMA-NMA) guidelines (17) and the 

Cochrane Handbook recommendations (18). The study 
protocol was registered with the International Platform of 
Registered Systematic Review and Meta-analysis 
Protocols (INPLASY) under the registration number INPLASY 
2023120062 (doi: 10.37766/inplasy2023.12.0062). The 
completed PRISMA-NMA checklist is presented in 
Supplementary Table S1.

2.1 Search strategy

We performed a systematic search of the literature across 
Medline, PubMed, Google Scholar, and the Cochrane Central 
Register of Controlled Trials (CENTRAL) from inception to 
October 2023. The search was conducted by two independent 
investigators. Backward and forward citation tracking was also 
employed to identify additional studies, leveraging the Litmaps 
service (19). No language restrictions were applied. Details of the 
search strategy, including full queries, are provided in 
Supplementary Appendix A.

2.2 Eligibility criteria and study selection

Following the automatic removal of duplicate records, two 
independent researchers screened the remaining studies for eligibility. 
We  applied the PICOS (Population, Intervention, Comparator, 
Outcome, and Study design) framework to guide study selection 
(Supplementary Appendix B).

Studies were considered eligible if they focused on real-time 
prediction of sepsis onset (right alignment (14)) in adult patients 
across any hospital setting. Both prospective and retrospective 
diagnostic test accuracy studies were included. The target condition 
was the onset of sepsis, defined by Sepsis-3 criteria (20) or other 
operational definitions provided by the authors 
(Supplementary Table S5).

Studies were excluded if they met one of the following 
criteria: (1) were review articles, case reports or case series 
without control groups; (2) had no sepsis definition criteria; (3) 
reported no AUC for sepsis development; (4) reported AUC for 
other outcome (e.g., reported data on mortality only); (5) focused 
on pediatric patients; (6) reported no data on patient cohort 
(sample size, age, sex, etc.); (7) were published as conference 
papers or preprints only.

Any disagreement was solved by consultation until consensus was 
reached. Divergences were resolved by consensus with the involvement 
of the supervisor.

2.3 Outcome measures and data extraction

A standardized data collection form was developed 
specifically for this review. Three independent authors used this 
form to systematically evaluate the full text, supplemental 
materials, and additional files of all included studies. Data 
extraction was performed independently by three authors, 
with any discrepancies resolved through discussion to 
achieve consensus.
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Extracted information encompassed: (1) Basic study 
details such as the first author, publication year, country, journal, 
study design, data collection period, mean age, sex, hospital mortality, 
prediction method, and sample size; (2) ML model characteristics: 
data source, prediction model, sepsis definition criteria, department, 
prediction window, external validation, imputation, features; (3) 
Outcome data: area under the curve of the receiver operating 
characteristic (AUC) as performance metric.

ML prediction models were grouped as detailed in 
Supplementary Appendix C.

In an attempt to reduce the number of comparisons, when 
multiple models from the same group were used in a single article 
(employing different factor selection and optimization methods), 
the analysis focused on the highest AUC value. The standard 
deviation (SD) for AUC was either extracted directly from the 
article, requested from the authors, converted from the 95% 
confidence interval (CI) according to the Cochrane Handbook 
recommendations, or imputed using the Iterative Imputer 
algorithm based on a Bayesian regression model (Python’s 
sklearn library).

Data on the AUC metrics for traditional scoring systems were also 
extracted if available. These systems included SOFA (Sequential 
Organ Failure Assessment), qSOFA (quick SOFA), NEWS/NEWS2 
(National Early Warning Score), MEWS (Modified Early Warning 
Score), SAPS II (Simplified Acute Physiology Score), and SIRS 
(Systemic Inflammatory Response Syndrome). In cases where 
multiple traditional scoring systems were used, the best metric 
was considered.

2.4 Data analysis and synthesis

Traditional meta-analysis was conducted to calculate pooled 
AUCs. Inter-study heterogeneity was evaluated using the 
I-squared (I2) statistic and the Cochrane Q test; random-effects 
model (restricted maximum–likelihood, REML) was used. 
Statistical significance was set at 0.05 for hypothesis 
testing. We  conducted a meta-regression analysis, leveraging 
the REML random-effects model, to ascertain if the AUC 
metrics might be  affected by covariates such as study 
design and ML model characteristics (21). All covariates were 
first tested in a univariate model, significant covariates were 
then considered for a multivariable model. The results of 
the meta-regression were graphically represented using 
bubble-plots.

