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Accurate detection of skin lesions through computer-aided diagnosis has

emerged as a critical advancement in dermatology, addressing the ine�ciencies

and errors inherent in manual visual analysis. Despite the promise of automated

diagnostic approaches, challenges such as image size variability, hair artifacts,

color inconsistencies, ruler markers, low contrast, lesion dimension di�erences,

and gel bubbles must be overcome. Researchers have made significant strides in

binary classification problems, particularly in distinguishing melanocytic lesions

from normal skin conditions. Leveraging the “MNIST HAM10000” dataset from

the International Skin Image Collaboration, this study integrates Scale-Invariant

Feature Transform (SIFT) features with a custom convolutional neural network

model called LesionNet. The experimental results reveal the model’s robustness,

achieving an impressive accuracy of 99.28%. This high accuracy underscores the

e�ectiveness of combining feature extraction techniques with advanced neural

network models in enhancing the precision of skin lesion detection.

KEYWORDS

skin lesion classification, computer vision, customizedCNN, SIFT features, deep learning

1 Introduction

Skin diseases, particularly skin cancer, are considered among the most critical and

dangerous human cancers (1). Skin cancer comes in various forms, including melanoma,

squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and intraepithelial carcinoma

(2). Among them, melanoma is the most aggressive very fast and invasively attacks a host

and tends to metastasize early (3). Based on the 2019 year-end report of the American

Cancer Society, about 7,230 die frommelanoma annually, and around 96,480 are diagnosed

with the disease (4). For all types of skin malignancies, the mortality rate for melanoma is

approximately 1.62% (5).

The reason why melanoma skin cancer should be detected early is that there are

approximately 92% chances of survival in the event it is identified at an early stage (6). One
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challenge researchers face is the fact that melanoma skin cancer

is not easily differentiated through visual observation from other

types of skin cancer. The difficult thing is that melanocytic nevi

and melanoma are very similar in looks and that is why it is

very hard to differentiate between them using dermoscopic images.

Dermoscopy, an imaging technique that uses immersion fluid

and a magnifying device, is typically used to visualize the skin’s

surface (7).

The layer of skin that covers humans acts as a barrier between

their body and the environment. It serves as the biggest organ in

the body and is responsible for control, protection, and sensation

(8). Millions of individuals worldwide suffer from skin disorders,

which greatly impact their quality of life and physical health (9).

To find skin diseases early on, routine skin examinations are

required. Recognizing skin diseases early is crucial to prevent the

spread of skin cancer (10). The skin regulates body temperature,

protects internal organs from germs, and serves as a sensory organ

(11). Thera are three layers in human skin named as epidermis,

hypodermis, and dermis. The outermost layer epidermis acts as

a waterproof barrier and contains melanocytes that produce the

pigment melanin that determines skin-tone. The second layer is

dermis that houses hair follicles, sweat glands, and connective

fibers. Connective tissue and fat make up the hypodermis. Skin

diseases are any illnesses or conditions that affect these layers of the

skin (12). The ABCDE rule, which was proposed by Chang et al.

(13) is also utilized for the identification of skin diseases. ABCDE

stands for Asymmetry, Border, Color, Diameter, and Evolution (14).

According to the American-Cancer-Society (ACS), around 1.9

million new cases of cancer diagnosed in 2021 (15). It is estimated

that 1,670 Americans would lose their lives to skin cancer every

day in 2021. According to Van Onselen (16), skin cancer has the

most advanced treatment and outlook of any disease and is the

most common type in developing nations. With 500,000 new cases

reported in the United States, it is now the 19th most frequent

cancer worldwide. The WHO states the every 1 among three

patients diagnosed with the skin cancer disease and this disease is

becoming more common worldwide (17).

Previous research has demonstrated the accuracy of

teledermatology-guided referrals utilizing dermatoscopy (18),

as well as how it may reduce the burden on healthcare systems

and shorten wait times for critical skin cancer surgery (19).

One technique that can rapidly screen a large number of

patients and identify those who are most at risk is the use of

automated categorization systems. This can reduce the number

of unnecessary clinic visits and enable the early identification of

skin cancer. Consequently, the importance of techniques used for

the early diagnosis of the disease has increased. Under normal

circumstances, it can be challenging to differentiate between

lesioned and non-lesioned areas in photographs of melanoma skin

cancer. Differentiating across these domains is a difficult task that

calls for expertise (20).

Computer vision heavily relies on image processing, which

includes picture preprocessing, image classification, and image

segmentation. These methods are being used successfully to

diagnose illnesses. Machine learning (ML) models, including

decision tree (DT) and random forest (RF), were utilized by

researchers to classify skin lesions (21), while Akram et al. (22)

employed M-SVM to segment and recognize skin lesions. Skin

lesion segmentation and classification have been done using the

Adaptive Neuro-Fuzzy classifier (23).

Existing studies mainly utilize machine learning models

and rely on small datasets with imbalanced class distribution.

