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Background: The application of Artificial Intelligence (AI) in diagnosing retinal 
diseases represents a significant advancement in ophthalmological research, 
with the potential to reshape future practices in the field. This study explores the 
extensive applications and emerging research frontiers of AI in retinal diseases.

Objective: This study aims to uncover the developments and predict future 
directions of AI research in retinal disease over the past decade.

Methods: This study analyzes AI utilization in retinal disease research through 
articles, using citation data sourced from the Web of Science (WOS) Core 
Collection database, covering the period from January 1, 2014, to December 
31, 2023. A combination of WOS analyzer, CiteSpace 6.2 R4, and VOSviewer 
1.6.19 was used for a bibliometric analysis focusing on citation frequency, 
collaborations, and keyword trends from an expert perspective.

Results: A total of 2,861 articles across 93 countries or regions were cataloged, 
with notable growth in article numbers since 2017. China leads with 926 articles, 
constituting 32% of the total. The United States has the highest h-index at 66, 
while England has the most significant network centrality at 0.24. Notably, the 
University of London is the leading institution with 99 articles and shares the 
highest h-index (25) with University College London. The National University of 
Singapore stands out for its central role with a score of 0.16. Research primarily 
spans ophthalmology and computer science, with “network,” “transfer learning,” 
and “convolutional neural networks” being prominent burst keywords from 
2021 to 2023.

Conclusion: China leads globally in article counts, while the United  States 
has a significant research impact. The University of London and University 
College London have made significant contributions to the literature. Diabetic 
retinopathy is the retinal disease with the highest volume of research. AI 
applications have focused on developing algorithms for diagnosing retinal 
diseases and investigating abnormal physiological features of the eye. 
Future research should pivot toward more advanced diagnostic systems for 
ophthalmic diseases.
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1 Introduction

Artificial Intelligence (AI), first introduced in 1956 (1), signifies 
machines undertaking tasks traditionally aligned with human 
intelligence. With its ability to process complex data, AI has become 
a transformative technology in healthcare, offering new solutions for 
early disease detection and personalized treatment. With AI 
encompassing Machine Learning (ML) and Deep Learning (DL), the 
latter advances by employing multilayer artificial neural networks to 
decode complex patterns from extensive data sets, facilitating the 
management of intricate diseases (2, 3). By 2015, DL models (4–6) had 
achieved human-level accuracy in image recognition tasks, 
underscoring AI’s potential to rival human capability in medicine and 
science. This prowess, particularly in tasks like image classification 
through ML algorithms (7–9), has garnered considerable focus. The 
evolution of digital imaging, image processing, and computer vision 
notably enhances the role of ML in autonomously identifying retinal 
maladies from color fundus photographs. Transfer learning (10, 11), 
as evidenced by prior studies, emerges as a potent strategy, especially 
under data scarcity, to mitigate overfitting and heighten model 
precision. Deep transfer learning, sidestepping the need for extensive 
manual annotations or a vast corpus of labeled training data, presents 
a more economical and efficient alternative to traditional image 
recognition methods (12).

Retinal diseases, significant contributors to severe vision impairment, 
encompass a spectrum from retinopathy to chorioretinopathy (13), with 
risk factors including age (14), myopia (15), diabetes (16), trauma (17), 
retinal vascular occlusion (18), hypertension (19), retinitis (20), and 
genetic disposition (21). The cruciality of early screening and diagnosis 
stands in preventing irreversible vision loss against the backdrop of 
widespread blindness and low vision issues amplified by the deficit of 
medical examination tools (22–24), specialist ophthalmologists (25–27), 
and effective interventions (28, 29), particularly in under-resourced areas 
(30). As AI-driven tools gain traction in retinal diagnostics, they support 
healthcare providers in regions with limited resources by enabling timely 
detection and intervention.

Recent endeavors have seen researchers leveraging ML and DL for 
AI-assisted diagnostic systems based on retinal imagery like color 
fundus photography or Optical Coherence Tomography (OCT), aiming 
at retinal disease screening. These innovations, rivaling ophthalmologist 
diagnostics, primarily target conditions such as Diabetic Macular 
Edema (DME) (31–33), Age-Related Macular Degeneration (AMD) 
(14, 34, 35), and even non-retinal diseases like glaucoma (36–38) 
through retinal imaging, despite fewer studies delving into 
comprehensive disease spectra (39, 40) or delineating normal from 
abnormal fundus images in AI-supported diagnosis (12, 41).

Our research, using bibliometric tools like CiteSpace, 
VOSviewer, and bibliometric.com, explores AI’s global impact on 
retinal disease management. This study aims to elucidate trends, 
geographical distribution, institutional contributions, and the 
emerging research focus areas within AI-driven retinal diagnostics. 
By applying bibliometric and manual screening, this research offers 
insights into the most influential studies and regions, advancing 
the understanding of AI’s current and future role in retinal disease 
management. The results from this analysis aim to guide AI and 
ophthalmology professionals, marking a significant leap toward 
integrating AI in retinal disease detection and management.

2 Methods

2.1 Selection of published data

On January 23, 2024, we retrieved citation data published between 
January 1, 2014, and December 31, 2023, from the Web of Science 
Core Collection (WoSCC) database. The data retrieval and verification 
were independently conducted by two authors to ensure accuracy 
and consistency.

The search formula used in the literature search was:
Topic = (“Artificial Intelligence” or “AI” or “transfer learning” or 

“neural network” or “Deep Learning” or “Robotic*” or “Supervised 
Learning” or “Unsupervised Learning” or “Computer Vision System” 
or “Computational Intelligence” or “Machine Learning” or 
“Evolutionary Computation” or “Ensemble Learning” or 
“Reinforcement Learning”) AND Topic = (“Retin*” or “Epiretinal” or 
“macular” or “Epiretinal Membrane”).

Only articles and review articles in English were included, while 
early access papers, conference proceedings, book chapters, data 
papers, and retracted articles were excluded. To refine the results, 
we manually screened each article title and abstract for relevance, with 
specific criteria for exclusion:

 1. Studies that did not focus on eye diseases.
 2. Studies that did not employ AI-based methods.

This approach allowed us to retain only those records directly 
relevant to AI applications in retinal diseases, enhancing the study’s 
specificity and accuracy.

For each selected article, we extracted and analyzed essential 
bibliographic information, including title, publication year, country/
region, institution, journal, and keywords. Based on this data, 
we conducted a thorough bibliometric analysis to explore global 
research hotspots in AI applications for retinal disease. A detailed 
search and data processing workflow is illustrated in Figure 1.

2.2 Research and analysis methods

CiteSpace 6.2 was used to perform a cluster analysis of countries 
or regions, organizations, journals, research categories, and keywords. 
Centrality was produced using CiteSpace. It represents the degree of 
cooperation between different regions or institutions. WoSCC can 
calculate the h-index of published literature. The h-index is defined 
as the maximum value of h such that the given author/journal has 

Abbreviations: AI, Artificial intelligence; AMD, Age-related macular degeneration; 

AUC, Area under the curve; AUROC, Area under the receiver operating 

characteristic; CFP, Color fundus photograph; CI, Confidence interval; CNN, 

Convolutional neural network; DL, Deep learning; DME, Diabetic macular edema; 

DR, Diabetic retinopathy; NPDR, Non-proliferative diabetic retinopathy; OC, Optic 

cup; OCT, Optical coherence tomography; OCTA, Optical coherence tomography 

angiography; OD, Optic disc; QWK, Quadratic Weighted Kappa; RNFL, Retinal 

nerve fiber layer; ROP, Retinopathy of prematurity; SCI, Science Citation Index; 

WoSCC, Web of science core collection.
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published at least h articles that have each been cited at least h times, 
which is a new method for evaluating academic achievements (42).