We also conducted a frequentist, random-effects Network 
Meta-Analysis (NMA) using CINeMA (Confidence in Network 
Meta-Analysis) approach (22), CINeMA software (23), ROB-MEN 
web application (24) and STATA 17.0 (StataCorp, College Station, 
TX) software. Articles were included in the NMA if they compared 
any two ML models with different ML models or any ML model 
with a traditional scoring system. The Mean Difference (MD) with 
corresponding 95% CI was calculated for AUCs. Results of NMA 
were presented using network plots, league tables, contribution 
tables and NMA forest plots. To assess between-study 
heterogeneity, we utilized Bayesian NMA with τ2 calculation. A 
τ2 value exceeding the clinically important effect size (MD ≥ 0.15) 
indicated significant heterogeneity.

2.5 Internal validity and risk of bias 
assessment

The internal validity and risk of bias were assessed by three 
independent reviewers (MY, AS, IK) using the ‘Quality 
Assessment of Diagnostic Accuracy Studies’ (QUADAS-2) tool 
(25) combined with an adapted version of the ‘Joanna Briggs 
Institute Critical Appraisal checklist for analytical cross-sectional 
studies’ (26) (Supplementary Table S2). Publication bias and 
small-study effects were assessed using Bayesian NMA meta-
regression and funnel plot analysis (for comparisons with 10 or 
more studies). The certainty of evidence was assessed with 
GRADE methodology integrated in CINeMA approach. 
We  conducted a sensitivity analysis using studies with low to 
moderate risk of bias.

3 Results

3.1 Study characteristics

The initial literature search identified 3,953 studies from 
various databases, with an additional 24 studies from other 
sources (Figure  1). After removing duplicates and abstract 
screening, 97 papers underwent eligibility screening. A total of 
256 models from 73 studies (457,932 septic patients) were 
included (14, 27–98) with major exclusions list presented in 
Supplementary Table S1. The specialty journal with the 
largest number of articles was Critical Care Medicine (39, 41, 53, 
62, 87).

Most of the studies included in the analysis were conducted in 
the ICU (n  = 49; 67.1%), followed by hospital wards (n  = 12; 
16.4%) and emergency departments (ED, n  = 9; 12.3%) 
(Supplementary Tables S4–S8). The median sepsis prevalence 
across the studies was 14.3% (IQR 7.3–32.4%), with the mean 
patient age ranging from 35 to 70 years. The median (IQR) 
mortality rate was 2.3% (6.9–14.8%). Sepsis was most frequently 
defined by the Sepsis-3 criteria (57.5%), with other definitions 
including Sepsis-2, ICD-9, ICD-10, and SIRS. Prediction windows 
varied widely, ranging from immediate (0 h) to 7 days. External 
validation was performed in 16 studies (21.9%), and imputation 
techniques were employed in 44 studies (60.3%). Notably, 53% of 
studies utilized public datasets such as MIMIC, eICU, and the 
Computing in Cardiology Challenge 2019, while the remaining 
studies relied on proprietary hospital datasets.

3.2 Pooled AUCs

The pooled AUC for machine learning models was 0.825 (95% 
CI 0.809–0.840, p  < 0.001) across 73 studies 
(Supplementary Table S9). In comparison, the AUC for the SOFA 
score was 0.667 (95% CI 0.586–0.748) across 17 studies, for 
qSOFA 0.612 (95% CI 0.574–0.650) across 16 studies, for 
NEWS/NEWS2 0.719 (95% CI 0.674–0.764) across 9 studies, for 
MEWS 0.651 (95% CI 0.612–0.690) across 12 studies, for SIRS 
0.666 (95% CI 0.643–0.688) across 19 studies, and for SAPS II 
0.662 (95% CI 0.589–0.736) across 2 studies (all p  < 0.001, 
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Supplementary Table S9). Heterogeneity across studies was high 
(I2 > 95%, p < 0.001).

3.3 Network meta-analysis

3.3.1 ML vs. scoring systems
All ML models exhibited a significant performance advantage 

over traditional scoring systems when performing a NMA (Figures 2, 
3, Supplementary Tables S10–S12).

A network plot is a visual tool in network meta-analyses, 
showing interventions (groups) as nodes and their direct 
comparisons as connecting lines. This visual tool helps in 
understanding the complex relationships and the extent of 
evidence available for each comparison in the network 
meta-analysis.

Network of retrospective diagnostic test accuracy studies comparing 
the AUCs of various machine learning models and best of scoring 
system used. The size of nodes and width of the edges are 
proportional to the number of studies. The colors of edges and nodes 
refer to the average risk of bias: low (green), moderate (yellow), and 
high (red).

