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The classification of brain tumors from medical imaging is pivotal for accurate

medical diagnosis but remains challenging due to the intricate morphologies of

tumors and the precision required. Existing methodologies, including manual

MRI evaluations and computer-assisted systems, primarily utilize conventional

machine learning and pre-trained deep learning models. These systems often

su�er from overfitting due to modest medical imaging datasets and exhibit

limited generalizability on unseen data, alongside substantial computational

demands that hinder real-time application. To enhance diagnostic accuracy and

reliability, this research introduces an advanced model utilizing the Xception

architecture, enriched with additional batch normalization and dropout layers to

mitigate overfitting. This model is further refined by leveraging large-scale data

through transfer learning and employing a customized dense layer setup tailored

to e�ectively distinguish between meningioma, glioma, and pituitary tumor

categories. This hybrid method not only capitalizes on the strengths of pre-

trained network features but also adapts specific training to a targeted dataset,

thereby improving the generalization capacity of the model across di�erent

imaging conditions. Demonstrating an important improvement in diagnostic

performance, the proposed model achieves a classification accuracy of 98.039%

on the test dataset, with precision and recall rates above 96% for all categories.

These results underscore the possibility of the model as a reliable diagnostic tool

in clinical settings, significantly surpassing existing diagnostic protocols for brain

tumors.

KEYWORDS

brain tumor classification, medical imaging, deep learning, convolutional neural

networks (CNN), Xception architecture, transfer learning

1 Introduction

Aberrant cell development inside the brain or central spinal canal is called a brain

tumor. Depending on their growth rate and location, brain tumors can disrupt normal

brain function and are potentially life-threatening. Brain tumors are typically categorized

into primary tumors, which begin in the brain, and secondary or metastatic tumors, which

spread from other regions of the body (1).
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FIGURE 1

Meningiomas tumor.

Tumors that Originating from the meninges, which are the

protective membranous layers enveloping the brain and spinal

cord, are called meningiomas. Typically benign, meningiomas

are generally amenable to surgical interventions, with a favorable

prognosis following complete resection. However, their location

and size can cause significant neurological impairments if they

impinge on critical areas of the brain or spinal structures (2).

Figure 1 shows the sample image for Meningiomas tumor.

Gliomas, which originate from the glial cells that support

nerve cells in the brain, represent a more heterogeneous group

characterized by varying degrees of malignancy. The origin of

these tumors cells determines the category in which they fall,

such as astrocytoma’s or oligodendrogliomas. High-grade gliomas

(grades III and IV), such as glioblastoma multiforme, are noted

for their aggressive nature and poor prognosis, often infiltrating

surrounding brain tissue to an extent that makes complete surgical

removal challenging (3). Figure 2 shows the sample image of

Gliomas Tumor.

Pituitary tumors arise from the pituitary gland, a critical

hormone-regulating organ seated at the base of the brain. While

these tumors are predominantly benign, they can significantly

affect bodily functions due to hormonal imbalances they induce,

manifesting symptoms such as vision disturbances, infertility, and

other endocrine disorders. The treatment protocol may involve

surgery, medication, or radiation therapy, depending on the

tumor’s size, growth rate, and hormonal activity (4). Figure 3 shows

the sample image of Pituitary tumor.

These modalities allow for detailed visualization of

tumor size, location, and potential infiltration into adjacent

tissues, thereby guiding therapeutic strategies. For instance,

employing machine learning models in image processing can

improve both the accuracy and speed of tumor classification,

FIGURE 2

Gliomas tumor.

FIGURE 3

Pituitary tumor.

aiding radiologists in making well-informed diagnostic and

treatment decisions.

The motivation behind this study’s requirement to improve

the precision and effectiveness of brain tumor diagnosis using

methods for medical imaging such as MRI. Traditional methods

in medical imaging, whose interpretations can vary significantly

complex nature of brain imaging. Furthermore, existing automated

methods often struggle with issues like overfitting, generalization,
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and computational inefficiency, making them less effective

in clinical settings. The advent of deep learning offers a

promising avenue to overcome these challenges, given its

prowess in pattern recognition and feature extraction in complex

datasets. However, the deployment of such models in a medical

context requires careful adaptation and validation to meet the

stringent accuracy and reliability standards necessary for clinical

diagnosis (5, 6).

The objectives of the research:

• Develop a robust model that can precisely classify brain

tumors into meningioma, glioma, or pituitary tumor.

• Implement advanced techniques such as batch normalization

and dropout help reduce overfitting and enhance the

generalization capacity of the model to new, unseen data.

• Provide a framework for further adaptation and use of deep

learning models in the medical imaging field, promoting more

accurate and rapid diagnosis processes.

The further organization of the paper is as follows: Section 2

presents the state-of art existing methodologies, Section 3 depicts

the workflow of the proposed model. Section 4 presents the

results of the proposed model, Section 5 presents the comparison

of proposed model with the state-of-art methodologies. Finally,

Section 6 concludes with the justification of the results.

2 Related work

A variety of studies have explored different aspects of applying

deep learning models to enhance the diagnosis and classification of

brain tumors. These studies have generally focused on enhancing

the precision, efficiency, generalizability predictive models. Despite

these advancements, several challenges remain.

Traditional methods for brain tumor analysis primarily

involved manual inspection of medical images by experienced

radiologists. These techniques depended on visual assessments

using MRI, CT scans, and other imaging modalities to identify

irregularities suggestive of tumors. The accuracy of these diagnoses

heavily relied on the individual expertise and experience of the

medical professionals, leading to variability in diagnostic accuracy

and potential for human error (7). Additionally, these methods

were time-consuming and often required corroborative tests to

confirm diagnoses.

With the advent of digital imaging and increased computational

power, early machine learning techniques began to be integrated

into the analysis of brain tumors. Earlier machine learning models

tried to automate the process of extracting features from photos and

determining important attributes that would indicate the existence

of a tumor. However, these methods still struggled with handling

the high dimensionality of medical images and often required

extensive preprocessing of data to be effective. They provided a

foundation for automated analysis but were limited by the quality

and amount of the data available, which could introduce biases (8).

Convolutional Neural Networks (CNNs) became particularly

influential because of their capacity to automatically and effectively

learn features from raw imaging data. Unlike traditional machine

learning techniques, CNNs could handle complex image data

TABLE 1 Literature review of existing models.

References Accuracy Remark

Pedada et al.
(10)

93.40% and
92.20%

This study presents a novel approach with
significant accuracy improvements,
demonstrating a strong contribution to
automated brain tumor segmentation.

Saeedi et al.
(11)

96.47 % The study presents a comprehensive and
innovative approach, combining deep
learning techniques, in order to greatly
improve the accuracy of early-stage brain
tumor identification and categorization.

Wozniak et al.
(12)

96% The study presents a unique CLMmodel that
effectively enhances the efficiency and
precision of CT brain scan evaluations,
highlighting its potential for future
advancements in medical imaging.

Gayathri et al.
(13)

94% The study successfully illustrates the VGG-16
model’s potential for precise brain tumor
identification, achieving strong performance
metrics and outperforming some existing
methods, though it highlights areas for
further improvement and research.

Hossain et al.
(14)

96.97% This research proposed MBINet for brain
tumor classification.