In addition to the functions provided by CiteSpace, 
we employed WOC Citation Topic Micro to identify and quantify 
AI applications across various retinal diseases. By counting keyword 
frequencies in the collected literature, CiteSpace and WOC Citation 
Topic Micro together facilitated the identification of major research 
focuses within the field of AI-assisted retinal diagnostics.

Using the bibliometric platform https://bibliometric.com/app, 
we  classified the countries and institutions represented in 
the literature, generating comprehensive statistics on 
research distribution. VOSviewer generates heat maps based on 
keywords, which represent research hotspots. We  further 
conducted an in-depth interpretation and comprehensive 
analysis of the included articles, especially the high-
impact articles.

FIGURE 1

Frame flow diagram showing the detailed selection criteria and bibliometric analysis steps.
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3 Results

3.1 Distribution of articles by publication 
year

We carried out an analysis of a total of 2,861 articles published 
from 2014 to 2023 on the subject of AI in retinal diseases. Employing 
the citation analyzing features of the WoSCC database, we computed 
the annual number of citations, with CiteSpace’s deduplication function 
ensuring the accuracy of these figures. As depicted in Figure 2, the 
publication frequency was modest before 2017, not exceeding 100 
articles per year, and the annual article count’s trend line had a slope of 
12.8, indicative of an average annual growth of about 12 articles. Post-
2017, the yearly output surpassed 100 articles, showing a marked 
acceleration in recent years. The trend line’s slope steepened to 120.1, 
signaling an annual increase that averaged around 120 articles.

3.2 Countries or regions

The citation analyzer of the WoSCC database calculates the article 
output of various countries or regions, while CiteSpace facilitates the 
analysis of interdependencies among these entities. A total of 93 
countries or regions are represented in the data. Figure 3 visually 
depicts the article output of each country and region, along with their 
collaborative engagements. The size of the labels within the circle 
reflects the number of articles from each entity, with China (926), the 
United  States (637), and India (464) having the most significant 
shares. The interconnected lines between country labels in Figure 3 
symbolize the collaborative efforts, where the density of these lines 
indicates the extent of literature exchange among countries.

Further analysis reveals trends over the past decade regarding the 
article counts from the top five contributing countries or regions, as 
illustrated in Figure 4. Concurrently, Table 1 details the annual article 
counts on AI applications in retinal disease for these leading contributors.

The visual representation in Figure 5, through varying label sizes 
and green node areas, highlights the number of articles from each 
country or region, with connection lines delineating their cooperative 
relationships. The centrality measure in Table 2, represented by the 
purple circle’s size, assesses the influence of articles from each country, 
with England’s purple circle (0.24) being notably the largest, indicating 
its pivotal role in international collaborations.

These findings are grounded in data displayed in Table 2, which 
also showcases the h-index, an indicator blending academic quality 
and impact. The United  States boasts the highest h-index (66), 
denoting its leading influence. Summarily, from 2014 to 2023, China 
emerged as the most prolific publisher, England as the most 
collaborative, and the United States as having the most substantial 
influence in AI applications within retinal disease research.

3.3 Institutions

The top 10 institutions with the most articles published are shown 
in Table 3. The data shown are the results of the CiteSpace software 
default settings. A total of 291 institutions were counted, constituting 
1,375 partnerships. These include three institutions in the 
United  Kingdom, three in China, and one in the United  States, 

Austria, Egypt, and Singapore. Three of the top 5 h-index institutions 
are from the United Kingdom, and the other two are from China. The 
links between the labels in Figure 6 show the collaboration between 
agencies. The node size represents the number of articles sent. 
According to the centrality, the influence of the National University of 
Singapore was relatively high (0.13).

3.4 Journals and research categories

The knowledge foundation for the cited articles is the literature 
found in the cited articles. The research field of highly cited journals 
is a hotspot of attention. In the past 10 years, the knowledge-based 
research fields of artificial intelligence applied in ophthalmic diseases 
have included systems/computing/molecular/biology/genetics/
health/nursing/medicine/ophthalmology, which constitute 
mathematics/systems/mathematics/neurology/hot topics at the 
forefront of sports/ophthalmology research. Table 4 lists the subject 
categories of the top  10 cited journals/proceedings. The most 
common research fields for citing journals include engineering 
technology/computing. The discipline most involved in the extracted 
version was classified as medicine/ophthalmology.

3.5 Keywords

According to the keyword co-occurrence and cooperation network 
analysis chart, we analyzed new keywords used over the past 10 years 
to understand co-occurrence and cooperation. We  modified the 
default settings of CiteSpace to “year per slice” = 1, “Top N%” = 10.0%, 
“Top N” = 30, and “minimum duration” = 2. The results are shown in 
Figure 7. Red indicates the emergence of keywords. The time trend was 
examined using the hotspot transfer method, which was applied to the 
first 15 keywords with the highest citation outbreak. From 2014 to 
2023, the keywords that were consistently used included segmentation 
(2014–2018), classification (2014–2017), diagnosis (2014–2016), 
machine learning (2014–2018), automated detection (2014–2017), 
blood vessels (2014–2018), images (2014–2017), retinal images (2015–
2019), extraction (2018–2020), nerve fiber layer (2019–2021), risk 
factors (2020–2021), eyes (2020–2021), OCT (2021–2023), attention 
mechanism (2021–2023), outcome (2021–2023).

FIGURE 2

Annual number of articles on AI in retinal disease from 2014 to 2023.
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These keywords highlight critical areas of research within AI 
applications in ophthalmology, reflecting advancements in diagnostic 
capabilities and methodologies. For instance, terms like “segmentation” 
and “classification” are foundational to developing accurate AI models 
for analyzing retinal images, while “attention mechanism” signifies a 
shift toward more sophisticated approaches that enhance model 
performance in identifying relevant features in complex datasets.

3.6 High-impact articles

The research includes the 10 most cited articles on AI in retinal 
diseases from 2014 to 2023, as listed in Table 5. These articles indicate 
that AI research in retinopathy holds promise, yet they also highlight 
certain limitations in clinical implementation.

3.7 Top 5 retinal diseases researches using AI

We manually screened the keywords from CiteSpace statistics and 
screened out the keywords for retinal diseases. Furthermore, 
we refined the search results on using AI in retinal disease on a more 
granular level using WOS analysis Citation Topics Micro and selected 

from over 2,500 available micro-level citation topics based on the 
search results. The “Citation Topic Micro” feature in (WoS) allows 
researchers to analyze and explore citation patterns at a granular level 
within a specific topic or field of study. It helps identify the most 
influential literature, authors, or institutions within a given research 
area based on their citation impact. This feature facilitates in-depth 
bibliometric analysis and aids in assessing the influence and 
significance of scholarly articles within a specific research domain.