Imbalanced distribution of data for various classes can negatively

impact models’ performance as the models may overfit the majority

class. Consequently, the models show poor performance in the

minority class. This study makes use of SIFT and HoG features

to find the significant features. The objective of this study is to

enhance the accuracy of deep learning (DL) based diagnosis of

skin lesions, surpassing the performance of existing algorithms

currently in use. The study seeks to enable a swift and highly

accurate diagnosis of skin lesion type. Leveraging the potential of

DL for rapid image-based diagnosis, the novelty of the research lies

in the proposed integration of SIFT features. The following are the

major contributions of this research work:

1. This research work proposes a novel ensemble model

“LesionNet” incorporating the SIFT features with a customized

convolutional neural network model.

2. The proposed LesionNet model is compared with HoG features,

Deep CNN features embedding, and six other supervised

learning models (Random forest, MobileNet, GoogleNet,

DenseNet, Recurrent neural network, ResNet, and Extreme

gradient boosting) to show LesionNet’s superiority among them.

3. The results of the proposed “LesionNet” are further validated

using k-fold cross-validation and comparison with previously

published research works.

Furthermore, the paper is structured as follows: Section 2

reviews the related work. Section 3 describes the experimental

methodology. Section 4 presents and discusses the results. Finally,

Section 5 concludes the research and suggests potential directions

for future work.

2 Related work

In the past, researchers have studied skin illnesses using

dermoscopic pictures and a variety of DL techniques. Although

the possibility for the dermoscopic imaging system to enlarge

lesions, visual examination is quite difficult because of the complex

architecture of lesions. Techniques for segmenting and classifying

skin diseases automatically can help solve this issue. Along with the

use of a literature review, it is determined that several segmentation

and classification algorithms can be used to detect skin diseases,

sometimes with and sometimes without pre-processing. Devices

for dermatoscopy make it possible to see skin lesions. While some

writers are primarily focusing on segmentation-based approaches,

others are trying to categorize skin lesions using deep learning

techniques. Only a few researchers are developing methods

based on both classification and segmentation. Anand et al. (11)

proposed a fusion-basedmodel for skin diseases classification using

dermoscopic-images with utilization of segmentation technique.

Lambert et al. (24) provides a comprehensive review of

methods for uncertainty approaches in DL models used in

medical-image analysis. It covers various techniques, including

Bayesian neural networks, ensemble methods, and Monte Carlo

dropout, emphasizing their roles in enhancing model reliability
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and trustworthiness. The methods thus become important in

the identification of model errors and improve interpretability

for clinical decision-making, opine the authors. They articulate

that the need for robust validation practices is necessary so

that AI solutions can effectively and safely be deployed in

health settings. In the end, the review outlines future research

directions in this area of importance. This work is seminal

in making medical imaging AI systems more trustworthy. In

a different article (25), SkiNet proposes a DL framework for

skin-lesion classification with embedded uncertainty estimation

and XAI. The framework provides confidence scores with visual

explanations of its predictions via techniques such as Monte Carlo

dropout and integrated gradients to assist dermatologists in the

diagnostic process. The study demonstrates SkiNet’s effectiveness in

enhancing diagnostic accuracy and clinician trust. The integration

of uncertainty estimation addresses significant concerns about

the reliability of AI in healthcare. This paper proposes novelty

by offering a more interpretable and trustworthy AI tool for

medical diagnosis, showing potential for broader applications in

clinical settings.

In Khan et al. (26), a binary classification test was conducted

to examine how label noise impacted CNN performance in

distinguishing between nevus and melanoma. The accuracy

achieved was 75.03% for dermatology and 73.80% for biopsy.

In Khan et al. (27), multi-class and binary classification to

the HAM10000 dataset and KCGMH dataset. They trained and

validated the model using EfficientNet and DenseNet. In the

KCGMH dataset, the success rate was 89.5 percent for binary

classifications, 85.6 percent for seven-class classifications, and

72.1 percent for five-class classifications. In Al-Masni et al. (28),

suggested a model that combines a feature selection technique with

a DL model to identify skin cancer. The localization step employs

the contrast stretching technique. They collected features using

the DenseNet201. Training and testing were performed with an

accuracy of 93.4% and 94.5%, respectively, using the ISIC2017 and

ISBI2016 datasets. In Polat et al. (29), a multi-class skin lesion

segmentation and classification approach was presented using

a ten-layer CNN and the Deep Saliency Segmentation method.

The study utilized several datasets including PH2, ISBI 2017

(2,750 images), ISIC 2018 (3,694 images), and ISBI 2016 (1,279

dermoscopic images). They also employed 10,015 dermoscopy

images from the HAM10000 dataset for categorization. The

accuracy achieved on these datasets were as follows: ISBI 2016—

95.38%, ISBI 2017—95.79%, ISIC 2018— 92.69%, PH2—96.70%.

Overall, they achieved a categorization accuracy of 90.67%. In

Salian et al. (30), offered a mix of categorization and segmentation.

First, a DL Full Resolution Convolutional Network (FrCN) is

used for segmentation. Using transfer learning models, segmented

images are classified in the following step. ISIC 2016, 2017,

and 2018 were used to assess the model. In Salian et al. (31),

two approaches were presented for classifying skin diseases:

the first approach utilized a CNN, while the second approach

combined a convolutional method with a one-versus-all strategy.

The HAM10000 dataset is utilized and gives 77.7% accuracy

in classifying seven skin cancer types with the CNN approach,

compared to 92.9% accuracy on binary classification.

