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Traditional disease prediction models and scoring systems for acute pancreatitis

(AP) are often inadequate in providing concise, reliable, and effective predictions

regarding disease progression and prognosis. As a novel interdisciplinary field

within artificial intelligence (AI), machine learning (ML) is increasingly being

applied to various aspects of AP, including severity assessment, complications,

recurrence rates, organ dysfunction, and the timing of surgical intervention. This

review focuses on recent advancements in the application of ML models in the

context of AP.
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1 Introduction

Acute pancreatitis (AP) is an inflammatory disorder affecting the parenchyma and
peripancreatic tissue, characterized by severe abdominal pain, elevated pancreatic enzymes,
and pancreatitis-related changes on abdominal imaging. The incidence of AP has shown a
rising trend globally, with an average occurrence rate of 34 cases per 100,000 individuals.
Approximately 20% of patients progress to either moderately severe acute pancreatitis
(MSAP, accompanied by transient [≤48 h] organ dysfunction and/or local complications
such as necrosis of pancreatic or peripancreatic tissue) or severe acute pancreatitis (SAP,
accompanied by persistent [>48 h] organ failure), the mortality rate can reach as high as
20–40% (1).

Machine learning (ML) is a category of artificial intelligence tools in which virtual
agents learn an optimized set of rules through trial and error—a policy that maximizes
expected returns (2). ML has many ideal characteristics that can help with medical decision-
making, and these algorithms are able to infer the best decision from suboptimal training
sets. ML has been successfully applied to medical problems in the past, such as diabetes and
sepsis (3, 4).

Machine learning has demonstrated significant potential in the field of medicine,
particularly in disease diagnosis and prognosis. Over the past decade, the utilization of ML
algorithms based on databases for acute pancreatitis has become increasingly prevalent.
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Numerous studies have employed ML algorithms to forecast AP
mortality rates (5), severity (6–8), complications (9), recurrence
rates (10), as well as surgical or intervention strategies (7), with ML
exhibiting robust reliability in these domains.

In recent years, ML algorithms and the prediction models based
on them have generated significant interest among researchers.
A growing body of evidence indicates that ML plays a crucial role in
predicting acute pancreatitis diagnosis and prognosis. This review
aims to offer an overview of the specific applications of ML in AP,
with the expectation that artificial intelligence can furnish more
evidence-based support for clinical practice in the future.

2 The role of ML in predicting AP
mortality

According to the 2012 revision of Atlanta classification (RAC)
(11), SAP accompanied by persistent organ failure carries a high
mortality rate, ranging from 20 to 40% (1). When complicated
by late-stage infections, the mortality rate becomes exceedingly
high. Traditional scoring systems for predicting mortality are
complex and limited. A systematic review revealed that the positive
predictive values of the APACHE II score (AcutePhysiology and
Chronic Health Evaluation score, widely used in the classification
of critically ill patients and prognosis prediction, which can make
a quantitative evaluation of the patient’s condition, a higher
score indicates a more serious condition, a poorer prognosis,
and a higher rate of mortality), Ranson score (one of the
earliest scoring systems for predicting the severity of AP and
is primarily used to predict the severity of biliary pancreatitis),
and Glasgow criteria (emphasis on objective laboratory indicators,
including 8 indicators, assessed in 48h of admission to the
hospital) were only 69, 63, and 66% respectively (12). Although
APACHE II provides the best predictive value for mortality,
there is currently no single scoring system that can reliably
predict the mortality rate of acute pancreatitis. Therefore, in
recent years, numerous early prediction models based on ML
algorithms have been developed. These models offer valuable
insights for early intervention and potentially reducing the
mortality rate of SAP.

Ding et al. initially developed an artificial neural network
(ANN) model using the MIMIC-III database, achieving an area
under the receiver operating characteristic curve (AUC) of 0.769,
which outperformed logistic regression with an AUC of 0.607,
Ranson score with 0.652, and SOFA score with 0.401 in predicting
in-hospital mortality rate for AP patients (13). The ANN model
demonstrated superior overall performance and early-stage risk
stratification capability for high-risk AP patients. Building on
this, Ren et al. identified 856 AP admitted to the intensive care
unit (ICU) from the MIMIC-IV database and developed 9 ML
models. Among these, they selected the Gaussian naive Bayes
(GNB) model, which demonstrated an AUC, accuracy, sensitivity,
and specificity of 0.840, 0.787, 0.839, and 0.792 respectively—
making it the most effective among all models tested (14). The
GNB model’s ability to identify high mortality risk in AP patients
admitted to the ICU was further validated using an external
database. Similarly, ML models, especially support vector machine

(SVM) models, play a crucial role in predicting 28-day all-
cause mortality in patients with SAP and analyzing their risk
factors (15). The superior attributes of these models compared
to traditional scoring systems enhance their effectiveness in
early identification of SAP patients and reducing their mortality
risk.