The data from the two databases above were statistically analyzed 
(Table 6). Among the statistical keywords, DR was the most studied 
disease, followed by Glaucoma. These retinal diseases have mainly 
been studied and applied to AI.

4 Discussion

4.1 Principal results

From 2014 to 2017, the article counts on the application of AI in 
retinal diseases showed modest growth. However, a pivotal shift 
occurred post-2017, sparked by a groundbreaking study by Gulshan 

FIGURE 3

The cooperation of countries or regions that contributed to articles on AI in retinal diseases from 2014 to 2023.
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et al. from Google Health (43), which demonstrated an automated 
algorithm capable of accurately interpreting retinal images. This 
development, characterized by high accuracy and the algorithm’s 
impressive sensitivity (99% [87.0–97.5%]) and specificity (90.3–
98.1%) in diabetic retinopathy screening, fueled advancements in 
deep learning algorithms for diagnosing and treating retinopathy 
across diverse populations.

The distribution of publications reveals distinct trends in both 
output and impact across different countries. China leads in volume, 
contributing approximately 32% of the global articles. Conversely, 
the United States boasts the highest h-index at 66, indicating the 
significant impact of its contributions, followed closely by China 
with a score of 62. England, with the highest centrality score (0.24) 
and India following closely (0.22), highlights the importance of 
international collaborations that strengthen research quality and 
scope. Notably, joint publications between the United States and 
China represent 55% of the total output, underscoring the high 
caliber of collaborative work. Despite this, China’s relatively lower 
level of international collaboration, especially compared to the 

active partnerships among the United States, England, and India, 
suggests an opportunity for China to engage more in transnational 
research efforts, which could further enhance the global impact of 
its research.

The global academic landscape features prominent contributions 
from the UK and China, with these nations housing the majority of 
the top 10 institutions in this field. China’s recent surge in publications 
aligns with recent science and technology policy advancements, 
though its development timeline indicates the need for further 
consolidation of foundational knowledge. In contrast, the 
United States’ robust AI ecosystem, supported by research experts and 
technology firms, plays a crucial role in advancing AI research and 
applications. This disparity highlights the need for China to enhance 
its technology development and for the United States to foster greater 
academic collaborations.

Within Singapore, the National University of Singapore has 
emerged as a key player in scientific research, demonstrating strong 
collaborative engagements. On the other hand, the University of 
London emerges with a broader impact evidenced by its published 
literature. Alongside, two other UK-based institutions also boast high 
h-index values. Despite their varied publication frequency and 
centrality, these institutions collectively mark a significant 
advancement in academic pursuit, reflecting growth in scholarly 
output and consistent dissemination of research articles. Analysis of 
the cooperation network shows that research institutions in this 
specialty generally have low intermediary centrality, suggesting the 
need to bolster their influence in the realm. Enhanced collaboration 
among these institutions is paramount, as insufficient networking can 
hinder the progression of the domain, potentially impeding 
academic research.

In the context of AI applications in ophthalmology, an integrative 
approach combining foundational ophthalmic disease knowledge with 
innovative computer science methodologies is essential. In Table 6, the 
top five keywords of retinal disease indicate that DR is the most 
commonly used AI in fundus diseases, followed by Glaucoma, AMD, 
and other retinal diseases. These focus areas underscore the 
importance of AI-driven diagnostic tools for addressing the global 
burden of retinal diseases and advancing early detection and 
intervention strategies.

FIGURE 4

Trends in the number of articles contributed by the top 5 countries or regions from 2014 to 2023.

TABLE 1 Top 5 countries or regions with articles on AI in retinal disease 
from 2014 to 2023.

Year Count

People’s 
Republic 
of China

United 
States

India England South 
Korea

2014 3 9 8 1 0

2015 3 11 6 3 1

2016 3 10 9 1 1

2017 14 22 9 8 4

2018 32 37 12 11 5

2019 85 55 25 20 17

2020 110 120 59 30 36

2021 188 128 82 51 36

2022 259 135 127 58 36

2023 229 110 127 41 36
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4.2 Research hotspots and emerging 
trends

The current research frontiers in AI application within retinal 
disease spotlight three main areas: “OCT,” “Attention Mechanism,” and 
“Outcome.” These fields have been increasingly active from 2021 to 
2023 as per the clustering timeline derived from Figure 5, underscoring 
evolving research directions and technologies.

4.2.1 Optical coherence tomography
Occupying a pivotal role in ophthalmology, OCT is a non-invasive 

technique that generates high-resolution, cross-sectional imagery of 
the retina, optic nerve, and anterior eye segment. It’s essential for the 
detailed analysis and identification of ocular pathologies through 
OCT fundus images. OCT’s capability to illuminate microstructural 
details in the eye facilitates the early identification, diagnosis, and 
tracking of a variety of eye diseases including age-related macular 
degeneration (44, 45), diabetic retinopathy (46), glaucoma (47), 
among others (48).

4.2.1.1 Advancements in AI-enhanced OCT for precise 
retinal analysis

AI integration with OCT has revolutionized the detection and 
analysis of retinal structures. OCT uses interference patterns to provide 
detailed images crucial for identifying eye diseases. AI notably enhances 
segmentation precision, aiding the delineation of ophthalmic 

microstructures. For instance, He et al. (49) achieved a Dice score of 
91.3% and a mean Intersection over Union (mIoU) of 84.4% for retinal 
layer segmentation. Other studies, such as those by Lu et al. (50) and Guo 
et  al. (51), have demonstrated significant advancements in efficient 
segmentation with minimal labeled data and automated segmentation 
of specific retinal features. Overall, AI’s integration with OCT improves 
fundus lesion detection capabilities. Zhang et al. (52) introduced X-Net, 
a weakly supervised DL framework for segmenting paracentral acute 
middle maculopathy lesions in spectral-domain OCT (SD-OCT) 
images, achieving 99% accuracy and a mIoU of 0.8. Subsequently, Zhang 
et al. (53) developed RC-Net for segmenting hyperreflective dots in 
retinal OCT images, essential for DR diagnosis, with a mean Dice 
similarity coefficient of 75.29% ± 0.42%, an IoU of 62.27%, recall of 
78.36%, and precision of 75.34%. Lastly, Loo et al.’s (54) DL algorithm for 
classifying and segmenting retinal cavitations in macular telangiectasia 
type 2 via OCT images reported a sensitivity of 0.94, a specificity of 0.80, 
and an average Dice similarity coefficient of 0.94. Overall, AI’s integration 
with OCT improves fundus lesion detection capabilities.

4.2.1.2 Advancements in AI-assisted OCT for detection of 
retinal pathologies

Advanced deep learning algorithms enhance AI’s ability to analyze 
OCT imagery, significantly improving the identification of subtle 
retinal and optic nerve abnormalities. The integration of AI with OCT 
diagnostic processes boosts efficiency and promotes timely 
intervention, significantly improving patient outcomes.

FIGURE 5

The cooperation of countries or regions that contributed to articles on applying artificial intelligence to the study of retinal diseases from 2014 to 2023.

TABLE 2 Top 10 countries or regions with articles on AI in retinal disease from 2014 to 2023.