In Zafar et al. (32), melanoma was identified from images of

skin lesions using both augmented and non-augmented data from

the PH2 andHAM10000 datasets. In this work, the implementation

of MobileNet and VGG16 models was conducted, together with

a custom model developed to compare its results against the

previously trained models. The accuracy rates after these works

were reportedly 80.07% for VGG16 and 81.52% for MobileNet,

while for a custom model, it reached 83.15%. Hauser et al. (33)

designed a melanoma recognition algorithm based on CNNs that

merged segmentation and classification into one process. First, they

explored residual learning and proposed a two-stage framework

with a convolutional residual network, which was tested using

the ISBI 2016 dataset. As noted, most traditional segmentation

methods lack contextual understanding; thus, this method failed

to segment the objects from complicated backgrounds efficiently.

To circumvent all these issues, they resorted to the U-Net

architecture since it can retain the integrity of images due to the

encoder-decoder pathways, which immensely aid in capturing both

contextual and localization features.

It has been discussed (34), how explainable Artificial

Intelligence was utilized to detect skin cancer. XAI alludes to AI

models helps dermatologist for better understanding of model

predictions and diagnosing. The authors identified 37 studies

across various databases that applied XAI techniques for skin-

cancer diagnosis. They discussed methods like rule-based models,

gradient-based strategies, and decision trees, highlighting XAI’s

limitations, alongside benefits like improved transparency. The

study concludes that XAI could enhance skin lesion detection

by offering understandable and transparent models, but further

research is needed to integrate these models into healthcare

systems effectively and validate their clinical utility.

In Bhatt et al. (35), provided a critical evaluation of a few state-

of-the-art ML techniques for skin lesion diagnosis. The scientists

additionally highlighted the importance of early identification of

melanoma skin cancer because it leads to much higher survival

rates. The authors thoroughly covered a wide range of topics,

including feature extraction techniques, data augmentation, and

various models like KNN, CNN, and SVM. All of which were

applied to datasets compiled from the ISIC and ISBI archives.

Nonetheless, the work was subject to certain limitations. Bias in

the training set and other potential disadvantages of applying ML

algorithms to the diagnosis of melanoma were not discussed in

the study. The authors also did not explore the possible moral

implications of utilizing machine learning algorithms for medical

diagnosis.

3 Materials and methods

This section gives details about the dataset, dataset

preprocessing (data-augmentation), models employed for the

detection of skin-lesion, and the proposed methodology of

“LesionNet” also discussed in this section. This section also

discusses all seven evaluation metrics utilized in this research work.

Multiple methods can be used to diagnose skin diseases. From

these multiple methods, we have utilized dermoscopic image-based

detection because it is the most effective one. The rest of the

methods are as follows:

• Dermatoscopy is the initial process it involves using a

dermatoscopy instrument to check out the blood vessel and
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FIGURE 1

Count of each skin lesion type in dataset.

pigmentation of a mole without removing it. Patch tests, skin

biopsies, and cultures are the most popular types of skin

tests (11).

• While automated dermatoscopic image analysis, particularly

using neural networks, has been researched for many

years (36), it is now growing in popularity and has

shown encouraging results when compared to medical

professionals (37).

• A neural network can also be trained to analyze clinical close-

up (macroscopic) photos to diagnose skin cancer; however,

this method has been shown to have lesser accuracy when

predicting various disease classifications (38).

3.1 Dataset

In this research work, we have utilized a benchmark dataset for

ensuring reliability and trustworthiness (23). It consists of 10,000

skin images from different patients, meticulously categorized into

seven distinct types, which serve as ground truth labels for

classification purposes. Figure 1 illustrates the distribution of each

class within the dataset, while Figure 2 displays sample images

from each skin cancer type. Notably, the dataset includes a

significant portion of nearly 68,000 images. Recognizing the clinical

relevance of cancer location in diagnosis and treatment, the dataset

encompasses images depicting various body parts.

3.2 Image data augmentation

An efficient and effective CNN model is achieved when

the validation error decreases gradually along with the training

error, leading to improved accuracy rates. Increasing the

amount of image data is a potent technique to address this

challenge, as it enlarges the dataset. This augmentation enhances

the model’s ability to generalize and improves its accuracy.

Training CNNs on extensive datasets is crucial for boosting

accuracy by enhancing generalization capabilities. Therefore,

tools like the image generator provided by Keras are utilized

for data augmentation. This generator offers options such

as rotation range, width shift range, zoom range, and height

shift range to augment data. Table 1 illustrates the effect of

image augmentation.

3.3 Image feature extraction techniques

3.3.1 Scale-invariant feature transform (SIFT)
Since its introduction, SIFT has been one of the most widely

used and successful approaches for image feature extraction, given

its invariance to changes in scale, orientation, or illumination (39).

First proposed in 1999 by David Lowe, SIFT detects key points

in images, generally around conspicuous regions, and describes

their local neighborhood using histograms of gradient directions.