Mohamed
et al. (15)

95.44% The work emphasizes the usefulness of CNNs
in improving brain tumor identification.

Thillaikkarasi
and Saravanan
(16)

84% Create an automated and exact brain tumor
segmentation system using a kernel-based
Convolutional Neural Network (CNN) and
Multiple Support Vector Machines (M-SVM)
in MRI images.

Senan et al.
(17)

95.10% Alexnet+ SVM

Gayathri et al.
(13)

94% Evaluate how well the VGG-16 architecture
performs when using deep learning to
reliably identify brain tumors.

Haq et al. (18) 91.28% The hybrid model was developed using an
ensemble approach.

directly, learning hierarchical features that improved classification

and segmentation tasks (9). Initial deep learning models,

such as AlexNet and later more complex architectures like

GoogLeNet and VGG, demonstrated substantial improvements

in accuracy and efficiency, reducing reliance on manual feature

engineering and significantly improving generalization across

diverse datasets.

Recent advances in deep learning have focused on enhancing

the precision, efficiency, and interpretability of models for

brain tumor analysis. Innovations like transfer learning enable

the use of pre-trained networks on extensive datasets, which

can subsequently be fine-tuned for specific medical imaging

tasks, such as brain tumor categorization. This approach has

dramatically reduced the need for large domain-specific datasets,

which are hard to come by in medical fields. Furthermore,

newer architectures like the Xception model, which incorporates

depthwise separable convolutions, offer improved performance by

increasing the model’s ability to learn from medical images while

being computationally efficient. (6). Table 1 Shows a summary

Frontiers inMedicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2024.1487713
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Sathya et al. 10.3389/fmed.2024.1487713

FIGURE 4

Architectural visualization of the proposed model.

of studies with their specific methods and accuracy for brain

tumor classification.

The summary of existing methods in brain tumor analysis

range from traditional methods, which suffer from subjectivity,

variability in diagnostic accuracy, and time-consuming processes,

to early machine learning techniques that struggle with the

high dimensionality of medical images and require extensive

data preprocessing and manual feature selection, introducing

potential biases. Deep learning, while improving accuracy and

efficiency, demands significant computational resources and often

lacks interpretability, crucial in medical applications. Recent

advances, including transfer learning and integrative approaches

like federated learning, still face challenges such as dependency

on large datasets, difficulties in generalization across diverse

imaging equipment, complex integration requirements, and

privacy concerns in data sharing. These difficulties show howmuch

more study is required to improve these technologies for better

adaptability and understanding in clinical settings.

3 Methodology

This comprehensive approach integrates data preprocessing,

augmentation, and the deployment of a convolutional neural

network (CNN) leveraging the Xception architecture, followed by

statistical analysis. Figure 4 depicts Schematic of the enhanced

Xception CNN architecture tailored for brain tumor classification.

3.1 Dataset description

The MRI images utilized in this study are derived from a

publicly accessible dataset created and shared by Jun Cheng.

The dataset used in this study consists of MRI images, which

are categorized into three main types: meningioma, glioma,

and pituitary tumors. The images are originally grouped into

FIGURE 5

Distribution of MRI scan images across tumor types in training

dataset.

respective folders by class, facilitating straightforward extraction

and manipulation. The dataset is substantial enough to train a deep

learning model, with each category containing hundreds of images,

thereby enabling diverse tumor features. The variability within

each category includes different stages and sizes of tumors, further

enriching the dataset’s complexity and providing a robust challenge

for the deep learning model to tackle, ensuring it learns to identify

subtle and critical differences among the tumor types (19). The

dataset comprises T1-weighted contrast-enhanced images from 233

patients. These images were initially presented in ’.mat’ format

and were converted to “.png” format for this study. The selection

criteria for the images included in the dataset were primarily based

on the clarity and diagnostic relevance of the MRI scans, ensuring

that each image distinctly represented the tumor characteristics

necessary for effective training of the deep learning model. Images

that did not meet these quality standards were excluded tomaintain

the integrity and reliability of the dataset.
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FIGURE 6

Sample images from the datasets.

In this study, potential biases related to patient demographics

such as age, gender, and ethnicity, which may impact MRI

characteristics of brain tumors, are acknowledged and addressed

to develop a fair diagnostic tool. To mitigate these biases, a

diverse dataset including images from a broad demographic

spectrum is compiled, and data augmentation techniques like

rotation, scaling, and flipping are utilized to simulate varied tumor

appearances. The model undergoes stratified cross-validation to

ensure consistent accuracy across different demographic groups.

Algorithms specifically designed to detect and correct biases

assess the model’s performance to prevent disparities in diagnostic

accuracy. Continuous monitoring and regular updates in clinical

settings further ensure the model adapts to new data, maintaining

reliability and fairness across all patient groups, thereby enhancing

its clinical applicability and trustworthiness. Figure 5 Displays

representative MRI scans of each tumor type to demonstrate the

input data quality and variety.

3.2 Data preprocessing

The preprocessing steps, including Data augmentation, image

resizing and normalization, made a substantial contribution to

the model’s performance by guaranteeing dataset homogeneity

and improving the model’s capacity to generalize over a range

of MRI images. Data preprocessing for MRI images is crucial

for ensuring homogeneity and optimization for deep learning.

Each image undergoes normalization, scaling pixel values from
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TABLE 2 Augmentation technique.

Augmentation technique Description

Horizontal flip Mirrors the image horizontally

Random rotation Rotates the image by a random angle

0 to 1 to enhance the model’s numerical stability and speed

up convergence during training. Additionally, to accommodate

the Xception architecture in this study, all images are resized

to a uniform dimension of 224 × 224 pixels, eliminating size

variability that could impact learning efficiency. Furthermore, data

augmentation techniques such as random horizontal flipping and

rotations are applied to the training dataset. These techniques

mimic potential variations in clinical image capture, enhancing

the model’s generalizability and diagnostic accuracy in real-

world settings.

Data augmentation simulates a variety of plausible scenarios

that could occur during image capture. This process is particularly

beneficial in medical imaging, where different patient positions or

imaging angles can vary significantly. For instance, a brain tumor

might appear in different locations and orientations depending on

how the scan was conducted. augmentation techniques such as

scaling, translation, and shear can mimic variations due to different

scanner settings or patient movements (20). These transformations

make the model more robust, enabling it to maintain high

performance regardless of these variabilities in new, unseen images.

Equation 1 represents the flipping transformation on an image.

Equation 2 represents the rotation of an image by an angle θ , using

the rotation matrix R(θ). Figure 6 shows the Examples of image

transformations applied during data augmentation to enhance

model robustness. Table 2 shows the detailed specific augmentation

methods used, such as rotations and flips, to train the model.