Rank Count Proportion (%) Centrality H-index

1. People’s Republic of China 926 32.37 0.04 62

2. United States 637 22.27 0.18 66

3. India 464 16.22 0.22 44

4. England 224 7.83 0.24 39

5. South Korea 172 6.01 0.08 34

6. Saudi Arabia 135 4.72 0.13 22

7. Germany 133 4.65 0.05 31

8. Australia 126 4.40 0.06 33

9. Pakistan 106 3.70 0.10 22

10. Singapore 99 3.46 0.08 31
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4.2.1.3 Advancements in AI-assisted OCT for multiple 
retinal diseases detection

Prevailing AI applications in retinal disease diagnosis have 
evolved from targeting single conditions to addressing multiple 
retinal diseases concurrently within the same patient. This shift is 
facilitated by deep learning algorithms that benefit from larger and 
better-quality datasets, feature fusion advancements, and holistic 
training techniques. This new wave of multi-condition AI detection 
models has quickly gained traction in academic research. A prime 
example is Sunija et al. (55), who introduced OctNET, a lightweight 
CNN for classifying retinal diseases via OCT images, achieving 
precision, recall, and accuracy rates of 99.69%. Togacar et al. (56) 
proposed a novel approach combining CNN-derived dominant 
activations with the slime mold algorithm, resulting in high 
classification accuracies of 99.60, 99.89, and 97.49% across three 
distinct datasets. Similarly, Upadhyay et al. (57) presented a CNN 
framework for four-class retinal disease classification, incorporating 

batch normalization across five layers to attain a 97.19% accuracy rate. 
Kayadibi et  al.’s (58) Retinal Fine Tuned Convolutional Neural 
Network (R-FTCNN) demonstrated perfect metrics in one dataset in 
the Duke dataset and exceptional results in the UCSD dataset, with 
an accuracy of 99.70%, a sensitivity of 99.70%, and a specificity 
of 99.90%.

The Hercules model integrates attention mechanisms and 
uncertainty quantification to enhance classification accuracy, 
achieving 94.21% in retinal OCT evaluations (59).

Moreover, AI’s potential to revolutionize diagnostic methods in 
universal healthcare systems, especially in community settings, is 
increasingly recognized. Bai et al. (60) assessed AI-enabled OCT’s 
precision in identifying 15 retinal disorders in community 
environments, demonstrating performance comparable to retina 
specialists and surpassing both senior and junior ophthalmologists. 
This suggests AI’s capability to improve accessibility and quality in 
community-based ophthalmic healthcare.

FIGURE 6

Network map of institutions that contributed to articles on AI in retinal diseases from 2014 to 2023.

TABLE 3 Top 10 institutions with articles on AI in retinal disease from 2014 to 2023.

Rank Countries/regions Count Centrality h-index

1. University of London England 99 0.05 25

2. University College London England 95 0.05 25

3. Chinese Academy of Sciences China 88 0.08 24

4. Moorfields Eye Hospital NHS Foundation Trust England 81 0.06 23

5. Sun Yat-Sen University China 79 0.05 21

6. University of California System USA 78 0.09 20

7. Capital Medical University China 65 0.03 19

8. Medical University of Vienna Austria 65 0.07 24

9. Egyptian Knowledge Bank (EKB) Egypt 62 0.05 16

10. National University of Singapore Singapore 59 0.13 22
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4.2.1.4 Advancements in AI-assisted OCT for DR
The research community is keenly focused on utilizing AI with 

OCT to explore DR-related retinopathy, with particular attention to 
microangiopathy. OCT’s capability in detecting subtle microvascular 
alterations serves as a cornerstone for early DR detection. Deep 
learning models have substantively aided clinicians in identifying 
early-stage DR using OCT. Hua et al. (61) introduced TFA-Net, a DL 
framework for assessing DR severity through fundus images and 
wide-field swept-source OCT angiography (SS-OCTA), achieving a 
Quadratic Weighted Kappa (QWK) of 90.2% in the KHUMC dataset 
and a mean accuracy of 94.8% with an AUC of 99.4% in the 
Messidor dataset.

OCT is also vital for detecting and assessing diabetic macular 
edema (DME), enabling high-resolution imaging that identifies 
abnormal retinal thickening and specific morphological changes 
associated with DME. DME is categorized as central involvement 
(CI-DME) or non-central involvement (NCI-DME) (62). Tang et al. 

(63) developed DeepDR, a DL framework for diagnosing and 
staging DME, which achieved AUROC scores of 0.937, 0.958, and 
0.937 on the CIRRUS, SPECTRALIS, and Triton OCT datasets, 
respectively, and 0.965 on an external dataset. In differentiating 
between CI-DME and NCI-DME, AUROC results were 0.968, 
0.951, and 0.975 for the primary dataset, exceeding 0.894 for the 
external dataset, highlighting DeepDR’s effectiveness in 
DME assessment.

Additionally, DL techniques enhance OCT’s capability to 
reveal characteristic changes indicative of DME severity, 
treatment response, and prognosis, making it a valuable imaging 
biomarker (64, 65). A study on the automated quantification of 
central macular fluid volume (CMFV) via OCT involved 215 
patients, finding an AUROC of 0.907 for identifying center-
involved DME. With a specificity of 95%, CMFV demonstrated a 
sensitivity of 78.5% for detecting center-involved DME, 
confirming its role as a diagnostic biomarker (66). Further 

FIGURE 7

Top 10 keywords with the strongest citation bursts of articles on the application of artificial intelligence in retinal diseases from 2014 to 2023.

TABLE 4 Top 10 categories of journals on AI in retinal diseases from 2014 to 2023.

Rank Web of Science categories Numbers % of 2,861

1 Ophthalmology 552 19.29

2 Engineering Electrical Electronic 478 16.71

3 Engineering Biomedical 443 15.48

4 Computer Science Interdisciplinary Applications 325 11.36

5 Computer Science Information Systems 323 11.29

6 Computer Science Artificial Intelligence 302 10.56

7 Radiology Nuclear Medicine Medical Imaging 266 9.30

8 Multidisciplinary Sciences 230 8.03

9 Medicine General Internal 216 7.55

10 Mathematical Computational Biology 193 6.75
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TABLE 5 The top 10 articles on AI in retinal diseases from 2014 to 2023.

Rank Title Times 
cited

Interpretation of the 
findings

Advantages Limitations

1 Development and 

Validation of a Deep 

Learning Algorithm for 

Detection of Diabetic 

Retinopathy in Retinal 

Fundus Photographs (43)

3,585 The article presents findings 

from the application of deep 

learning to create an 

algorithm for the automated 

detection of diabetic 

retinopathy and diabetic 

macular edema in retinal 

fundus photographs

 1. DL algorithms offer adjustable 

sensitivity and specificity, 

enabling customization for 

various clinical environments

 2. DL networks can learn from 

extensive datasets without 

requiring predefined lesion 

characteristics

 3. DL algorithms facilitate rapid 

result reporting, benefiting 

timely clinical diagnosis and 

decision-making

 1. System accuracy may decline due to 

reliance on ophthalmologist 

consensus, affecting the detection of 

subtle findings

 2. The neural network autonomously 

learns features, potentially using 

unrecognized human features, but 

specific features remain unidentified

 3. Focused training on diabetic 

retinopathy and macular edema may 

cause oversight of other retinopathies

2 Identifying Medical 

Diagnoses and Treatable 

Diseases by Image-Based 

Deep Learning (102)