These descriptors are invariant concerning changes in scale and

orientation and, hence, very suitable for matching key points across

different images. Apart from that, SIFT has been applied to object

recognition, image stitching, and 3-D reconstruction. While SIFT

is very effective, the high dimensional feature vectors can lead to

low computational efficiency. Its strength and flexibility support its

continuance as an essential tool in computer vision research and

applications. Let’s understand how SIFT feature extraction works

with an example: Let I(x, y, c) be the RGB skin lesion image, with
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FIGURE 2

Example images of each skin lesion type in dataset.

(x, y) pixel coordinates and color channel crepresenting Red, Green,

or Blue.

3.3.1.1 Cumulative feature extraction process

1. Convert the RGB image to grayscale:

Igray(x, y) = 0.2989 · I(x, y, R)+0.5870 · I(x, y, G)+0.1140 · I(x, y, B)

(1)

where Igray(x, y) is the grayscale image.

2. SIFT feature extraction:

• Scale-space extrema detection:

Ki = arg max
(x,y,σ )

∣

∣L(x, y, kσ )− L(x, y, σ )
∣

∣ (2)

where L(x, y, σ ) is the scale-space representation obtained by

convolving the grayscale image Igray with a Gaussian kernel of

scale σ .
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TABLE 1 E�ect of image data augmentation on each skin lesion type.

Classes Lesion before
augmentation

Lesion after
augmentation

Melanoma 1,000 3,000

Melanocytic Nevi 6,800 7,000

Basal-cell-carcinoma 500 2,000

Benign-keratosis-like-lesions 1,000 3,000

vascular-lesions 225 2,000

Actinic-keratoses 250 2,000

Dermatofibroma 225 2,000

Total lesion images 10,000 21,000

• Keypoint localization: Refine the key points by fitting a

quadratic function to the local sample points.

• Orientation assignment:

θi = argmax
θ

∑

(x,y)∈neighbor(Ki)

∣

∣∇Igray(x, y)
∣

∣ · δ(θ − θ(x, y)) (3)

• Descriptor computation:

Di =
[

H(θ1),H(θ2), . . . ,H(θn)
]

(4)

where H(θj) is the histogram of gradient orientations within

the keypoint’s neighborhood.

3.3.2 Histogram of oriented gradients (HoG)
Among the most pervasive feature descriptors in computer

vision applications like object detection and image classification

is the HoG descriptor (40). HoG was first presented in 2005

by Navneet Dalal and Bill Triggs, and the method works by

partitioning an image into small spatial regions called cells and

then computing the histograms of gradient orientations within

each cell. These histograms thus summarize the distribution of

edge orientations and, therefore, encode compactly the local

image characteristics. HoG generates a descriptor resilient to

changes in illumination and resistant to local geometric distortions

by aggregating histograms over several cells and optionally

normalizing them. Such success has been realized in applications

of pedestrian detection, face detection, and gesture recognition

using the HoG. While this is very effective, HoG may struggle with

complex background clutter and occlusion scenarios. Nevertheless,

simplicity and robustness make it a great tool in many computer

vision systems. Let’s understand how HoG feature extraction works

with an example:

3.3.3 HoG feature extraction
• Gradient computation:

∇Igray(x, y) =

(

∂Igray

∂x
,
∂Igray

∂y

)

(5)

• Orientation binning:

Hc(θ) =
∑

(x,y)∈c

∣

∣∇Igray(x, y)
∣

∣ · δ(θ − θ(x, y)) (6)

• Normalization:

Ĥb =
Hb

√

‖Hb‖
2 + ǫ2

(7)

3.4 Deep learning models

To classify skin lesions, this research suggested a deep technique

based on many pre-trained convolutional neural networks and

picture super-resolutions.

3.4.1 DenseNet201
Probably the most typical property of the DenseNet model

architecture is its dense connectivity pattern. Each layer has direct

connections to every subsequent layer (41). In the design, multiple-

layer feature reuse enhances computational efficiency and allows

more diversified input into the network for later layers. This

design encourages feature aggregation during the process of model

learning. In DenseNet, every layer receives all previous layers’

feature maps, which allows for the reuse of the features and has

been previously proven to ease gradient flow. For the improvement

of the efficiency of the method and model complexity reduction,

DenseNet implements bottleneck layers and pooling layers in the

transition layer such (42). It’s somehow close to what is applied

in the principles of ResNet designs. However, unlike ResNet,

where each layer receives input directly from the previous layer,

DenseNet diverges by connecting each layer densely in a feed-

forward manner, ensuring comprehensive feature utilization and

integration.

3.4.2 GoogleNet
The network designed in 2015, known for its comprehensive

approach in CNN models, is based on GoogleNet architecture

(43). GoogleNet employs inception modules consisting of 1 × 1,

3 × 3, and 5 × 5 convolutional sub-layers to extract features

of various sizes and concatenate them for the subsequent layers.

These modules operate in parallel and incorporate 3× 3 maximum

pooling layers (44) to process data received from preceding layers.

To optimize computational efficiency, a 1 × 1 convolution is

applied with max-pooling layer. Each segment of the inception

module computes unique features and their outputs are merged

and fed as inputs to subsequent CNN layers. Instead of fully

connected layers, starter modules are used in this architecture.

GoogleNet employs maximum pooling at certain stages to reduce

information volume from critical layers, and it concludes with an

average pooling layer at the network’s end.