3.3.2 ML models
As indicated by the NMA results, Neural Network Models (NNM) 

and Decision Tree (DT) models exhibited the highest AUC metrics 
(Figure 3, Supplementary Tables S11, S12).

3.4 Meta-regression

In the multivariable model, only ML model type, dataset type 
(with non-freely available hospital datasets showing higher AUCs), 

FIGURE 1

PRISMA flow diagram for study selection.
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and prediction window (showing a negative association) had 
significant contributions to the AUC. (Supplementary Table S13, 
Supplementary Figures S1, S2).

3.5 Risk of bias and GRADE assessment

The overall risk of bias of the 73 enrolled studies was judged as 
‘low’ in 29 studies, with ‘some concerns’ in 14 studies and ‘high’ in 30 
studies (Supplementary Figure S3). The main sources of bias identified 
were insufficient description of the study population and data sources, 
along with the use of different sepsis definitions.

Risk of bias bar chart is presented in Supplementary Figure S4. 
Publication bias and small-study effects assessment results 
are summarized in Supplementary Table S14 and 
Supplementary Figure S5. Between-study variance was not 
significant (τ2 = 0.095, with the clinically important effect size 
stated as 0.1). Contribution matrices are presented in 
Supplementary Tables S15, S16.

The CINeMA ratings can be found in Supplementary Figure S6. 
The level of evidence supporting the superiority of ML models over 
traditional scoring systems was categorized as ‘low’.

4 Discussion

4.1 Key findings

This network meta-analysis is the first to comprehensively 
evaluate the performance of (ML) models in sepsis prediction, 
demonstrating that ML algorithms, particularly neural network 
models and decision trees, significantly outperform traditional scoring 
systems. These findings underscore the enhanced ability of ML models 
to analyse and interpret complex clinical data, pointing to a potential 
paradigm shift in sepsis prediction strategies.

A critical aspect of our findings relates to the impact of the type 
of ML model and the nature of the dataset on model performance. The 
choice of the ML model itself emerged as a significant determinant of 
model performance in our study. This finding indicates that the 
inherent characteristics and algorithms of different ML models 
substantially influence their ability to predict sepsis effectively. Models 
utilizing freely available datasets exhibited lower AUCs, which could 
be  a result of overfitting in models based on non-freely available 
hospital datasets.

Another key finding from our study is the temporal dynamics 
in prediction accuracy. We  observed a negative association 

FIGURE 2

Network plot. DT, Decision Tree; NNM, Neural Network Model; SVM, Support Vector Machine; LR, Logistic Regression; NB, Naïve Bayes; GLM, 
Generalized Linear Model; KNN, K-Nearest Neighbors.
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between prediction window and AUC, indicating that ML models 
are more accurate in short-term than in long-term 
sepsis prediction.

Interestingly, factors such as the size of the training dataset, sepsis 
prevalence, the department in which the study was conducted, the 
presence of imputation and external validation, the use of laboratory 
indicators, and the number of predictors did not significantly 
influence the quality of the predictive models.

4.2 Relationship with previous studies

The results of our systematic review and meta-analysis can 
be compared with those of 3 previous meta-analyses. Islam et al. in 
2019 were the first demonstrated that ML approach outperforms 
existing scoring systems in predicting sepsis (6). Fleuren et al. (15) 
suggested that ML models can accurately predict the onset of sepsis 
with good discrimination in retrospective cohorts, and this study 
was the first to indicate that the choice of ML model could impact 
AUC. The authors also suggested that NNM had advantages over 
DT, and that the inclusion of body temperature and laboratory 
indicators enhanced prediction quality. The only other meta-
analysis performed so far demonstrated the superiority of XGBoost 
and random forest models but with high heterogeneity (I2) (16). In 

other systematic reviews, quantitative meta-analysis was not 
conducted due to significant heterogeneity among studies (10–13). 
We were the first to apply a NMA technique, which allowed us to 
overcome high heterogeneity of previous meta-analyses. This 
approach enables comparisons between two ML models or an ML 
model and a traditional scoring system within the same study on a 
single patient cohort, employing a unified approach and 
standardized definition of sepsis. In our research, NNM did not 
demonstrate superiority over DT, and the use of body temperature 
and laboratory indicators as predictors did not enhance the 
predictive quality.