1,580 This study established a 

diagnostic tool based on a 

transfer learning framework 

that trains a neural network 

with a fraction of the data of 

conventional approaches, for 

the screening of patients with 

common treatable blinding 

retinal diseases

 1. The model demonstrated high 

accuracy with limited training 

data

 2. Its diagnostic performance on 

retinal OCT images matched 

that of experienced clinicians

 3. The model’s success with chest 

X-rays suggests broad 

applicability in medical imaging

 4. The occlusion test provided 

transparency and insights into 

the decision-making process of 

the model

 1. Transfer learning facilitates precise 

training on small datasets, but may 

underperform compared to models 

trained from scratch on vast OCT 

image datasets

 2. Lesion recognition by the system in 

occlusion tests is constrained by lesion 

size

 3. Model performance significantly relies 

on the weights of the pre-trained 

model

 4. Additional clinical validation is 

required to evaluate its practical utility 

and effect on patient outcomes

3 Clinically applicable deep 

learning for diagnosis and 

referral in retinal disease 

(103)

1,215 This study proposed a novel 

deep-learning architecture for 

a clinically heterogeneous set 

of three-dimensional OCT 

scans

 1. Two test datasets with diverse 

retinal pathologies were used, 

reflecting real-world clinical 

diversity

 2. 3D modeling and segmentation 

in OCT scans allowed for 

extensive tissue type analysis

 3. The AI framework mimicked 

clinical decision-making by 

separating scan evaluations from 

referral decisions

 4. Segmentation outputs served 

both as clinical training aids and 

as tools for medical image 

interpretation learning

 5. These outputs enabled the 

quantification of retinal features 

and pathology measurements, 

valuable for visual outcome 

studies and clinical trials

 6. The framework accurately 

triaged scans, matching or 

surpassing the performance of 

retina specialists and 

optometrists

 1. The framework’s segmentation map, 

labeling each pixel singularly, might 

lack comprehensive diagnostic 

information for some clinical pathways

 2. The diversity of OCT-diagnosable 

diseases and global referral practices 

exceed the study’s scope

 3. Randomized trials are needed to 

validate its clinical efficacy and patient 

outcome impact

(Continued)
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TABLE 5 (Continued)

Rank Title Times 
cited

Interpretation of the 
findings

Advantages Limitations

4 Development and 

Validation of a Deep 

Learning System for 

Diabetic Retinopathy and 

Related Eye Diseases 

Using Retinal Images 

From Multiethnic 

Populations With Diabetes 

(104)

1,141 The DL approach shows good 

sensitivity and specificity for 

detecting DR and related eye 

diseases while examining 

retinal images from 

multiethnic cohorts of 

diabetes patients

 1. The DL System’s performance 

was clinically comparable to 

existing models, as evaluated by 

professional graders

 2. Training and validation datasets 

were notably extensive, 

encompassing diverse racial and 

ethnic patient images

 3. Validation occurred within an 

active diabetic retinopathy 

screening program, mirroring 

real-world scenarios including 

lower-quality and ungradable 

images

 4. Its cost-effectiveness allows for a 

semi-automated screening 

process, combining AI with 

human review for flagged cases

 1. The training set was not entirely 

developed based on retinal specialists’ 

grading for all images

 2. The DL System used multiple levels of 

representation to analyze retinal 

images without explicitly showing the 

actual diabetic retinopathy lesions

 3. Identifying diabetic macular edema 

solely from fundus photos might miss 

cases without clinical exams and OCT

5 CE-Net: Context Encoder 

Network for 2D Medical 

Image Segmentation (105)

1,028 The study employed a context 

encoder network (CE-Net) for 

2D medical image 

segmentation, enhancing 

high-level and spatial 

information capture. It 

demonstrated superior 

performance over the original 

U-Net and other advanced 

methods

 1. CE-Net surpassed U-Net and 

other leading methods in diverse 

medical image segmentation 

tasks

 2. With dense atrous convolution 

and residual multi-kernel 

pooling, it captured enhanced 

high-level features, improving 

accuracy

 3. CE-Net’s versatility suited 

multiple 2D segmentation tasks

 1. The proposed CE-Net method was 

validated only on 2D images in the 

current study

 2. It required fine-tuning with manually 

annotated data, which is labor-

intensive and potentially scarce

6 Prediction of 

cardiovascular risk factors 

from retinal fundus 

photographs via deep 

learning (106)

798 The study shows DL’s 

capability to predict 

cardiovascular risk factors, 

such as age, gender, smoking 

status, systolic blood pressure, 

and major adverse cardiac 

events, from retinal fundus 

photos with high accuracy, 

leveraging anatomical features 

such as the optic disk and 

blood vessels

 1. DL applied to retinal fundus 

images can predict 

cardiovascular risk factors

 2. Its accuracy in forecasting major 

adverse cardiovascular events 

matches that of the established 

composite risk calculators 

calculator

 3. Consistency across two 

validation datasets indicates 

generalizability

 4. The findings could elucidate the 

impact of cardiovascular diseases 

or risks on retinal vasculature/

optic disks

 1. The system only utilized retinal fundus 

photographs with a 45° field of view

 2. The overall size of the dataset was 

relatively small for DL

 3. Key inputs for cardiovascular risk 

calculators were absent

 4. Combining former smokers with 

never-smokers might bias outcomes; 

detailed smoking histories could alter 

model accuracy

 5. Larger datasets and further clinical 

validation are necessary to evaluate 

retinal images as potential 

cardiovascular risk indicators

(Continued)
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TABLE 5 (Continued)

Rank Title Times 
cited

Interpretation of the 
findings

Advantages Limitations

7 Automated Identification 

of Diabetic Retinopathy 

Using Deep Learning 

(107)

675 A DL algorithm for 

automated DR detection in 

retinal images achieved a 0.97 

AUC, with 94% sensitivity 

and 98% specificity. Its 

efficiency in screening and 

identifying DR cases for 

ophthalmologist referral may 

greatly decrease global DR-

related vision loss rates

 1. The method efficiently detected 

DR without manual grading, 

reducing costs

 2. It was operable on standard 

personal computers and 

smartphones, enhancing 

accessibility

 3. Abnormalities were accurately 

visualized, supporting clinical 

confirmation

 4. It effectively identified early DR 

stages, highlighting 

microaneurysms and 

hemorrhages

 5. This approach has the potential 

to optimize retinopathy 

screening, reducing vision loss 

from DR and improving global 

clinical management

 1. The algorithm struggled to 

differentiate between healthy and very 

early cases of DR, particularly those 

with only a few fine microaneurysms

 2. The effect of geographic variations on 

performance, like retinal pigmentation 

and DR prevalence, warrants more 

study

 3. Future research should consider 

integrating patient metadata into the 

model to improve accuracy and 

elucidate non-imaging DR risk factors

8 Pivotal trial of an 

autonomous AI-based 

diagnostic system for 

detection of diabetic 

retinopathy in primary 

care offices (108)