Iflipped
(

x, y
)

= I
(

W − x, y
)

(1)

Irotated (θ) = R (θ) · I (2)

3.2.1 Normalization
It is applied to all images by scaling the pixel values to a

range of 0 to 1, a crucial step for enhancing the model’s training

efficiency. This normalization not only aids in speeding up the

convergence but also helps in maintaining numerical stability,

which is essential for optimizing the gradient descent process. By

guaranteeing that the scales of all input characteristics, in this case

the pixel intensities, are comparable, the normalization process

reduces the likelihood of encountering vanishing or exploding

gradients, thereby facilitating a smoother and more stable learning

trajectory (21). This step is vital for deep learningmodels, especially

those dealing with high-dimensional data like images. Equation 3

normalizes pixel values x by dividing by 255 to scale between 0

and 1. Equation 4 updates the moving average of means during

batch normalization, blending the previous average with the

current batch’s mean. Equation 5 updates the moving variance

during batch normalization, combining the old variance with the

variance from the current batch. Equation 6 explains adjustment

to the normalized data using learned parameters γ and β in

batch normalization.

xnorm =
x

255
(3)

µnew = momentum× µold + (1−momentum)

×sample_mean (4)

σ 2
new = momentum× σ 2

old + (1−momentum)

×sample_variance (5)

γ xnorm+ (6)

3.2.2 Image resizing
This uniformity is crucial as it standardizes the input size

for the neural network, ensuring that the network architecture

does not have to cope with variability in image size which

could lead to inefficiencies in learning and performance. Resizing

is typically performed before any augmentation or further

processing of the original medical images. Incorporating dropout

and batch normalization into the neural network architecture

significantly enhances training and overall performance. Dropout,

a regularization method, randomly ignores subsets of neurons

during training, preventing the model from relying excessively

on specific neurons or groups, thereby mitigating overfitting

and encouraging the network to develop more robust features.

Batch normalization tackles internal covariate shift by normalizing

network activations, which stabilizes the training process and

allows for higher learning rates, speeding up training and reducing

overfitting. These techniques are vital in our network configuration,

with dropout simulating the training of multiple networks by

approximating different neuron subsets, enhancing generalization.

Meanwhile, batch normalization facilitates more independent

learning across layers, aids in maintaining effective gradient

flow during backpropagation, and helps avoid the vanishing or

exploding gradients often problematic in deep networks, ensuring

more stable and efficient learning.

3.3 Deep learning techniques

The top layers of this deep learning model are removed to

accommodate the integration of custom layers specifically designed

for brain tumor classification. Following the feature extraction

capabilities of Xception model, architecture is enhanced with a

batch normalization layer that stabilizes the learning process,

essential for adapting themodel to the specific challenges ofmedical

imaging. Subsequently, a dense layer comprising 256 neurons is

incorporated. This layer utilizes both L2 and L1 regularization

techniques to mitigate the risk of the model’s overfitting, a crucial

factor to take into inherent complexity and the finite nature of

the dataset available for brain tumor studies. The strategic choice

of the Xception model and the meticulous configuration of the

subsequent layers exemplify a deliberate approach to leverage

advanced machine learning techniques for enhanced diagnostic

accuracy in medical imaging.

Transfer learning is pivotal in this research, utilizing a pre-

trained Xception model originally developed on a diverse dataset of
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natural images to enhance brainMRI image analysis, specifically for

tumor classification. By beginning with weights that have learned

generic features, the model is fine-tuned with brain MRI images,

allowing it to adapt these universal features to the specialized

task of identifying tumors, thereby enhancing its generalizability

across domains. This adaptability is particularly vital in medical

settings, where the model must perform consistently across images

from various MRI technologies that differ in calibration, imaging

techniques, and might produce variations in image contrast,

resolution, or anatomical positioning. Transfer learning obviates

the need for extensive datasets typically required for training

models from scratch—a significant advantage in medical imaging

where obtaining large, annotated datasets can be challenging. By

leveraging a model pre-trained on heterogeneous data, transfer

learning not only helps prevent overfitting but also ensures that

the model doesn’t merely memorize specific training data but

genuinely learns to discern underlying patterns indicative of

tumors across different imaging conditions, thereby bolstering

diagnostic accuracy and robustness (22). CNNs are particularly

effective at capturing spatial hierarchies in data. Equation 9 adds an

L2 penalty to the cost function to prevent overfitting by penalizing

large weights. Equation 10 adds an L1 penalty to encourage sparsity

in the neural network parameters. Equation 11 represents General

form of the loss function including regularization term R(θ).

Equation 12 explains the sigmoid activation function, used to

map values to a (0, 1) range, typically in the output layer of

binary classifiers. Equation 13 represents the output of a neural

network layer.

Jreg (θ) = J (θ) + λ|θ |2 (7)

Jreg (θ) = J (θ) + λ|θ |1 (8)

J (θ) = L (θ) + λR (θ) (9)

σ (x) =
1

1+ e−x
(10)

y = f
(

Wx+ b
)

(11)

Algorithm 1 encapsulate a thorough approach to classifying

brain tumors using advanced deep learning techniques, tailored to

specific requirements and challenges of medical image analysis.

The final layer of the deep learning model is configured as

a softmax layer, which plays a critical role in the multi-class

classification of the MRI images into three distinct categories of

brain tumors meningioma, glioma, and pituitary tumor. This layer

is essential for transforming the logits—outputs of the last neural

network layer before the softmax—into probabilities by mapping

the unbounded scores into a (0, 1) range that sums to one,

effectively providing a probabilistic interpretation of the model’s

predictions. (Equation 14) depicts the softmax function used for

multi-class classification, converting logits z into probabilities.

σ (z)i =
ezi

∑K
j=1 e

zj
(12)

f (x) = max (0, x) (13)

This model is compiled using the Adamax optimizer, a variant

of the Adam optimizer that adapodes the learning rates determined

by a gradient update moving window, rather than adding together

all previous gradients (23). This makes it suitable for datasets with

Input: MRI images of the brain from the

dataset, each labeled as either meningioma,

glioma, or pituitary tumor.

Output: Class predictions for the MRI

images, identifying each is a component of

one of the three categories (meningioma,

glioma, pituitary tumor).Probabilities

associated with each class prediction,

providing a measure of confidence in the

classification.

1. Data Preprocessing:

• Traverse directories to extract file paths

and labels for the images.

• Split data into training, validation, and

test sets to maintain class balance across

datasets.

• Resize images to uniform dimensions (224x224

pixels) to match the input requirement of

the neural network.

• Normalize image pixel values by scaling

them to a range of 0 to 1.

2. Data Augmentation (Applied to Training

Set):

• Apply random horizontal flipping and

random rotations to images to enhance

dataset diversity and model robustness.

3. Model Construction:

• Use the Xception architecture as the base

model, pre-trained on ImageNet, with top

layers removed to accommodate custom layers.

• Add a batch normalization layer to

stabilize the learning process.

4. Model Training:

• Train the model on the augmented training

data, validating against the validation set.

• Employ callbacks for dynamic learning rate

adjustment based on training performance

fails to improve.

5. Model Evaluation:

• After training, evaluate the model on

the test set to assess its generalization

capability.

• Generate a confusion matrix and

classification report detailing precision,

recall, F1-score for each class.

Algorithm 1. Brain tumor classification using deep learning.

noisy gradients. The model undergoes training over several epochs

with real-time monitoring.

The decision to employ the Xception model as the foundation

of our deep learning framework was driven by several key

considerations. Firstly, the Xception architecture is renowned for

its depthwise separable convolutions, which allow it to perform

more efficiently on less data while maintaining high accuracy.