However, when it comes to specific causal diagnosis of AP
for predicting mortality rates, the predictive capability of gradient
boosting machine (GBM) machine learning models appears to
be insignificant. Luthra collected 97,027 patients with biliary
pancreatitis from the Nationwide Readmission Database over a
4-year period and compared the differences in predicting AP
patient mortality between the GBM machine learning model and
multivariate logistic regression analysis, finding that the GBM
machine learning model had a higher positive predictive value
(47.3% vs 35.9%) and lower sensitivity (40.1% vs 46.7%) (16).
Therefore, he believes that in a large national database, traditional
analysis and GBM machine learning model are comparable
and not inferior, and the application of machine learning in
managing database-based models for predicting hospital mortality
due to common disease states is limited. It is worth noting that
after statistical analysis, he found that the inpatient mortality
rate of biliary pancreatitis was 0.97%, and hospital stay, age,
SAP, patient income quartile, and sepsis were determined as
the main predictors of mortality in biliary pancreatitis after
it was determined.

3 The role of ML in predicting AP
severity

A recent study in Japan showed that the mortality rate
of SAP is about 16.7% (17), and early identification and
personalized precision treatment can reduce the mortality rate
of SAP. Previous studies have shown that precision treatment
within 48 h of admission can significantly reduce mortality
from SAP (18).

Due to the severity of SAP, high mortality rate, and association
with organ failure, early identification and intervention of SAP
patients are crucial. However, traditional scoring systems often
require more than 24 h to perform and have limited accuracy. To
address this, Luo et al. constructed and compared the predictive
performance of five different ML models in training and validation
cohorts, concluding that the random forest (RF) model performed
the best and could be used to guide treatment and improve
clinical outcomes (19). The AUC, accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) of the RF model were 0.961, 86.0, 90.0, 81.5, 84.4, and
88.0% in the training cohort, and 0.969, 90.1, 88.6, 91.5, 91.2,
and 89.0% in the validation cohort, which were significantly
higher than those of other scoring systems (20, 21), the RF
model has a higher accuracy in predicting SAP in the early
stages of AP (22). Similarly, after developing and comparing
different ML prediction models in terms of their effectiveness
in predicting the severity of AP, Rahul et al. concluded that
the extreme gradient boosting (XGBoost) model showed the best
performance in predicting SAP, which can accurately predict SAP
at an early stage and provide assistance to clinicians in identifying
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and intervening in SAP earlier (8, 23, 24). XGBoost is a machine
learning technique that integrates regression tree gradient lifting
methods and has gained widespread recognition in the machine
learning literature (25–27), data mining challenges, and disease
outcome prediction. Given its ability to predict SAP by combining
imaging findings and clinical indicators, as well as its capacity
to effectively handle missing values commonly encountered in
clinical settings (8), early classification and identification of
AP can provide valuable guidance for improved integration of
medical resources.

4 The role of ML in predicting AP
complications

4.1 Organ failure (OF)

Approximately 20% of patients develop organ failure in AP
(28), and the presence of persistent organ dysfunction is a key
factor in distinguishing between MAP, MSAP and SAP. Once OF
occurs, the mortality rate can be as high as 30% (29), while also
increasing the risk of infected pancreatic necrosis. Therefore, early
identification of AP complicated by OF has a crucial impact on
the emergency management of AP patients and plays a vital role
in improving survival rates.