617 The AI diagnostic system 

exhibited high sensitivity 

(87.2%) and specificity 

(90.7%) for diabetic 

retinopathy detection in 

primary care, earning FDA 

approval. It holds promise for 

enhancing early DR and 

diabetic macular edema 

identification

 1. The system outperformed 

ophthalmologists in detecting 

DR among diabetics

 2. It accurately identified all severe 

and proliferative DR cases

 3. Exhibited low ethnic or racial 

bias, enhancing its reliability

 4. Design based on lesion detection 

and clinical insights minimized 

bias

 5. Maintained effectiveness despite 

cataracts, recommending when 

dilation is needed for scalability

 6. IDx-DR became the first 

autonomous diagnostic AI to 

receive FDA approval in 

medicine

 1. The study has a limited scope, 

primarily focusing on the efficacy of 

the AI system in detecting DR and 

DME

 2. The system overlooked incidental 

findings, including optic disk cup 

enlargement and signs of retinal 

pigment epithelium atrophy, 

suggesting possible conditions like 

glaucoma or AMD

 3. In primary care settings, the AI 

system’s sensitivity was reduced 

compared to lab datasets

9 Segmenting Retinal Blood 

Vessels With Deep Neural 

Networks (109)

606 The study utilized a 

supervised deep neural 

network for retinal vessel 

segmentation in fundus 

images, autonomously 

transforming raw pixels into 

sophisticated features, 

demonstrating deep learning’s 

effectiveness in medical 

imaging without prior domain 

knowledge

 1. The method showed resilience 

against central vessel reflex, 

highlighting its robustness in 

fundus imaging

 2. It exhibited high sensitivity 

(>0.87) in detecting fine vessels

 3. By converting raw pixels into 

abstract features, the network 

enhanced vessel segmentation

 4. Utilizing structured prediction, 

it simultaneously classified 

pixels, aiding in anatomical 

structure segmentation

 1. Deep neural networks face criticism 

for their interpretability issues, 

obscuring their decision-making 

process in segmentation tasks

 2. The algorithm requires further 

refinement for widespread clinical 

adoption

(Continued)
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research has underscored a significant correlation between the 
extent of the area of avascularity (EAA) measured via OCTA and 
DME severity. Notably, EAA’s measurements showed no 
significant correlation with factors like signal strength index and 
shadow area, affirming its reliability and independence as a 
biomarker for DME (67).

4.2.1.5 Advancements in AI-assisted OCT for AMD 
diagnosis and segmentation

Age-related macular degeneration (AMD) has a long 
developmental cycle and variable symptom progression, necessitating 
AI algorithms that effectively address disease classification and 
staging. Accurate training methods are crucial for these applications, 
as OCT image changes are indicative of disease progression. Thomas 
et al. (68) introduced a pioneering deep CNN architecture tailored for 
the early detection of AMD from OCT images, showcasing high 
accuracy with scores ranging from 0.9666 to 0.9978 across multiple 
datasets. Moradi et  al. (69) explored deep ensemble learning for 
automated classification of non-advanced AMD, utilizing optimized 
retinal layer segmentation in spectral-domain OCT (SD-OCT) scans, 
resulting in an AUC of 99.4% for distinguishing normal eyes from 
early AMD cases. Sotoudeh-Paima et al. (70) developed a multi-scale 
CNN for automated AMD classification, implementing gradual 
learning stages that enhanced accuracy from 87.2 to 93.4%. Liefers 
et al. (71) developed and validated a deep learning (DL) model for 
identifying features of neovascular and atrophic AMD in OCT images, 
achieving a mean Dice score of 0.63 for 11 of 13 features and an 
intraclass correlation coefficient of 0.66, both comparable to 
human observers.

4.2.1.6 Advancements in AI-assisted OCT for diagnosis 
and grading of glaucoma

As can be seen from above, advancements have been achieved in 
DL methods for assessing changes in cup-to-disk ratio (C/D ratio) and 
retinal nerve fiber layer (RNFL) thickness. Over recent years, 
substantial progress has been made in leveraging DL for assisted 
diagnosis and grading of glaucoma using OCT imaging.

For glaucoma detection, Metha et  al. (72) developed a 
multimodal DL model that combines macular OCT volumes, color 
fundus photographs, and clinical data for glaucoma detection, 
achieving an AUC of 0.97 with data from the UK Biobank. Sun 
et al. (73) introduced a dual-input CNN that analyzes RNFL and 
ganglion cell-inner plexiform layer (GCIPL) images, demonstrating 
strong diagnostic performance with an accuracy of 92.793% and 
an AUC of 0.957. Panda et  al. (74) investigated the diagnostic 
utility of the central retinal vessel trunk and branches’ 3D structure 
for glaucoma using OCT, employing a DL network for 
segmentation, achieving a Dice coefficient of 0.81. Utilizing 3D and 
3D-to-2D CNN methodologies, they discerned glaucoma from 
non-glaucoma cases with accuracies of 82.7 and 83.3%, and AUCs 
of 0.89 and 0.90, respectively. In a study analyzing 130 eyes from 
healthy subjects and 275 eyes from individuals diagnosed with 
glaucoma, CNN was utilized to evaluate vessel density and RNFL 
thickness images, achieving an Area Under the Precision-Recall 
Curve (AUPRC) of 0.97 (75). Beyond traditional methods, He et 
al. (76) presented a modality-specific attention network that 
integrates fundus and OCT images for retinal image classification, 
highlighting the advantage of multi-modal data integration. For 
glaucoma grading, Garcia et al. (77) proposed a hybrid network 
combining hand-crafted features with DL algorithms for analyzing 
circumpapillary B-scans. This approach, utilizing prototypical 
networks for few-shot learning, achieved categorical accuracies up 
to 0.9459.

In addition, AI has the capability to synthesize OCT images to aid 
in training AI systems for glaucoma diagnosis. Sreejith Kumar et al. 
(78) evaluated the use of Generative Adversarial Networks (GANs) to 
train DL networks on synthetic images, achieving an AUC of 0.97 on 
the internal dataset and 0.90 on the external dataset. These results 
demonstrate the efficacy of generative models in DL training and the 
potential for data sharing across institutions.

TABLE 5 (Continued)

Rank Title Times 
cited

Interpretation of the 
findings

Advantages Limitations

10 Improved Automated 

Detection of Diabetic 

Retinopathy on a Publicly 

Available Dataset Through 

Integration of Deep 

Learning (110)

581 The enhanced deep-learning 

algorithm IDx-DR X2.1 

surpassed traditional models 

in detecting referable diabetic 

retinopathy (rDR), achieving 

96.8% sensitivity and 87.0% 

specificity, alongside high 

negative predictive values, 

demonstrating its accuracy in 

identifying the absence of DR

 1. The device achieved 100% 

sensitivity and 91% specificity 

for vision-threatening diabetic 

retinopathy

 2. It exhibited a high Negative 

Predictive Value (NPV), 

indicating a minimal chance of 

DR and offering patient 

reassurance

 3. Research on the Messidor-2 

dataset with a three-expert 

standard ensured result 

transparency and reliability

 1. The study, focusing on a standardized 

dataset, lacks evaluation of the device’s 

real-world performance in diabetic 

populations, where variations in image 

quality and demographics could affect 

results

 2. It did not address the device’s ethical, 

legal, and financial implications crucial 

for clinical use

TABLE 6 Top five retinal disease researches using AI from 2014 to 2023.