3.4.3 MobileNetv2
To address the problem of information extinction in nonlinear

layers within convolutional blocks, this network employs linear
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bottlenecks and significantly separable convolutions (DSC), as

described in Yilmaz et al. (45). To maintain information, it also

presents an entirely new structure known as inverse residuals.

Deep, separable convolution is the foundation of the MobileNet

architecture. Each input channel undergoes standard convolutional

processing, followed by depth-wise inversion, and concludes with a

final convolution of all input channels with the filter channel. As a

result, a filtered output channel is produced. Next, these channels

are piled up. These channels are combined into a single channel

using 1 × 1 convolution in deep convolution. Therefore, it is

known that this method decreases the number of parameters and

boosts efficiency even if it produces the same outputs as normal

convolution (46).

3.4.4 Recurrent neural network (RNN)
A neural network designed for sequential processing, where

components from one iteration feed into the next, is known as a

RNN. In RNNs’, hidden layers from previous iterations contribute

input to the same hidden-layer and to subsequent iterations. This

capability allows RNNs to learn from past attempts on earlier

segments of sequences, making them highly effective for sequence

evaluation (47).

3.4.5 Convolutional neural network (CNN)
CNN is like a smart system with different layers. The first

layer helps pick out important details, the next layer makes things

smaller, another layer prevents it from getting too focused on

certain details, and the last one turns everything into a neat

arrangement. They use something called ReLU to make it all work,

and there’s a dropout layer that helps with not getting too caught up

in the details, set at a rate of 0.2 in this study (48).

3.5 Machine learning models

3.5.1 Random forest (RF)
RF is a meta-estimator that enhances success and mitigates

overfitting by aggregating data from multiple DT (49). Each DT

classifier in RF is trained on a subset of input data samples.

The ensemble then averages the outputs of these decision trees,

functioning as a collective learner. RF generates a large number

of DT, where each tree predicts the mean for regression tasks or

the output class for classification at each node. It is a versatile and

widely used machine learning algorithm known for its ability to

produce reliable results without extensive hyperparameter tuning.

3.5.2 Extreme gradient boosting (XGBoost)
XGBoost is a robust ML algorithm that has gained widespread

popularity for its efficiency and effectiveness in various predictive

modeling tasks (50). Introduced by Chen and Guestrin in 2016,

XGBoost is highly scalable, efficient, and adaptable. XGBoost

enhances traditional gradient boosting with features like a

regularized learning objective to prevent overfitting, support

for parallel and distributed computing, and an innovative

tree construction algorithm that maximizes performance. These

attributes make XGBoost well-suited for handling large-scale

datasets and achieving state-of-the-art results in tasks such as

classification, regression, and ranking.

3.6 Proposed LesionNet framework

CNN is a special tool used mainly for sorting out pictures into

different categories (51). It’s made up of layers that are good at

dealing with 2D or 3D data, especially when it comes to visual

images. The proposed LesionNet framework (as shown in Figure 3)

is based on the usage of SIFT features with a customized (layer-

wise arrangement) CNN model. Think of it like having different

layers where the first one looks at the picture, and the others learn

more and more about it. They use something called ReLU to help

with the learning process The complete layer-wise structure of the

proposed LesionNet model is shown in Table 2. CNN needs at least

one convolutional layer because it works by looking at parts of the

picture instead of the whole thing. It has input and output layers,

and in the middle, there are hidden layers that do a lot of the work.

These hidden layers have different jobs, like making the picture

simpler or figuring out what’s important. In this study, we also use

a max-pooling layer to help CNN do an even better job.

3.6.1 Max pooling layer
In deep neural networks, they use a process called max

pooling to simplify information (52). It’s like picking out the

FIGURE 3

Proposed methodology diagram.
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TABLE 2 Layer-wise structure of proposed LesionNet model.

Name Description

Convolutions Filters=(@4, @32), Strides=(@2)

Convolutions Filters=(@4, @32), Strides=(@2)

Max-Pooling Pool-size=(@2), Strides=(@2)

Convolutions Filters=(@4, @32), Strides=(@2)

Average-Pooling Pool-size=(@2), Strides=(@2)

Layers Flattened()

Fully-Connected Dense(180-neuron)

Fully-Connected Dense(120-neuron)

Fully-Connected Dense (32neuron)

Sigmoid Sigmoid(2)

most important parts. Some of the most important goals of max-

pooling are those designed tomake output features from the hidden

layers smaller and, therefore, more efficient. Downsizing in this

way dispenses with large amounts of data, hence becoming more

straightforward to handle, avoiding getting too caught up in details,

which may help prevent overfitting. By doing so, they reduce the

number of things the system is thinking about to a high degree,

therefore making it run faster. Think of it like looking at some big

picture and focusing on its essential parts to understand it better.

3.6.2 Fully connected layer
Fully connected layers are vital parts of CNN, especially in

the analysis and classification of skin images. In CNNs, the model

breaks down image data into smaller sub-components referred to

as feature maps, all going through independent learning processes.