4.3 Significance of the study findings

Our network meta-analysis, which evaluated 73 articles 
encompassing 457,932 septic patients, revealed that ML algorithms 
significantly outperform traditional sepsis scoring systems. The 
integration of ML into sepsis prediction marks a significant step 
forward in improving the early diagnosis and management of this 
life-threatening condition in emergency and intensive care settings. 
Unlike traditional scoring systems, ML models can process vast 
amounts of real-time clinical data, offering early warning systems that 
may identify sepsis before the appearance of clinical symptoms, 
thereby facilitating timely and targeted interventions. This has 
profound implications for clinical practice, as prompt treatments such 
as early antibiotic administration are known to significantly improve 
patient outcomes, particularly when initiated within the ‘golden 
hour’ (3–5).

Our study makes a key contribution by identifying the factors 
that impact the effectiveness of sepsis prediction models. 
Specifically, we found that the number of predictors and sepsis 
prevalence do not substantially influence model performance, 
challenging the traditional assumption that larger datasets and a 
perfectly balanced cohort (with a 50/50% split) are essential for 
robust predictions. Instead, our findings underscore the 
importance of data quality and the careful selection of relevant 
predictors, which has direct implications for how ML models 
should be  developed and deployed in real-world 
clinical environments.

The heterogeneity in external validation and imputation 
methods across studies underscores a significant gap in 
standardizing ML model development and validation for sepsis 
prediction. While we did not find a notable impact of external 
validation on AUC, its role in enhancing the robustness and 
generalizability of prediction models should not be underestimated. 
Furthermore, it’s noteworthy that even in the context of established 
and stringent diagnostic guidelines for sepsis, there exists a 
number of studies where researchers have opted to utilize 
alternative definitions of sepsis in their studies.

Another notable aspect of our research pertains to the ‘black box’ 
nature of some ML models, which limits the clinician’s ability to 
understand the logic behind decision-making. Our study demonstrates 
that the use of DT is not inferior to the more complex NNM. This is a 
pivotal finding as DT models offer greater transparency in decision-
making processes, which is crucial for clinical applications where 
understanding the rationale behind predictions is as important as the 
predictions themselves.

FIGURE 3

Network meta-analysis summary forest plot for predictive efficacy of 
various ML models and best of scoring system used for sepsis 
prediction.
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While ML models show substantial promise in predicting sepsis 
onset, their clinical utility remains limited by the challenge of initiating 
treatment before the appearance of clinical symptoms.

4.4 Strengths and limitations

This research is the first to quantitatively demonstrate the 
superiority of ML models over traditional scoring systems using 
NMA. Furthermore, this study is the first to employ NMA to reveal 
the advantages of NNM and DT over other ML models in the 
prediction of sepsis. Through meta-regression, we identified several 
critical factors that influence model performance, providing 
valuable insights for future model development. The application of 
the CINeMA approach provided a structured methodology to rate 
the certainty of our evidence, enhancing the reliability of 
our findings.

However, limitations of our study must be  acknowledged: 
we found high clinical heterogeneity among the included studies and 
therefore used random-effects modelling and sensitivity analyses; 
while the AUC was pragmatically chosen as the summary measure, it 
may not be as effective in imbalanced datasets, yet it remains the most 
frequently reported measure in this field.

4.5 Future studies and prospects

The growing body of evidence supporting the advantages of ML 
models over traditional scoring systems in sepsis prediction 
underscores the need to integrate these technologies into routine 
clinical practice. Future research should focus on conducting well-
structured prospective trials to evaluate how ML-predicted sepsis 
outcomes influence the timing and initiation of antibiotic therapy. A 
critical component of these trials will be assessing the time interval 
between ML model predictions and clinical recognition by healthcare 
providers, as delays in treatment initiation can significantly affect 
patient outcomes.

We propose a randomized, double-blind controlled trial 
comparing the efficacy of early antibiotic therapy initiated based on 
ML predictions versus placebo during this pre-recognition window. 
Such a study could provide definitive evidence regarding the clinical 
utility of ML-based early warning systems and their potential to reduce 
mortality and morbidity in sepsis by enabling earlier interventions.

5 Conclusion

Our systematic review and network meta-analysis revealed that 
machine learning models, specifically neural network models and 
decision trees, exhibit superior performance in predicting sepsis 
compared to traditional scoring systems. This study highlights the 
significant impact of machine learning model type and dataset 
characteristics on prediction accuracy. Despite the promise of machine 
learning models in clinical settings, their potential is yet to be fully 
realized due to study heterogeneity and the variability in sepsis 
definitions. To bridge this gap, there is an urgent need for standardized 
reporting and validation frameworks, ensuring that machine learning 
tools are both reliable and generalizable in diverse clinical settings.
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