Rank Topic Times

1 Diabetic retinopathy (DR) 582

2 Glaucoma 428

3 Age-related macular degeneration 384

4 Diabetic macular edema 299

5 Retinopathy of prematurity (ROP) 79
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4.2.2 Attention mechanism
The attention mechanism is a technique in DL that enhances 

model’s focus on specific input data, thereby optimizing its 
performance. The articles with the keyword “attention mechanism” 
show its widespread application in medical image analysis, especially 
in DR classification. In retinal diseases, attention mechanisms are 
crucial for lesion detection, diagnosis, and classification. Here are 
some key points and research directions related to attention 
mechanisms in the context of the included articles.

4.2.2.1 Retinal structure segmentation based on CFP
In the realm of fundus image segmentation within the domain of 

AI, the attention mechanism technology integrated within CNNs 
emerges as a pivotal advancement, directing the model’s focus toward 
pertinent regions within retinal images. This sophisticated technique 
has garnered considerable attention and application, particularly in 
the segmentation of fundamental anatomical features such as blood 
vessels and optic disks, yielding commendable outcomes.

In vascular segmentation, this method has achieved remarkable 
achievements. Notable techniques include the AACA-MLA-D-UNet, 
employing a multi-level attention mechanism and dropout dense 
blocks for enhanced segmentation accuracy, showing superior 
performance on DRIVE, STARE, and CHASE_DB1 datasets with 
reduced complexity (79). Li et al. (80) improved U-Net-based retinal 
vessel segmentation by incorporating attention mechanisms, yielding 
better results across multiple datasets. BSEResU-Net utilizes Before-
activation Squeeze-and-Excitation blocks (BSE Blocks) with attention 
mechanisms and drops block regularization to improve performance 
and generalization. Experimental results on DRIVE, STARE, and HRF 
datasets with F1-scores of 0.8324, 0.8368, and 0.8237, respectively 
(81). MSCNN-AM, a multi-scale CNN incorporating attention 
mechanisms for retinal vessel segmentation, demonstrated notable 
efficacy, with sensitivities of 0.8342/0.8412/0.8132 and accuracies of 
0.9555/0.9658/0.9644 on DRIVE, STARE, and CHASE_DB1, 
respectively (82). A novel retinal vessel segmentation algorithm, 
integrating multi-scale attention D-MNet with an enhanced PCNN 
model, was validated across four databases (DRIVE, STARE, CHASE_
DB1, HRF), achieving detection accuracies of 96.83, 97.32, 97.14, and 
96.68%, respectively (83). LEA U-Net, a DL framework for retinal 
vessel segmentation has an evaluation on the DRIVE dataset achieving 
an accuracy of 0.9563, F1-score of 0.823, TPR of 0.7983, and TNR of 
0.9793. The AUC of PRC is 0.9109 and the AUC of ROC is 0.9794 (84).

Besides, the utilization of attention mechanism technology within 
CNNs has demonstrated remarkable efficacy in segmenting critical 
ocular structures such as the optic disk and cup, pivotal in glaucoma 
screening protocols. Guo et al. (85) established FAU-Net, enhancing 
U-Net with feature fusion and channel-spatial attention, showing 
superior performance across multiple datasets. RSAP-Net introduces 
a U-shaped network with a Residual Spatial Attention Path for optic 
disk (OD) and optic cup (OC) segmentation, achieving F1 scores of 
0.9752 (OD) and 0.9012 (OC), and boundary localization errors of 
6.33 pixels (OD) and 11.97 pixels (OC) on Drishti-GS1 (86). Wang 
et  al. (87) created a hierarchical CNN with a cascaded two-stage 
architecture for OD and OC segmentation in fundus images, utilizing 
an attention mechanism and focal loss for accurate OD identification, 
followed by multi-task and adversarial learning for OD and OC 
segmentation. The model exhibited competitive performance on 
RIM-ONE-r3 and REFUGE datasets.

4.2.2.2 Diagnosis, classification, and staging of DR
DR classification and staging based on DL have seen significant 

advancements in recent research. According to the American Academy 
of Ophthalmology’s international clinical classification system for 
diabetic retinopathy (DR), DR is categorized into various stages, 
including no DR, mild non-proliferative DR (NPDR), moderate NPDR, 
severe NPDR, proliferative DR, and diabetic macular edema (DME). 
Several studies have contributed novel DL models to enhance DR 
grading accuracy and performance. He et al. (88) introduced CABNet, 
a CNN with an attention module, achieving enhanced lesion detection 
and handling of imbalanced data, achieving accuracies of 78.98, 84.08, 
and 86.18%, with Kappa scores of 0.7863, 0.8723, and 0.8678 on the 
DDR, Messidor, and EyePACS datasets, respectively. Papadopoulos et al. 
(89) proposed an interpretable method with an attention mechanism 
for referable DR detection, with AUCs of 0.961 in Kaggle and 0.976 in 
Messidor-2, and with valid lesion heatmaps with AUPRC of 0.869 in 
IDRiD. Li et  al. (90) established DACNN, an attentive CNN for 
imbalanced DR grading in retinal images, incorporating attention 
mechanisms for improved feature extraction with the results of 88.0% 
accuracy and 88.6% kappa score for multi-class DR grading on the 
EyePACS dataset, and 98.5% AUC, 93.8% accuracy, 87.9% kappa, 90.7% 
recall, 94.6% precision, and 92.6% F1-score for referral and non-referral 
classification on the Messidor dataset. Jian et al. (91) created Triple-
DRNet, a three-stage cascade network with attention-enhanced subnets, 
achieving 92.08% accuracy and a 93.62% Quadratic Weighted Kappa. 
This model surpassed previous networks with accuracies of 98.99% for 
DR-Net, 88.40% for PDR-Net, and 80.20% for NPDR-Net. Murugappan 
et al. (92) implemented a Few-Shot Learning network with an attention 
mechanism for DR detection and grading, performing well both in 
detection (99.73% accuracy, 99.82% sensitivity, 99.63% specificity) and 
in grading (98.18% accuracy, 97.41% sensitivity, 99.55% specificity). 
Reddy and Gurrala (93) developed the Joint DR-DME Network (JDD-
Net), which utilizes a deep graph correlation learning model. The model 
combines convolutional block attention module (CBAM) and joint 
disease attention (JDA) modules to extract disease-specific features, 
attaining accuracies of 99.53% for individual DR, 99.1% for individual 
DME, and 99.01% for combined DR-DME grading. In addition to 
traditional CNNs, Wu et al. (94) employed a Vision Transformer for DR 
grading, leveraging attention mechanisms for long-range pixel analysis, 
resulting in 91.4% accuracy, 97.7% specificity, 92.8% precision, 92.6% 
sensitivity, a QWK of 0.935, and an AUC of 0.986.

However, a common issue persists: these DL systems for DR 
grading often lack integration with medical knowledge. Consequently, 
ophthalmologists face challenges in accurately interpreting grading 
outcomes, limiting the practical applicability of these systems. To 
address the problem, Tian et al. (95) applied FA + KC-Net to integrate 
medical knowledge into DR grading, enhancing interpretability for 
ophthalmologists. The model achieved 84.49% accuracy and 86.17 
QWK across datasets.

