AUTHOR=Alzakari Sarah A. , Ojo Stephen , Wanliss James , Umer Muhammad , Alsubai Shtwai , Alasiry Areej , Marzougui Mehrez , Innab Nisreen TITLE=LesionNet: an automated approach for skin lesion classification using SIFT features with customized convolutional neural network JOURNAL=Frontiers in Medicine VOLUME=11 YEAR=2024 URL=https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2024.1487270 DOI=10.3389/fmed.2024.1487270 ISSN=2296-858X ABSTRACT=
Accurate detection of skin lesions through computer-aided diagnosis has emerged as a critical advancement in dermatology, addressing the inefficiencies and errors inherent in manual visual analysis. Despite the promise of automated diagnostic approaches, challenges such as image size variability, hair artifacts, color inconsistencies, ruler markers, low contrast, lesion dimension differences, and gel bubbles must be overcome. Researchers have made significant strides in binary classification problems, particularly in distinguishing melanocytic lesions from normal skin conditions. Leveraging the “MNIST HAM10000” dataset from the International Skin Image Collaboration, this study integrates Scale-Invariant Feature Transform (SIFT) features with a custom convolutional neural network model called LesionNet. The experimental results reveal the model's robustness, achieving an impressive accuracy of 99.28%. This high accuracy underscores the effectiveness of combining feature extraction techniques with advanced neural network models in enhancing the precision of skin lesion detection.