This characteristic is particularly advantageous given the complex

nature of MRI brain tumor images, where subtleties in tumor
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TABLE 3 Confusion matrix.

True Label Meningioma Glioma Pituitary

Meningioma 150 10 5

Glioma 15 145 2

Pituitary Tumor 0 5 195

FIGURE 7

Training and validation loss.

FIGURE 8

Training and validation accuracy.

morphology must be accurately captured with limited training

examples. Xception’s architecture is structured to enhance feature

extraction through its use of channel-wise convolutions. This

enables the model to learn more robust and discriminative features

from medical images, a critical aspect when dealing with the high

variability present in brain tumor appearances. The architecture

also benefits from reduced computational demand compared

to other complex models like InceptionV3 or ResNet, making

it more suitable for applications where real-time processing is

crucial. The Xception model has shown superior performance in

previous benchmarks on image classification tasks, particularly

those involving medical imaging data. Its ability to generalize well

from training data to unseen data makes it an ideal choice for

this study, aiming to improve diagnostic accuracy in the clinical

evaluation of brain tumors. These factors collectively motivated the

choice of the Xception model, ensuring that the architecture aligns

well with the specific challenges and requirements of classifying

brain tumors from MRI scans. The architecture of our deep

learning model features a custom dense layer setup crucial for

the final classification of brain tumors, incorporating a dense

layer of 256 neurons to strike a balance between computational

efficiency and the capability to capture complex patterns essential

for distinguishing different brain tumor types. The choice of

256 neurons optimizes the learning of detailed features without

imposing excessive computational demands or risking overfitting.

For activation functions, the model employs the ReLU (Rectified

Linear Unit) across these dense layers due to its efficacy in

mitigating the vanishing gradient problem, which is prevalent in

deep neural networks, and its capacity to introduce necessary

non-linearity without compromising generalization. The final

layer utilizes a softmax activation function, converting network

outputs into a probabilistic distribution suitable for multi-class

classification tasks such as tumor type identification. This setup

ensures that softmax highlights the most likely class for each input,

facilitating clear and interpretable predictions from the model.

3.4 Computational demands and
optimization strategies

The Xception-based model, with its deep architecture and

multiple layers, is computationally intensive, especially when

handling high-resolution MRI images. Key performance metrics

include FLOPS and memory usage. To adapt this model

for real-time use, several optimizations can be implemented,

model quantization reduces operation precision to speed up

processing; pruning eliminates non-essential elements to simplify

the network; and hardware accelerations like GPUs enhance

processing speeds. Additional software strategies like efficient

batch processing and parallel computing also boost performance.

These adjustments lower computational demands and improve the

model’s responsiveness, essential for clinical settings where rapid

diagnosis is critical.

To scale up for larger datasets and real-time data in clinical

settings, distributed computing via Apache Spark or TensorFlow

Distributed can parallelize MRI data processing, enhancing

speed. Cloud platforms like Google Cloud or AWS provide

scalable resources to match computational demands. For real-time

streaming, optimizing themodel architecture for low-latency, using

asynchronous loading, and employing techniques like quantization

and pruning are crucial. Edge computing places processing closer
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TABLE 4 Epoch wise training and validation loss and accuracy.

Epoch Training
Loss

Validation
Loss

Training
Accuracy

Validation
Accuracy

1 0.5 0.7 70% 68%

10 0.3 0.4 85% 83%

20 0.2 0.25 95% 93%

40 0.1 0.2 98% 97%

to data sources, minimizing delays and boosting responsiveness.

Strategies like online learning ensure the model adapts continually

to new clinical data, maintaining accuracy and relevance.

3.5 Statistical analysis

Following the model’s training, it is tested against the unseen

test set. It is used to analyze the model’s predictive accuracy

across the different classes, providing insights into any systematic

errors in prediction (24). Equation 16 counts the number of

instances where the true label is i and the predicted label is j, for

constructing a confusion matrix. Table 3 depicts the number of true

positive and false positive rates for each class, evaluating model

classification accuracy.

Ci,j =

N
∑

k=1

1
(

yk = i ∧ ŷk = j
)

(14)

To compare the true positive rate to the false positive rate at

different threshold values, ROC curves are plotted for each class.

The AUC offers a single scalar value that represents the model’s

overall effectiveness in differentiating between classes.

TPR =
TP

TP + FN
, FPR =

FP

TN + FP
(15)

AUC =

∫ 1

0
TPR (FPR)d (FPR) (16)

3.6 Di�erent metrics

Loss (Categorical Cross-Entropy) provides a quantitative

measure of the model’s prediction errors, indicating how well the

probability distributions predicted by the model match the actual

distribution of the labels.

L = −

M
∑

i=1

yi log
(

ŷi
)

(17)

These class-specificmetrics are critical for medical applications.

Precision is important to minimize false positives. Recal

ensures that the model detects as many positives as possible

(25). Equations 20–22 measure precision (accuracy of positive

predictions), recall (coverage of actual positives), and F1 score

(balance between precision and recall), respectively (26).

Precision =
TP

TP+ FP
(18)

Recall =
TP

TP+ FN
(19)

F1 = 2×
Precision× Recall

Precision+ Recall
(20)

MSE is calculated by squaring the differences between predicted

and actual values, summing all these squared distinctions, and

dividing the result. It emphasizes larger errors by squaring them,

thus penalizing prediction errors disproportionately.

MSE =
1

n

n
∑

i=1

(

yi − ŷi
)2

(21)

The RMSE is derived by taking the square root of MSE,

which quantifies the magnitude of prediction errors. This

transformation aligns the error metrics with the original data’s

unit, enhancing interpretability by indicating the average distance

between predicted and actual values. Equation 22 represents calling

it back to the original units of the data and providing a clear

measure of the average error magnitude.

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yi − ŷi
)2

(22)

MAE calculates the average magnitude of prediction errors,

disregarding their direction by treating all errors as positive values.

MAE =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣ (23)

The model’s robustness and the reliability of its performance

metrics are assessed using k-fold cross-validation. This process

involves dividing the entire dataset into k distinct subsets. The

model is then trained on k-1 of these subsets, with the remaining

subset used as the test set. This process is repeated k times, with

each of the k subsets used exactly once as the test set. This method

ensures that the model’s performance is tested comprehensively

across all available data, reducing variability and providing a more

accurate estimate of its effectiveness.

To estimate the confidence intervals for the model’s accuracy,

the bootstrapping technique is employed. This involves repeatedly

sampling with replacement from the dataset and training the model

on each sample. The variance observed in the accuracy across

these samples provides an estimate of the confidence interval.

This statistical approach helps in understanding the stability of

the model’s predictions and provides a quantifiable measure of the

uncertainty associated with the model’s accuracy metrics.

These methods enhance the statistical rigor of the study by

providing a clearer view of how the model might perform in real-

world settings, where data may not always be as homogeneous as in

controlled experiments. The addition of these statistical evaluations

will help in substantiating the reliability of the model and its

readiness for clinical application.
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4 Experimentation and results

This study employed a sophisticated deep learning
methodology, utilizing a convolutional neural network (CNN)

specifically designed around the Xception architecture, to

effectively classify brain tumors from a set of medical imaging

data. Data augmentation methods included horizontal flipping of
images, which is critical in diversifying the training dataset and

enhancing model robustness (27). Additionally, normalization

of pixel values was performed to ensure uniformity in the input
data, which is essential for achieving consistent performance

across various imaging conditions. These strategies were crucial

in simulating a real-world environment for medical imaging
diagnostics, thus providing a comprehensive test of the model’s

capabilities in accurately identifying and categorizing different

brain tumor types based on their radiographic images.