4.2.3 Outcome
AI has a high reference value for assessing the prognosis of retinal 

diseases. Accurate prediction will help physicians design treatment 
plans, improve the quality of care, and improve patient outcomes. 
Hashimoto et  al. (96) trained a CNN with data from 591 eyes to 
predict visual field (VF) sensitivity using macular layer thickness, 
achieving low absolute errors (AE of 2.84 dB for the entire VF). This 
DL model also accurately predicted VF outcomes from the HFA 10–2 
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test using SD-OCT data. Li et al. (97) analyzed data from 17,497 eyes 
to develop and validate DL models for glaucoma forecasting, achieving 
AUROCs of 0.90 for incidence and 0.91 for progression in the 
validation cohort. External tests showed AUROCs of 0.87 to 0.89 for 
incidence and consistently 0.88 for progression, demonstrating robust 
generalizability. Yang et al. (98) utilized an automated algorithm to 
assess OCTA images from diabetic patients over 4 years, revealing that 
diabetic microvascular infarctions (DMIs) in both superficial and 
deep capillary plexuses signal diabetic retinal disease progression. 
Specifically, DMIs in the deep capillary plexus were significantly 
associated with DME onset and visual acuity deterioration.

4.2.3.1 Prediction of vision results
A significant advance in the treatment of retinal illnesses is 

intravitreal anti-vascular endothelial growth factor therapy; however, its 
effect on some patients is undesirable. AI technology can accurately 
predict the individual effects of treatment. Ideally, after the initial 
treatment, the AI model would take baseline photos and clinical data of 
the patient and provide anticipated follow-up intervals and overall 
treatment expectations. This could significantly improve the planning of 
anti-vascular endothelial growth factor therapy, prevent negative effects 
caused by under-treatment or over-treatment, and reduce treatment 
costs. Seebock et al. (99) used the random forest AI model to train the 
prognosis of patients receiving standardized ranibizumab treatment, and 
the accuracy rate of predicting individual vision results was 71%.

4.2.3.2 Prediction of the future natural course of retinal 
diseases

Early AMD is a chronic progressive disease with a highly 
heterogeneous progression rate. Patients with AMD may remain in the 
early stages without any associated functional impairment and rapidly 
progress to advanced AMD. Predicting advanced AMD is difficult in 
clinical practice. Ajana et  al. (100) developed a machine-learning 
model for advanced AMD prediction, incorporating various risk 
factors and achieving a cross-validated AUC of 0.92 in training and test 
sets over 5 years, using data from two cohort studies. Moraes et al. (101) 
introduced a DL algorithm for automated OCT scan quantification in 
neovascular AMD, utilizing data from the Moorfields Eye Hospital 
AMD Database. This algorithm segmented features such as 
neurosensory retina and fluids, noting differences in feature volumes 
between first and second-treated eyes and among demographic groups, 
highlighting automated OCT segmentation’s potential in personalizing 
care and uncovering new structure–function relationships.

4.3 Open challenges and future 
opportunities

Summarizing the limitations of the research on the application of 
AI in retinal disease can guide future research. The limitations of the 
citations can be  roughly divided into five aspects: (1) language 
limitations in the groups included in the studies; (2) Source limitations 
of the selected articles; (3) limitations of research methods; (4) bias 
caused by the subjective will of the participants; and (5) limitations of 
small sample sizes.

To overcome the problem of limitations in the groups included in the 
studies, researchers should aim to increase the diversity of the study 
sample by including participants with a wider range of characteristics, 

such as age, gender, race, ethnicity, socioeconomic status, and health 
status. This will help to ensure that the results are applicable to a broader 
population. To address the problem of limitations of research methods, 
researchers should consider using multiple methods to collect data, 
verifying their findings by replicating the study, 5 or using complementary 
methods. To mitigate the bias caused by the subjective will of the 
participants, researchers can use various strategies, such as ensuring 
informed consent, using blinding techniques, and avoiding leading 
questions. To address the limitations of small sample sizes, researchers 
can try to increase the sample size by recruiting more participants or by 
using statistical methods to compensate for the smaller sample size. It is 
also important to report effect sizes and confidence intervals to provide 
a more accurate estimate of the strength and precision of the results.

From the perspective of hot research directions, there is still room 
for improvement in future research. The dataset standard is 
inconsistent. Many retinal diseases show similar manifestations; the 
diagnosis mainly relies on experienced doctors, and there are variations 
in diagnosis between doctors. Given this situation, many research and 
development teams have collected several fundus pictures of different 
eye diseases, invited senior ophthalmologists to read the pictures, 
graded and partitioned the pictures, and established diagnostic datasets 
for some common diseases. However, many diseases are still without 
officially recognized datasets, and various reliable and unreliable data 
sets limit current diagnosis and treatment efforts.

Although many scholars have carried out some research work in this 
field and achieved phased results, the application of AI in retinal diseases 
mainly focuses on DR, AMD, and glaucoma at present, more data 
accumulation and data mining is still needed for retinal diseases such as 
ROP and myopia. In the future, Relevant researchers should develop 
more systematic prediction models, detect the hidden information in the 
images according to the guidance of clinicians, incorporate more 
evaluation factors, and conduct multimodal analysis to predict the 
treatment progress and success probability of retinal diseases.

4.4 Limitations

Our study encountered several limitations that merit consideration. 
We confined our literature review to articles dated between 2014 and 
2023. Moreover, our search was restricted to English-language 
literature, thereby excluding potentially valuable data from unpublished 
or in-progress works in other languages. Additionally, our analysis was 
confined to the Web of Science Core Collection (WoSCC), a recognized 
academic database. While incorporating other databases could 
broaden the dataset, variations in citation metrics and indexing 
methods across platforms complicate cross-database integration and 
analysis. Furthermore, limitations in the literature screening process, 
stemming from both automated tools and manual exclusion, may have 
introduced minor inaccuracies. Finally, although we  rigorously 
examined 4,386 articles, the study may still reflect a degree of inherent 
researcher bias that is challenging to eliminate entirely.

5 Conclusion

Through bibliometric analysis of worldwide literature over the past 
decade, we have traced the historical evolution, pinpointed current 
research foci, and projected future trends within this field. Despite 
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progress, there remains a pressing need for refinement of DL algorithm 
models and enhancement of disease process screening methods. China 
holds the record for the highest volume of literature published, 
whereas the United States stands out as the most influential contributor 
to this research area, with Germany leading in international 
collaborations. The University of London and the National University 
of Singapore are distinguished by the high citation rates of their articles.

The refinement of AI algorithms and the exploration of abnormal 
eye physiological features constitute core pursuits in AI-assisted 
diagnosis of retinal diseases. Looking ahead, research should pivot 
toward developing sophisticated diagnostic systems for ophthalmic 
diseases and fostering integration between computer engineering and 
ophthalmology. Current challenges, such as bringing products to 
market, the lack of clinical validation, and data standardization issues, 
all require urgent attention. Furthermore, adapting to the dynamic 
landscape of medical knowledge is crucial.

Current challenges—including the need for market-ready 
products, clinical validation, and data standardization—require urgent 
attention. Adapting to the dynamic landscape of medical knowledge 
is also crucial. We recommend harnessing AI technology to support 
mobile healthcare initiatives, the development of intelligent health 
devices, and the real-time monitoring and evaluation of individual 
health. These advancements will not only facilitate early disease 
detection, DR screening, and proactive interventions but will also 
provide patients suffering from retinal diseases with safer, more 
convenient, and vastly improved management services.
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