The feature maps capture essential details from the image and

are then passed on to fully connected layers. Neurons are small

units interconnecting with other neurons in these layers through

weighted connections that process information. They all work

together to classify the images of skin cancer, including NV,

bkl, MEL, BCC, vasc, akiec, and df. This is done by dropping

some connections that seem redundant in the neurons, thereby

increasing the accuracy and speed of decision-making. This

teamwork of neurons summarizes understanding the input image

and then classifying it correctly.

3.6.3 Dropout rate
The dropout layer may be thought of as a valuable tool in

neural networks. This approach is used to prevent the system from

being too good at training data and overthinking. It does this by

randomly turning off some of the little units, or neurons, over the

network using a kind of random choice. By doing so, it enables

the neural network not to get too mired with details and allows it

to focus on essential things. Imagine that all of the little thinking

units were on all of the time; then, the network would learn too

much from some specific details, and that would be a problemwhen

presented with new data. The dropout layer says, “Hey, let’s turn off

some units now and then so we get a more balanced and useful

understanding of the data.” It is one of those nice little tricks that

make neural networks learn well and not focus on things that may

not be important.

3.6.4 Sigmoid
The simplest would be a linear activation function, but its

disadvantage is that it will be able to handle only simple patterns.

Any neural network made of linear functions is easily trainable but

may not learn complex features efficiently. These make it easier for

neurons to learn complex patterns. The sigmoid function also called

the logistic-function, gives an output between 0.0 and 1.0, which

aids information presentation for better understanding. In medical

image analysis, using CNN-based DL techniques can be very useful

because they automatically identify the prominent features from

the images to classify them into respective categories. However,

their training process is tricky, especially when there is a lack

of large data sets. The problems of overfitting and underfitting

can occur. This paper addresses this challenge through several

techniques to ensure robust learning from limited data.

3.7 Evaluation parameters

The metrics generally used to evaluate DL models are recall, F1

score, precision, and accuracy. Based on multi-class classification

problem, additional metrics include AUC, MCC, and Kappa.

Formulas for all evaluation metrics are:

Recall =
TP

TP + FN
(8)

Precision =
TP

TP + FP
(9)

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

F1score = 2×
Precision× Recall

Precision+ Recall
(11)

The AUC measured the quality of model predictions from

zero to one, where one is the best and 0 is the worst. Moreover,

AUC reflects the degree of separability that explains how healthy

classes are distinguishable by the model. The Kappa is a statistics-

based prominent evaluation metric denoted by k, measuring the

reliability of other evaluators or parameters. The following equation

computes the value of k:

k =
prob(O)− prob(C)

1− prob(C)
(12)

Matthews correlation coefficient (MCC) is an unaffected

and substitute measure for uneven datasets and employs a

likelihood matrix method to calculate the Pearson product-

moment correlation coefficient between predicted and actual values

(53). Expressed in terms of the entries of the contingency matrix M,

MCC is formulated as follows:
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TABLE 3 Framework specifications.

Aspect Details

Programming

environment

Python 3.8

Software libraries Scikit-learn, TensorFlow

Operating system Windows-10

Processors 7th Gen, Intel-Core i7, 2.8 GHz processor

Graphic card 8 GB- GTX 1060 Powered GPU from Nvidia

MCC =
TP.TN − FP.FN

(TP + FP).(TP + FN).(TN + FP).(TN + FN)
(13)

4 Results and discussions

The Python 3.8 with supporting libraries TensorFlow and

Scikit-learn is utilized for experimentation. The experimental setup

operated with 8GB of available RAM, on Windows 10 (64-bit)

operating system. The CPU utilized was 7th Gen, Intel Core i7

having a clock speed of 2.8 GHz, and an 8 GB, GTX 1060 GPU from

Nvidia. Technical specifications of the computational resources

deployed in research are crucial for an in-depth understanding of

the model. Table 3 summarizes the experimental setup.

4.1 Results of all supervised learning
models on the skin lesion dataset using
SIFT features

The complete classification report of all supervised learning

models is shown in Table 4. As can be seen in Table 4, CNN

perform better thanMobileNet in general because of their advanced

architecture and range of capabilities. CNNs use several layers of

convolution and pooling techniques to capture complex patterns

of space in images. They can extract more abstract properties

from the input data thanks to these procedures, which is essential

for applications like object detection and image classification.

However, MobileNet is designed with efficiency in mind, especially

for mobile and embedded devices, thanks to its use of depthwise

separable convolutions, which significantly decrease computing

costs. MobileNet provides an attractive trade-off between speed and

accuracy, making it appropriate for limited resource applications,

even though it compromises some performance when compared

to typical CNNs. However, because of their deeper structures and

capacity to recognize more complex patterns, CNNs often do very

well in jobs where accuracy is crucial. Therefore, the decision

between CNNs and MobileNet is based on the particular needs

of the application, taking into consideration factors like required

accuracy, speed, and processing resources (54). To show the smooth

training and testing of the proposed LesionNet framework, we

have added the validation curves that show in Figure 4 that model

training is smooth and does not get any underfitting or overfitting.