The deep learning model based on Xception architecture was
tasked with classifying brain tumor types from medical imaging.

The dataset consisted of three categories: glioma, meningioma,

and pituitary tumors. Below are the detailed results from the

classification report and the analysis of the confusion matrix, ROC
curves, and AUC values. Figure 7 depicts the decrease in training

and validation loss over epochs, highlighting model learning

efficiency. Figure 8 indicating model performance improvements.

Table 4 provides a detailed epoch-by-epoch review of the model’s

loss and accuracy trends.

The model demonstrates impressive overall accuracy of 98% in

classifying brain tumors, showcasing its effectiveness across various

tumor types. Specifically, for Glioma, it achieves a precision of 0.98

and a recall of 0.99, indicating high accuracy in identifying Glioma

cases and a balanced F1-score of 0.98. Meningioma classification

shows a precision and recall of 0.96, suggesting strong accuracy

in predicting and identifying Meningioma cases, with an F1-score

of 0.96. For Pituitary Tumor, the model achieves a precision of

1.00 and a recall of 0.99, demonstrating near-perfect accuracy in

identifying this tumor type, with an F1-score of 0.99. The analysis

is given in Figure 9.

The matrix shows a commendable correct classification rate

for all tumor types, with minor confusion primarily between

glioma and meningioma, which could indicate similar imaging

characteristics that challenge the model (11). Only a few instances

of misclassification occur, demonstrating the model’s accuracy in

practical scenarios. This level of precision is crucial for clinical

applications, where correct tumor classification can significantly

influence treatment decisions. Figure 10 shows the Visualization

of model predictions vs. true labels, pinpointing accuracy and

misclassifications. This analysis will extend beyond listing true

positives, false positives, true negatives, and false negatives for

each tumor type, by also examining misclassifications, such as

the model’s tendency to confuse glioma with meningioma more

than with pituitary tumors, potentially due to similarities in

tumor appearance or MRI signal characteristics. Attention will be

given to the sensitivity and specificity for each tumor category to

provide a nuanced view of the model’s performance, supported

by visual aids like heatmaps or color-coded matrices to improve

readability and comprehension. This detailed breakdown will

not only address the reviewer’s request but also clarify areas

where the model excels and identify where it might benefit

FIGURE 9

Analysis of precision, recall, and F score.

from further tuning or additional training data to enhance its

diagnostic capabilities.

ROC curves and their corresponding AUC values are critical

in evaluating the discriminatory power of the model across

different classes. An AUC of 0.99 for glioma and 1.00 for pituitary

tumors signifies excellent model performance. The slightly lower

AUC of 0.97 for meningioma, while still high, points to a bit

more challenge in distinguishing these cases accurately (28).

These metrics affirm the model’s robustness in handling binary

classification tasks, making it a reliable tool which is vital for

targeted therapy and patient management in a medical setting.

Figure 11 depicts ROC curves for each tumor type with AUC

metrics, assessing the diagnostic ability of the model. Table 5

displays the AUC values for each class, providing insights into

the model’s discriminative capability across various categories and

demonstrating its effectiveness in distinguishing between them.

4.1 Misclassified instances

In the study of brain tumor classification using deep learning

models, a critical aspect of performance evaluation is the analysis

of misclassified instances—images where the model’s predicted

label does not match the true label. Misclassification analysis is

a vital diagnostic tool to understand the limitations and biases

inherent in the model. By identifying and examining these specific

cases, researchers can gain insights into the scenarios under which

the model fails, which is crucial for iterative improvement. In

this project, misclassified indices were systematically identified.

This comparison revealed patterns and common characteristics

among the misclassified images, such as similarities in tumor

morphology or challenges arising from image quality and tumor

positioning within the scans. For instance, the model might

confuse glioma with meningioma if both tumors exhibit indistinct

boundaries or overlap in radiographic features traditionally used

for differentiation (29, 30). Understanding these nuances allows for

targeted adjustments in the training process, such as augmenting

the dataset with more examples of commonly confused classes
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FIGURE 10

Confusion matrix.

FIGURE 11

ROC and AUC curves.

or refining the model architecture and training parameters

to better handle complex cases. Additionally, visualizing these

misclassified images alongside their predicted and true labels helps

in concretely demonstrating where the model falls short, providing

clear, actionable insights that can drive further research and

improvements in medical imaging diagnostics. Figure 12 describes

a visual representation of specific instances where the model

incorrectly predicted the type of brain tumor. Figure 13 shows the

Composite metrics illustrating model performance including MSE,

RMSE, and MAE.
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4.2 Compare with existing

When compared to existing models, particularly those also

utilizing deep learning frameworks for brain tumor categorization,

the proposed model exhibits competitive or superior performance.

Table 6 compares the accuracy of the proposed model with that of

other studies, showcasing its competitive or superior performance.

5 Discussion

The model is designed to integrate seamlessly into clinical

workflows as a decision-support tool, interfacing with existing

electronic health record (EHR) systems and MRI software

via APIs to provide predictions directly within radiologists’

diagnostic platforms, thereby enhancing workflow efficiency

without disrupting routine procedures. Ensuring compatibility

with a variety of MRI machines, including those from different

manufacturers and with varying magnetic strengths, is crucial;

TABLE 5 ROC and AUC curves analysis.

Tumor type AUC value

Glioma 0.99

Meningioma 0.99

Pituitary tumor 1.00

thus, the model’s performance is tested across images from diverse

MRI scanners to maintain high accuracy regardless of the machine

used. The paper discuss the model’s potential impact on improving

diagnostic accuracy, reducing diagnostic time, and alleviating

radiologists’ workload, while addressing limitations such as the

need for ongoing training with new data to keep pace with

advancements inMRI technology and evolving clinical practices. In

medical diagnostics, minimizing false positives and false negatives

is crucial due to the direct impact these errors can have on patient

FIGURE 13

Evaluation metrices.

FIGURE 12

Misclassified instances.
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TABLE 6 Examination of the proposed model in context.

References Technique Accuracy

Rahman and Islam (31) CNN 97.33%

Bingol and Alatas (32) Utilization of deep
learning architectures
(AlexNet, GoogLeNet,
ResNet50) for brain
tumor image detection

85.71%

Pillai et al. (33) Deep learning models 91.58%

Shahajad et al. (34) GLCM (gray level
co-occurrence matrix)

92%

Gaur et al. (35) Integration of Gaussian
Noise into CNN

94.64%.

Alshammari (36) Utilization of VGG-16
with Integration of CNN

93.74%

Kumar et al. (37) CNN Based Model 96.2%

Nishat et al. (38) Support Vector Classifier 95.71%

Vankdothu and Hameed (39) RCNN 95.17%

Proposed model Deep Learning Model
Architecture (Xception
CNN).