Four studies designed ML models to predict OF (9, 30–32).
Qiu established models based on SVM, logistic regression (LR),
and ANN to predict multiple organ failure (MOF) (30). The area
under receiver operating characteristic curve (AUROC) values
of these three models were not significantly different at 0.840,
0.832, and 0.834 respectively. Additionally, there was no significant
difference in the AUROC compared to the traditional APACHE
II score with an AUC value of 0.814 where P > 0.05. He believes
that the three ML models can all be effective prognostic tools
for predicting MOF in MSAP and SAP, and recommends using
ANN, which only requires hematocrit, kinetic-time, IL-6, and
creatinine as four common parameters. A multicenter cohort study
employed complete blood count, serum biochemical markers, and
coagulation indicators to develop 6 ML-based algorithm models
for predicting MOF (9). Among these, the Adaptive Boosting
algorithm (AdaBoost) exhibited superior predictive performance
with an AUC of 0.826, sensitivity of 0.805, and specificity of
0.733. IL-6, creatinine, and kinetic time in coagulation indicators
were identified as the three most significant independent variables,
and monitoring these features can aid in preventing AP-related
MOF. Numerous studies have indicated that the conventional
use of ANN models is superior to APACHE II scores and LR
models in predicting disease severity, MOF, and mortality, and
the ANN models can accurately classify 96.2% of patients (31,
33). Lin et al. collected data from 314 Hyperlipidemic acute
pancreatitis (HLAP) patients and established LR, NB (Naive
Bayes), KNN (K-Nearest Neighbors), DT (Decision Tree) and
RF models (32). The AUC values were 0.838, 0.824, 0.853,
0.897, and 0.915 respectively, all significantly higher than those
of traditional prediction scoring systems. Among them, the
RF model exhibited the highest predictive AUC for OF in
HLAP patients with a sensitivity of 0.828 and accuracy of 0.814
among the 5 models tested. They concluded that the RF model

outperforms other models as well as clinical scoring systems
in predicting the occurrence of OF in HLAP patients and is
beneficial for early intervention in high-risk HLAP patients
for OF prevention.

AP-related OF mainly involves respiratory, circulatory, and
renal failure. Some retrospective clinical analyses have confirmed
the role of ML in acute kidney injury (AKI) associated with AP
(34–36). Zhang et al. developed an automated machine learning
(AutoML) algorithm prediction model that intelligently selects
from a range of algorithms and hyperparameters to tailor models
for specific datasets (34), enabling early prediction of AKI in
AP patients. It demonstrates superior performance compared to
traditional LR, requiring less time and achieving higher accuracy,
thus significantly improving work efficiency. This warrants its
clinical application and promotion. Lin et al. extracted data from
the MIMIC-IV database to build a predictive ML model for SAP-
AKI using 1,235 cases of SAP patients (35). The models included
GBM, GLM, KNN, NB, ANN, RF, and SVM with AUC values
of 0.814, 0.812, 0.671, 0.812, 0.688, 0.809 and 0.810 respectively.
This highlights the significant role of GBM in predicting SAP-
AKI and can assist clinical practitioners in identifying high-
risk patients and intervening promptly to reduce mortality rates
in intensive care units. It is also worth noting that systemic
inflammatory response is inherently associated with the process
of AKI and may be caused by local inflammation within renal
tissues (37).

Acute respiratory distress syndrome (ARDS) is a common
complication of AP, with approximately 30% of SAP patients
developing ARDS (38), resulting in a mortality rate of up
to 37% (28). Two retrospective analysis studies exploring ML
models for AP-associated ARDS have yielded positive results
(39, 40), successfully establishing predictive models based on
ML. Compared with other models, the Bayesian Classifier (BC)
model achieving the highest AUC at 0.891 and demonstrating
the best predictive performance (39). The Ensemble Decision
Trees (EDT) showed good predictive capabilities, with the highest
accuracy (0.891) and precision (0.800). It is noteworthy that
lower PaO2 and Ca2+ levels upon admission, as well as elevated
CRP, Procalcitonin, Lactic Acid, Neutrophil-Lymphocyte Ratio,
White Blood Cell Count, and Amylase levels are significantly
associated with an increased risk of developing ARDS in AP
patients; among these features, PaO2 is identified as the most
important predictor.

4.2 Sepsis

ML techniques also demonstrate significant advantages in
predicting and evaluating septic shock. In a large retrospective
cohort study (41), 1,672 AP from the MIMIC III and MIMIC
IV databases were selected to construct six ML models, including
SVM, KNN, Multilayer Perceptron (MLP), LR, Gradient Boosting
Decision Tree (GBDT), and AdaBoost. The GBDT model
demonstrated superior performance in predicting sepsis among
AP patients with an AUC of 0.985 on the test set, outperforming
LR, Systemic Inflammatory Response Syndrome (SIRS) score,
Bedside Index for Severity in Acute Pancreatitis (BISAP) score,
Sequential Organ Failure Assessment (SOFA) score, quick SOFA
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TABLE 1 The clinical application of machine learning in acute pancreatitis.