Because CNN can learn structures directly from raw input, such

as photos, without depending on handcrafted features, they often

perform better than Random Forests. CNNs use convolutional and

pooling layers to continuously extract information atmultiple levels

of abstraction, which makes them excellent at tasks like object

detection and image categorization. CNNs can recognize intricate

patterns and correlations in the data because of these learned

features that are maximized during training, which is especially

useful for jobs requiring high-dimensional input, like picture

analysis. Conversely, Random Forests are a method of ensemble

learning based on decision trees that work by dividing the feature

space into smaller regions and predicting the target variables based

on their mean (regression) or mode (classification) within those

regions. Although Random Forests work well for many machine

learning applications, they frequently have trouble with high-

dimensional data and may need a lot of feature engineering to

perform as well as CNNs. CNNs are also more flexible and able to

capture subtle associations because they can automatically adjust to

the underlying structure of the input, which is useful in challenging

picture identification applications (55).

CNNs generally surpass GoogleNet, also known as Inception,

for several reasons. While GoogleNet introduced inception

modules to optimize computational resources by employing

multiple convolutional filter sizes within a single layer, CNNs

typically outperform it due to their deeper architectures and larger

parameter space. The depths of CNN enable it to do marvelously

well in capturing complex hierarchical features in data, especially

in image classification and object detection. By using convolution,

pooling, and nonlinear activation functions across multiple layers,

a CNN learns increasingly abstract representations of input

data. This allows the modeled capture of intrinsically complex

patterns and relationships within the data and thus often yields

better performance than GoogleNet in many scenarios. Although

GoogleNet was, in its time, very innovative and had proposed some

cool ideas about the improvement of computational efficiency in

DL models, subsequent improvements in CNN architectures have

often outperformed it (56).

Due to the dissimilar nature of architectural designs and their

enhanced ability concerning collect hierarchical features, CNNs

usually perform better than DenseNet. Although DenseNet creates

dense connections across stages to connect each layer to every

other layer, aiming at reusing features and resolving the vanishing

gradient problem, CNNs with conventional architectures have

often excelled in many applications compared with DenseNet.

CNNs, due to the application of convolutional and pooling

layers, have a particular strength in object detection and image

classification. These networks are designed to learn representations

of the input data at different levels of abstractions, a hallmark

for applications with high-dimensional inputs like picture analysis.

Moreover, in most cases, deeper CNNs are better than DenseNet

simply because of the deeper design that lets them recognize more

and more complex patterns and correlations within the data.

Since CNNs are good at capturing spatial hierarchies and

local patterns in data, they often work better compared to

recurrent neural networks for certain tasks such as detection

and image categorization. They are designed especially to process

grid-structured data like photographs. It achieves this through

local connectivity and shared weights performing pooling and

convolutions, extracting features from the input itself. These

techniques enable CNNs to automatically learn hierarchical
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TABLE 4 Classification report of all supervised learning models.

Model Acc. AUC Rec. Prec. F1 score Kappa M.C.C.

LesionNet 0.9928 0.9995 0.9928 0.9930 0.9928 0.9892 0.9893

Random Forest 0.9712 0.9982 0.9712 0.9720 0.9714 0.9568 0.9571

MobileNet 0.9820 0.9985 0.9820 0.9820 0.9820 0.9730 0.9730

GoogleNet 0.9784 0.9988 0.9784 0.9787 0.9785 0.9676 0.9678

DenseNet 0.9892 0.9999 0.9892 0.9892 0.9892 0.9838 0.9838

RNN 0.9784 0.9973 0.9784 0.9786 0.9784 0.9676 0.9677

ResNet 0.9856 0.9997 0.9856 0.9858 0.9855 0.9783 0.9785

XGBoost 0.9603 0.9983 0.9603 0.9608 0.9601 0.9404 0.9409

FIGURE 4

Training and testing validation curves.

representations directly from the raw data, which may turn very

useful in piling jobs that require inputs of high dimensions, as in

picture analysis. However, RNNs perform better with sequential

data in applications like time series analysis and natural language

processing where the sequence of the inputs is important. RNNs

may have trouble representing the spatial links found in grid-

like structures like pictures, even though they are excellent at

modeling time-dependent and sequential patterns. Consequently,

CNNs typically outperform RNNs in applications where spatial

information is critical, including picture categorization (54).

CNNs, especially deep architectures such as ResNet, frequently

achieve superior performance compared to shallower CNNs

because they effectively mitigate the vanishing gradient problem

and facilitate the training of extremely deep networks. ResNet

introduced skip connections, also known as residual connections,

which enable the network to learn residual functions relative to

the inputs of each layer. This approach simplifies the optimization

process for very deep networks. Despite the success of ResNet

in various tasks like image classification and object detection,

traditional CNNs can still outperform ResNet in certain scenarios.

This can happen when the dataset is not sufficiently complex to

necessitate the depth of ResNet or when computational resources

are limited. Additionally, for tasks where interpretability is crucial,

shallower CNNs might be preferred over ResNet due to the

difficulty in interpreting the learned representations in very deep

networks. Therefore, while ResNet offers significant advantages in
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terms of training deep networks, the choice between ResNet and

traditional CNNs depends on the specific requirements of the task

at hand (57).