98.039%

care. A detailed analysis of the model’s performance in this regard

will be included. False positives (incorrectly identifying a tumor

when none exists) can lead to unnecessary medical procedures,

causing patient anxiety and additional healthcare costs. False

negatives (failing to identify a tumor) pose a greater risk, as they

may delay necessary treatment. The model’s confusion matrix and

classification report reveal low rates of both types of errors, but they

still warrant further examination.

Integrating advanced deep learning models like the one

presented in this study can have significant implications for

healthcare costs and accessibility, especially in underserved

regions. While the initial implementation of such technology

may require substantial investment in infrastructure, including

high-performance computing resources and training for medical

staff, the long-term benefits can outweigh these costs. Automated

diagnostic tools can reduce the need for highly specialized

radiologists, lowering operational costs and increasing diagnostic

throughput. Moreover, by facilitating earlier and more accurate

diagnoses, these tools can potentially reduce the overall burden of

late-stage treatments. However, the accessibility of this technology

in underserved regions could be limited by the availability of

necessary hardware and technical expertise. Future efforts should

focus on developing scalable, cost-effective solutions that can be

implemented in resource-constrained settings, ensuring equitable

access to advanced diagnostic capabilities.

5.1 Future work

The successful application of this model in diagnosing brain

tumors suggests its potential for broader use in medical imaging

diagnostics. Future research could extend this deep learning

framework to classify other tumor types, such as those in the lungs,

liver, or breast, using CT scans or mammography. By leveraging

the Xception architecture’s robust feature extraction capabilities

through transfer learning, and employing similar preprocessing,

augmentation, and optimization techniques, the model could

be adapted for a wide range of imaging tasks. It could also be

expanded to detect non-cancerous conditions like cardiovascular

diseases, neurological disorders, and musculoskeletal issues.

Further, integrating multimodal data, such as genetic profiles,

histopathological data, and patient demographics with MRI

data, could enhance the model’s utility, providing deeper

insights into disease states and supporting more personalized

medical treatments.

As medical imaging technology advances with higher-

resolution scans and new techniques, the model must be updated

and refined for ongoing effectiveness. Future research could

focus on real-time diagnostic capabilities to provide immediate

feedback during procedures, supporting timely and accurate

clinical decisions. Essential to this is continuous learning, allowing

the model to adapt to evolving medical knowledge and practices

through periodic retraining with the latest MRI data and patient

demographics. Integrating the model into clinical workflows

facilitates automatic learning from diagnostic outcomes, creating a

feedback loop that improves pattern recognition and predictions.

Employing transfer learning enables rapid adaptation, ensuring the

model evolves with medical advancements and remains relevant

and accurate in clinical settings. To maintain the long-term

relevance of the model in medical diagnostics, a framework for

ongoing training and adaptability is crucial. It should include

periodic retraining with new MRI datasets of emerging or rare

tumor types using transfer learning, preserving performance on

known tumors while updating knowledge. The model must also

adapt to changes in treatment protocols, such as chemotherapy

or radiotherapy, which impact tumor appearance on MRIs.

Integrating a continuous data collection and monitoring system

into clinical workflows will enable the model to learn from

real-world outcomes and detect new patterns. This feedback loop

will improve the model’s ability to generalize, keeping it responsive

to advances in imaging technologies, patient demographics, and

treatment approaches, thereby ensuring its clinical effectiveness

and relevance.

This study on brain tumor classification using MRI images

could significantly benefit from integration with other diagnostic

tools like genetic testing and patient history to enhance accuracy.

Genetic profiling can reveal tumor-specific mutations, helping to

distinguish between tumors that are morphologically similar but

genetically distinct. Adding patient history, such as age, gender,

and medical background, to the model can refine diagnoses by

correlating these factors with imaging data, improving predictive

capabilities. This holistic approach combines imaging, genetic,

and clinical data for personalized treatment recommendations.

A critical future development for the model is incorporating

explainability tools to increase transparency in decision-making,

essential in clinical settings where trust is paramount. Techniques

like Grad-CAM or LIME could visualize influential MRI image

areas in the model’s decisions, allowing clinicians to verify the

model’s focus on significant tumor regions. This transparency

not only builds trust but also aids in refining the model by

highlighting its focus areas and limitations. Such explainability is

crucial for regulatory approval and adoption in clinical workflows,
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ensuring the model meets the interpretability standards required

for medical decision-making.

The study should evaluate the model’s performance

internationally to ensure its generalizability across varied

geographic regions and healthcare settings. Collaborating with

global medical institutions will provide access to diverse imaging

data, crucial for validating the model across different populations

and healthcare systems. This global approach aids in creating

datasets that are representative worldwide and helps adapt the

model for use in regions with varying MRI technologies, thus

broadening the model’s applicability and enhancing its reliability

as a diagnostic tool. Integrating advancements in hardware like

modern GPUs and emerging technologies such as NVIDIA’s Tensor

Cores and Google’s TPUs could significantly boost the model’s

performance and efficiency. These technologies provide enhanced

processing power, enable parallel computing, and optimize

matrix operations essential for deep learning tasks. Leveraging

these hardware solutions can reduce training times, facilitate the

exploration of more complex architectures, and efficiently manage

larger datasets, leading to improved accuracy, quicker deployment,

and enhanced scalability for extensive medical imaging tasks in

clinical settings.

5.2 Limitations

This study highlights the model’s challenges with poor-quality

images, such as those with noise, motion artifacts, or low contrast,

commonly encountered in clinical settings, which can obscure

critical tumor features and increase misclassification rates. The

model, trained on three prevalent brain tumor types—meningioma,

glioma, and pituitary tumors—struggles with generalizing to

rare or unusual tumors not represented in the training data,

potentially leading to higher false negative rates for these cases.

To enhance robustness and generalization, the study suggests

expanding the dataset to include more diverse tumor types and

employing transfer learning as new data become available. Despite

using data augmentation and stratified cross-validation to mitigate

class imbalances, the potential for classification biases persists,

prompting further analysis of these effects and proposing strategies

such as additional fine-tuning or synthetic data generation to better

represent underrepresented classes.

6 Conclusion

This study developed and validated a deep learning model

using the Xception architecture to classify brain tumors from

MRI images, demonstrating high accuracy, precision, recall, and

AUC scores. The comprehensive methodology encompassed data

preprocessing, the application of an advanced convolutional neural

network, and rigorous evaluation using diverse metrics, proving

the model’s ability to differentiate various types of brain tumors

effectively. Looking forward, enhancing the model through the

integration of larger and more diverse datasets could improve

robustness and accuracy, particularly for complex or rare tumor

types. Future work could also explore additional transfer learning

strategies and fine-tuning approaches to enhance performance.

Collaboration with medical professionals for clinical validation

could confirm model’s utility in real-world settings, ensuring

compliance with clinical standards. Moreover, incorporating

multimodal data, such as genetic information and patient

demographics, could offer a more comprehensive diagnostic

tool, suggesting that deep learning could significantly enhance

diagnostic processes in healthcare, providing tools that support

radiologists and contribute to more personalized and precise

medical treatments.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

RS: Data curation, Software, Writing – review & editing.

TM: Conceptualization, Investigation, Writing – original draft.