References Disease Sample size ML-based model Contrast model AUC (95%CI)

Ding et al. (13) Mortality 337 ANN LR 0.769

Ren et al. (14) Mortality 856 GNB XGBoost, RF, SVM, et al. 0.840

Cai et al. (15) Mortality 534 SVM LR, XGBoost, RF, et al. 0.877

Anjuli et al. (16) Mortality 97,027 GBM LR 0.96

Qiu et al. (30) Multiple Organ Failure 263 SVM LR, ANN 0.840

Zhang et al. (34) Acute kidney Injury 437 AutoML LR, DL 0.963

Liu et al. (41) Sepsis 1,672 GBDT LR, SVM 0.985

Zhang et al. (39) Acute Respiratory Distress
Syndrome

460 BC SVM, EDTs 0.891

Xia et al. (42) Septic Shock 604 AE SVM, RF, AdaBoost, et al. 0.900

Xu et al. (9) Multiple Organ Failure 455 AdaBoost LR, et al. 0.826

Lin et al. (32) Organ Failure 314 RF LR, RF, et al. 0.915

Lin et al. (32) Acute kidney Injury 667 GBM NB, KNN, et al. 0.814

Chen et al. (48) Recurrence 389 LR SVM 0.941

Rahul et al. (8) SAP 61,894 XGBoost LR, ANN 0.921

Zhou et al. (23) Severity of AP 441 XGBoost LR, SVM, DT, RF 0.906

Lan et al. (5) Surgical Intervention Strategy 223 RF LR, SVM 0.78

Luo et al. (55) Surgical Intervention Strategy 15,813 RNN NA 0.70

ANN, artificial neural networks; LR, logistic regression; DL, deep learning; BC, Bayesian Classifier; EDTs, Ensembles of Decision Trees; AE, auto-encoder; AB, AdaBoost; RF, random forest;
NB, naive Bayes; KNN, k-nearest neighbors; XGBoost, extreme gradient boosting model; RF, random forest; RNN, recurrent neural network.

(qSOFA), and APACHE II scores in sepsis prediction. Similarly,
another retrospective study data established multiple ML models
for early prediction of septic shock in AP with sepsis (42), with
the final auto-encoder (AE) model achieving the highest AUC
on the validation set (AUC 0.900, accuracy 0.868), while the
AUC on the test set was 0.879 and the accuracy was 0.790.
The AE model performed better than traditional scoring systems
in predicting septic shock in AP with sepsis within 28 days
after admission.

5 The role of ML in predicting AP
recurrence rate

Recurrent acute pancreatitis (RAP) is defined as a history
of at least two episodes of AP with no evidence of pancreatic
tissue or functional abnormalities during the remission period.
It represents a distinct subtype of pancreatitis, and statistics
indicate that 17–22% of diagnosed AP patients will experience
recurrence (43). RAP serves as a significant risk factor for the
development of chronic pancreatitis (CP), with up to 36% of
RAP patients ultimately progressing to CP (44). CP is often
accompanied by comorbidities such as diabetes, malnutrition,
steatorrhea, and weight loss. Long-term follow-up studies have
revealed that 1.3% of CP patients may progress to pancreatic cancer
over an 8-year period (45), significantly impacting their quality
of life and prognosis. Therefore, early identification and timely
intervention for individuals at risk for developing RAP following
an episode of acute pancreatitis may mitigate the incidence rates

of both RAP and pancreatic cancer while enhancing long-term
quality of life.

Radiomics is an emerging field that optimizes existing imaging
resources to extract high-throughput quantitative features from
medical images (46, 47). These features are further analyzed using
predefined algorithms to develop models for clinical decision-
making. Currently, radiomics has been widely applied in the precise
analysis of tumors and their metastases (46).

ML models based on radiomics research for predicting RAP
are currently underutilized in clinical practice. Two retrospective
analysis studies have confirmed the role of SVM models in
predicting and distinguishing RAP (10, 48). The SVM model
demonstrates a significantly higher AUC than traditional clinical
models (0.941 vs. 0.712, p = 0.000), with similar conclusions
observed in the validation dataset (0.929 vs. 0.671, p = 0.000) (48).
The SVM model constructed using radiomic features can effectively
differentiate between patients with functional abdominal pain, RAP,
and CP, achieving an overall average accuracy of 82.1%. For patients
diagnosed with RAP solely based on symptoms of abdominal pain
and laboratory values or those for whom imaging studies during
AP episodes are unavailable, radiomics may serve as a valuable
diagnostic adjunct (10).