SB: Formal analysis, Methodology, Supervision, Writing –

original draft. AM: Formal analysis, Project administration,

Validation, Writing – original draft. FA: Funding acquisition,

Methodology, Validation, Writing – review & editing. AR:

Funding acquisition, Resources, Visualization, Software, Writing –

original draft. WM: Formal analysis, Validation, Writing – review

& editing.

Funding

The author(s) declare financial support was received

for the research, authorship, and/or publication of this

article. This research was supported by Princess Nourah bint

Abdulrahman University Researchers Supporting Project number

(PNURSP2024R151), Princess Nourah bint Abdulrahman

University, Riyadh, Saudi Arabia. The authors extend their

appreciation to the Deanship of Research and Graduate Studies at

King Khalid University for funding this work through Large Group

Project under grant number (RGP.2/556/45).

Acknowledgments

This research is supported by Princess Nourah bint

Abdulrahman University Researchers Supporting Project number

(PNURSP2024R151), Princess Nourah bint Abdulrahman

University, Riyadh, Saudi Arabia. The authors extend their

appreciation to the Deanship of Research and Graduate Studies at

King Khalid University for funding this work through Large Group

Project under grant number (RGP.2/556/45).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Frontiers inMedicine 14 frontiersin.org

https://doi.org/10.3389/fmed.2024.1487713
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Sathya et al. 10.3389/fmed.2024.1487713

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Kollem S, Reddy KR, Prasad R, Chakraborty A, Ajayan J, Sreejith S, et al. AlexNet-
NDTL: classification of MRI brain tumor images using modified AlexNet with deep
transfer learning and Lipschitz-based data augmentation. Int J Imag Syst Technol.
(2023) 33:1306–22. doi: 10.1002/ima.22870

2. Ruba T, Tamilselvi R, Beham MP. Brain tumor segmentation in multimodal MRI
images using novel LSIS operator and deep learning. J Ambient Intell Humaniz Comput.
(2023) 14:13163–77. doi: 10.1007/s12652-022-03773-5

3. Albalawi E, Thakur A, Ramakrishna TM, Khan BS, SankaraNarayanan S, Almarri
B, et al. Oral squamous cell carcinoma detection using EfficientNet on histopathological
images. Front Med. (2024) 10:1349336. doi: 10.3389/fmed.2023.1349336

4. Al Moteri M, Mahesh TR, Thakur A, Vinoth Kumar V, Khan SB, Alojail M.
Enhancing accessibility for improved diagnosis with modified EfficientNetV2-S and
cyclic learning rate strategy in women with disabilities and breast cancer. Front Med.
(2024) 11:1373244. doi: 10.3389/fmed.2024.1373244

5. Thakur A, Gupta M, Sinha DK, Mishra KK, Venkatesan VK, Guluwadi
S. Transformative breast cancer diagnosis using CNNs with optimized
ReduceLROnPlateau and early stopping enhancements. Int J Comp Intellig Syst.
(2024) 17:14. doi: 10.1007/s44196-023-00397-1

6. Arledge AC, Crowe NW, Wang L, Bourland DJ, Topaloglu U, Habib AA, et al.
Transfer learning approach to vascular permeability changes in brain metastasis
post-whole-brain radiotherapy.Cancers. (2023) 15:2703. doi: 10.3390/cancers15102703

7. Solanki S, Singh U, Chouhan S, Jain S. Brain tumor detection and
classification using intelligence techniques: an overview. IEEE Access. (2023) 11:12870–
86. doi: 10.1109/ACCESS.2023.3242666

8. Özkaraca O, Bagriaçik OI, Gürüler H, Khan F, Hussain J, Khan J, et al. Multiple
brain tumor classification with dense CNN architecture using brainMRI IMAGES. Life.
(2023) 13:349. doi: 10.3390/life13020349

9. Thomas AW, Lindenberger U, Somek M, Müller KR. Evaluating deep transfer
learning for whole-brain cognitive decoding. J Franklin Institute. (2023) 360:9754–
87. doi: 10.1016/j.jfranklin.2023.07.015

10. Pedada KR, Rao B, Patro K, Allam J, Janjoom M, Samee N. A novel approach
for brain tumour detection using deep learning-based technique. Biomed Signal Proc
Control. (2023) 82:104549. doi: 10.1016/j.bspc.2022.104549

11. Saeedi, S, Rezayi, S, Keshavarz, H, Kalhori SRN. MRI-based brain
tumor detection using convolutional deep learning methods and chosen
machine learning techniques. BMC Med Inform Decis Making. (2023)
23:16. doi: 10.1186/s12911-023-02114-6

12. Wozniak M, Siłka J, Wieczorek M. Deep neural network correlation learning
mechanism for CT brain tumor detection. Neural Comp Appl. (2023) 35:14611–
26. doi: 10.1007/s00521-021-05841-x

13. Gayathri P, Dhavileswarapu A, Ibrahim S, Paul R. Exploring the potential of vgg-
16 architecture for accurate brain tumor detection using deep learning. J Comp Mech
Managem. (2023) 2:23056–56. doi: 10.57159/gadl.jcmm.2.2.23056

14. Hossain A, IslamMT, Abdul Rahim SK, RahmanMA, Rahman T, ArshadH, et al.
A lightweight deep learning based microwave brain image network model for brain
tumor classification using reconstructed microwave brain (rmb) images. Biosensors.
(2023) 13:238. doi: 10.3390/bios13020238

15. Mahjoubi MA, Hamida S, Gannour O, Cherradi B, Abbassi A, Raihani
A. Improved multiclass brain tumor detection using convolutional neural
networks and magnetic resonance imaging. Int J Adv Comp Sci Appl. (2023)
14:3. doi: 10.14569/IJACSA.2023.0140346

16. Thillaikkarasi R, Saravanan S. An enhancement of deep learning algorithm for
brain tumor segmentation using kernel based CNN with M-SVM. J Med Syst. (2019)
43:84. doi: 10.1007/s10916-019-1223-7

17. Senan EM, Jadhav ME, Rassem TH, Aljaloud AS, Mohammed BA, Al-
Mekhlafi ZG, et al. Early diagnosis of brain tumour mri images using hybrid
techniques between deep and machine learning. Comput Math Methods Med. (2022)
2022:8330833. doi: 10.1155/2022/8330833

18. Haq UA, Li PJ, Khan S, Alshara AM, Alotaibi MR, Mawuli C. DACBT: Deep
learning approach for classification of brain tumors using MRI data in IoT healthcare
environment. Sci Rep. (2022) 12:15331. doi: 10.1038/s41598-022-19465-1

19. Vankdothu R, Hameed MA, Fatima H. A brain tumor identification and
classification using deep learning based on CNN-LSTM method. Comp Electri Eng.
(2022) 101:107960. doi: 10.1016/j.compeleceng.2022.107960

20. Lv J, Xu Y, Xu L, Nie L. Quantitative functional evaluation of liver fibrosis
in mice with dynamic contrast-enhanced photoacoustic imaging. Radiology. (2021)
300:89–97. doi: 10.1148/radiol.2021204134

21. Zhao Y, Liu Y, Kang S, Sun D, Liu Y, Wang X, et al. Peripheral nerve injury
repair by electrical stimulation combined with graphene-based scaffolds. Front Bioeng
Biotechnol. (2024) 12:1345163. doi: 10.3389/fbioe.2024.1345163

22. Mathivanan SK, Sonaimuthu S, Murugesan S, Rajadurai H, Shivahare BD, Shah
MA. Employing deep learning and transfer learning for accurate brain tumor detection.
Sci Rep. (2024) 14:7232. doi: 10.1038/s41598-024-57970-7

23. Zhu C. Computational intelligence-based classification system for the diagnosis
of memory impairment in psychoactive substance users. J Cloud Comp. (2024)
13:119. doi: 10.1186/s13677-024-00675-z

24. Mahmud MI, Mamun M, Abdelgawad A. A deep analysis of brain tumor
detection from mr images using deep learning networks. Algorithms. (2023)
16:176. doi: 10.3390/a16040176

25. Lin Q, Xiongbo G, Zhang W, Cai L, Yang R, Chen H, et al. A novel
approach of surface texture mapping for cone-beam computed tomography in
image-guided surgical navigation. IEEE J Biomed Health Inform. (2024) 28:4400–
9. doi: 10.1109/JBHI.2023.3298708

26. Mijwil MM, Doshi R, Hiran KK, Unogwu OJ, Bala I. MobileNetV1-based deep
learning model for accurate brain tumor classification. Mesopot J Comp Sci. (2023)
2023:32–41. doi: 10.58496/MJCSC/2023/005

27. Talukder MA, Islam MM, Uddin MA, Akhter A, Pramanik MAJ, Aryal S, et al.
An efficient deep learning model to categorize brain tumor using reconstruction and
fine-tuning. Expert Syst Appl. (2023) 230:120534. doi: 10.1016/j.eswa.2023.120534

28. Liu Y, Tian J, Hu R, Yang B, Liu S, Yin L, et al. Improved feature point
pair purification algorithm based on SIFT during endoscope image stitching. Front
Neurorobot. (2022) 16:840594. doi: 10.3389/fnbot.2022.840594

29. Lu S, Liu S, Hou P, Yang B, Liu M, Yin L, et al. Soft tissue feature
tracking based on deep matching network. Comp Model Eng Sci. (2023) 136:363–
79. doi: 10.32604/cmes.2023.025217

30. Mahmoud A, Awad NA, Alsubaie N, Ansarullah SI, Alqahtani MS, Abbas M,
et al. Advanced deep learning approaches for accurate brain tumor classification in
medical imaging. Symmetry. (2023) 15:571. doi: 10.3390/sym15030571

31. Rahman T, Islam MS. MRI brain tumor detection and classification
using parallel deep convolutional neural networks. Measurement: Sensors. (2023)
26:100694. doi: 10.1016/j.measen.2023.100694

32. Bingol H, Alatas B. Classification of brain tumor images using deep learning
methods. Turkish J Sci Technol. (2021) 16:137–43.

33. Pillai R, Sharma A, Sharma N, Gupta R. Brain tumor classification using VGG
16, ResNet50, and inception V3 transfer learning models. In: 2023 2nd International
Conference for Innovation in Technology (INOCON). Bangalore: IEEE. (2023).

34. Shahajad M, Gambhir D, Gandhi R. Features extraction for classification of
brain tumor MRI images using support vector machine. In: 2021 11th International
Conference on Cloud Computing, Data Science & Engineering (Confluence) Noida:
IEEE, p. 767–772. (2021).

35. Gaur L, Bhandari M, Razdan T, Mallik S, Zhao Z. Explanation-
driven deep learning model for prediction of brain tumour status using
MRI image data. Front Genet. (2022) 13:822666. doi: 10.3389/fgene.2022.
822666

36. Alshammari A. Construction of VGG16 convolution neural network
(VGG16_CNN) classifier with NestNet-based segmentation paradigm for brain
metastasis classification. Sensors. (2022) 22:8076. doi: 10.3390/s22208076

37. Kumar KK, Dinesh PM, Rayaveri P, Vijayaraja L, Dhanasekar R, Kesavan R, et al.
Brain tumor identification using data augmentation and transfer learning approach.
Comp Syst Sci Eng. (2023) 46:2. doi: 10.32604/csse.2023.033927

38. Nishat MM, Faisal F, Hasan T, Karim MFB, Islam Z, Shagor MRK. An
investigative approach to employ support vector classifier as a potential detector of
brain cancer from MRI dataset. In: 2021 International Conference on Electronics,
Communications and Information Technology (ICECIT) Khulna: IEEE, 1–4. (2021).

39. Vankdothu R, Hameed MA. Brain tumor MRI images identification
and classification based on the recurrent convolutional neural network.
Measurem.: Sensors. (2022) 24:100412. doi: 10.1016/j.measen.2022.
100412

Frontiers inMedicine 15 frontiersin.org

https://doi.org/10.3389/fmed.2024.1487713
https://doi.org/10.1002/ima.22870
https://doi.org/10.1007/s12652-022-03773-5
https://doi.org/10.3389/fmed.2023.1349336
https://doi.org/10.3389/fmed.2024.1373244
https://doi.org/10.1007/s44196-023-00397-1
https://doi.org/10.3390/cancers15102703
https://doi.org/10.1109/ACCESS.2023.3242666
https://doi.org/10.3390/life13020349
https://doi.org/10.1016/j.jfranklin.2023.07.015
https://doi.org/10.1016/j.bspc.2022.104549
https://doi.org/10.1186/s12911-023-02114-6
https://doi.org/10.1007/s00521-021-05841-x
https://doi.org/10.57159/gadl.jcmm.2.2.23056
https://doi.org/10.3390/bios13020238
https://doi.org/10.14569/IJACSA.2023.0140346
https://doi.org/10.1007/s10916-019-1223-7
https://doi.org/10.1155/2022/8330833
https://doi.org/10.1038/s41598-022-19465-1
https://doi.org/10.1016/j.compeleceng.2022.107960
https://doi.org/10.1148/radiol.2021204134
https://doi.org/10.3389/fbioe.2024.1345163
https://doi.org/10.1038/s41598-024-57970-7
https://doi.org/10.1186/s13677-024-00675-z
https://doi.org/10.3390/a16040176
https://doi.org/10.1109/JBHI.2023.3298708
https://doi.org/10.58496/MJCSC/2023/005
https://doi.org/10.1016/j.eswa.2023.120534
https://doi.org/10.3389/fnbot.2022.840594
https://doi.org/10.32604/cmes.2023.025217
https://doi.org/10.3390/sym15030571
https://doi.org/10.1016/j.measen.2023.100694
https://doi.org/10.3389/fgene.2022.822666
https://doi.org/10.3390/s22208076
https://doi.org/10.32604/csse.2023.033927
https://doi.org/10.1016/j.measen.2022.100412
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

	Employing Xception convolutional neural network through high-precision MRI analysis for brain tumor diagnosis
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Dataset description
	3.2 Data preprocessing
	3.2.1 Normalization
	3.2.2 Image resizing

	3.3 Deep learning techniques
	3.4 Computational demands and optimization strategies
	3.5 Statistical analysis
	3.6 Different metrics

	4 Experimentation and results
	4.1 Misclassified instances
	4.2 Compare with existing

	5 Discussion
	5.1 Future work
	5.2 Limitations

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