6 The role of ML in predicting AP
surgical intervention strategy

Infected pancreatic necrosis (IPN) is the most severe local
complication in the late stage of AP. Once IPN occurs, it
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indicates SAP, with a mortality rate as high as 30% (49).
Treatment often involves a series of surgical debridement
procedures known as "Step-up" strategies, including percutaneous
catheter drainage (PCD), endoscopic transgastric necrosectomy,
video-assisted minimally invasive surgery, and open surgery
(50). There has been significant debate regarding the timing
of surgical intervention for IPN. Research suggests that early
surgery results in a mortality rate exceeding 50% (51), while
delaying surgery until 4 weeks after the onset of IPN can
reduce both complications and mortality rates (52). With the
advancement of modern minimally invasive techniques, early
endoscopic drainage during the course of AP has also proven to
be safe and effective (53, 54). Early, timely, and accurate prediction
of IPN occurrence and determination of the optimal timing
for surgical intervention are crucial factors guiding subsequent
treatment decisions.

Lan et al. included 223 patients with IPN who underwent
surgical treatment for AP (5). They classified IPN patients based
on whether the surgery was performed within 4 weeks using
LR, SVM, and RF models. The RF model demonstrated a higher
classification accuracy (0.80) compared to SVM (0.78) and LR
(0.71). Additionally, they identified IL-6, infectious necrosis, fever,
and CRP as key factors in determining the timing of surgical
intervention for IPN patients. The ML model can effectively predict
the optimal timing for surgical intervention in IPN, providing
valuable guidance for clinicians in developing personalized surgical
strategies for IPN patients.

Another large-scale retrospective clinical study involving
15,813 patients with AP has developed a novel ML model
based on recurrent neural network (RNN) to predict the
timing of surgical intervention for IPN (55). This model,
known as Phased Long Short-Term Memory (Phased-LSTM),
achieved an AUC greater than 0.70 and demonstrated stronger
interpretability, making it suitable for predicting the optimal
timing for surgery. The developed model visualizes specific
surgical timings and changes in laboratory indicators from
onset to discharge for AP patients, enabling comprehensive
monitoring of patients with necrotizing pancreatitis throughout
their hospitalization. Due to the ability of LSTM to forget and
update long-term states, its performance surpassed that of SVM
and RF, highlighting the advantages of time series models in
handling temporal data.

7 Discussion

With the improvement in living standards, the incidence
of AP has been increasing annually in recent years, with a
rise of approximately 2–5% per year (56). Concurrently, the
proportion of SAP is also rising. SAP is closely associated
with multiple organ failure and has a high mortality and
recurrence rate. Once the condition progresses to IPN and OF,
the mortality rate can reach up to 30% (1). Therefore, early
prediction of the severity of AP, the occurrence of complications,
and the timing of intervention is crucial for clinical decision-
making and timely intervention. However, traditional clinical
prediction models, which are often based on multivariable analysis,
are challenging to construct within 24h widespread clinical

application. Consequently, it is imperative to develop a simple,
effective, and clinically implementable model for early prediction
of AP progression.

Artificial Intelligence (AI) encompasses a range of subfields
within computer science. In recent years, advancements in
algorithms such as ML, statistical learning, deep learning, and
cognitive computing have played a pivotal role in the diagnosis
and treatment of diseases such as sepsis and cancer (4, 57).
ML, a subset of AI, is a burgeoning interdisciplinary field that
integrates statistics, computer science, and other areas. It is
not only used for text mining and classification in computer
science, but is also increasingly applied in clinical practice. Various
ML algorithm models for disease prediction and diagnosis have
been developed based on AI technologies and are now widely
accepted in the medical field. Recently, ML has begun to be
applied to areas such as the severity of AP, complications,
recurrence rates, organ dysfunction, and the timing of surgical
intervention. This review focuses on recent advancements in
the application of ML models in the context of AP (refer to
Table 1).

We have observed that the majority of current ML models do
not account for several important factors, including the etiology
of AP and the stratification of severity. Additionally, most of the
data utilized are retrospective, although these models have been
validated on test and validation sets, their reliability still requires
confirmation through clinical practice. Many studies are single-
center with small sample sizes and lack external validation. Most
research focuses on binary classification of AP into SAP and non-
SAP. To date, there have been no ML models that provide accurate
prognostication based on the 2012 Atlanta classification, which
includes SAP, MSAP, and mild acute pancreatitis (MAP). Notably,
most ML models remain limited to predicting traditional severity
and complications, with a significant gap in predictive models for
recurrence rates, optimal timing for surgery, pancreatic necrosis
accumulation, and local complications such as infectious pancreatic
necrosis. Future research should address these areas.

8 Conclusion

In conclusion, ML has proven to be an excellent predictor of
mortality, severity, complications, recurrence, organ dysfunction,
and timing of surgical intervention in acute pancreatitis, and is
superior to traditional scoring systems such as the APACHE II
score, the BISAP score, the SOFA score, and other traditional
systems. However, much more prospective clinical studies are
needed to validate this idea.
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