Since CNNs can automatically build hierarchical

representations from raw data, they frequently perform better

than XGBoost, especially in tasks like identifying objects and

image classification. Through convolutions and pooling processes,

CNNs are particularly good at catching local patterns and spatial

hierarchies in data, which helps them extract ever more abstract

features from the input data. CNNs can recognize complicated

relationships and trends in the data because these learned features

are maximized during training, which is crucial for tasks requiring

high-dimensional input, including picture analysis. XGBoost,

on the other hand, is an ensemble learning technique based on

decision trees. It works by repeatedly dividing the feature space and

generating predictions using the combined judgment of several

weak learners. Though XGBoost excels at many machine learning

tasks, such as structured data analysis and tabular data analysis,

its inability to automatically learn hierarchical representations

makes it less suitable for high-dimensional data, such as photos.

Consequently, CNNs typically outperform XGBoost in situations

where capturing complex spatial relationships and patterns is

essential (58).

4.2 Results of all supervised learning
models on the skin lesion dataset using
HoG features

In Table 5, it can be observed that all supervised learning

models’ performance is affected using HoG features. The

performance of all learning models decreases, especially recurrent

neural networks. The complete comparison of all model results

using SIFT and HoG features is shown in Figure 5.

4.3 Results of all supervised learning
models on the skin lesion dataset using
deep convolutional features

The third step of experiments contains the results of all learning

models utilizing CNN features. The results of all learning models

are shared in Table 6. From the results, it can be concluded that

the results of CNN embedding features are better than HoG

features but still SIFT features results are above all in terms of all

evaluation metrics.

4.4 Results of proposed LesionNet model
using all seven classes

In this subsection, we have tested our proposed LesionNet

model onthe complete dataset in which all target classes augmented

training dataset is utilized for training. The dataset augmented

dataset details are shared in Table 1. The proposed LesionNetmodel

performs very well even in the case of multi-class classification and

gives an overall accuracy of 90.12%. The class-wise results of all

target class is shared in Table 7.

4.5 Significance of proposed LesionNet
model

To check the stability and significance of the proposed

LesionNet model, we have trained and tested it on

another independent dataset named “SIIM-ISIC Melanoma

Classification” (59) International Skin Imaging Collaboration

(ISIC). The proposed LesionNet model gives an accuracy of

96.67%, 95.49% precision, 97.24% recall, and 96.32% F1 score.

These results confirm that the proposed model is a reliable

framework for medical skin lesion diagnosing and predicting the

types of skin cancers.

4.6 Discussion on the LesionNet
performance

LesionNet performance is best when we extract features

using SIFT. The motivation to use SIFT features for skin lesion

classification is multifaceted. SIFT is inherently designed to be

invariant to changes in scale and rotation, which is crucial

for medical images where lesions may appear at different sizes

and orientations. In addition, the SIFT features are invariant

to illumination changes and viewpoints; thus, this augments the

resilience of the classification model. The items of interest of SIFT

are the identification and description of locations of key points

within images, facilitating associated critical texture and shape

details of lesions. The inclusion of SIFT features in CNN models

enhances performance by providing robustness to scale, rotation,

and noise. SIFT extracts keypoints that capture fine details and

textures, improving classification accuracy, especially in complex

images like skin lesions. This leads to better generalization across

datasets and reduces sensitivity to image variations, where standard

CNNsmay struggle. By focusing on strong edges and local patterns,

SIFT enhances precision, making the model more effective at

distinguishing between different lesion types. Overall, combining

SIFT with CNNs offers a richer and more resilient feature set than

standard CNNs alone.

In addition, SIFT is highly efficient in terms of computational

performance and proves to be a practical method, demanding

far fewer resources for training with deep neural networks in

general and CNN in particular. This makes the SIFT method

efficient and feasible when working with relatively more minor

datasets at the expense of giant data requirements made by

the current CNNs. Using SIFT features also yielded a good

baseline for comparison with the DL approaches, such that it

can be determined whether the additional time complexity and

computational cost incurred in the deep model is justified by its

performance. In summary, SIFT features present a very persuasive

solution for classifying skin lesions due to their robustness,

efficiency, and applicability in low-data and low-computational-

resource conditions.
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TABLE 5 Classification report of all supervised learning models.

Model Acc. AUC Rec. Prec. F1 score Kappa M.C.C.

LesionNet 0.9415 0.9528 0.9544 0.9531 0.9511 0.9434 0.9461

Random Forest 0.9248 0.9048 0.9364 0.9125 0.9264 0.9232 0.9194

MobileNet 0.9344 0.9114 0.9169 0.9224 0.9186 0.9341 0.9294

GoogleNet 0.9068 0.9057 0.9007 0.9063 0.9048 0.9112 0.9066

DenseNet 0.9242 0.9194 0.9196 0.9242 0.9212 0.9276 0.9290

RNN 0.8996 0.9014 0.8856 0.9032 0.8969 0.9031 0.8956

ResNet 0.9322 0.9356 0.9197 0.9367 0.9255 0.9344 0.9316

XGBoost 0.9125 0.9165 0.9116 0.9116 0.9116 0.9094 0.9059

FIGURE 5

Comparison of all model results using SIFT and HoG features.

TABLE 6 Classification report of all learning models utilizing deep CNN features.

Model Acc. AUC Rec. Prec. F1 score Kappa M.C.C.

LesionNet 0.9634 0.9752 0.9798 0.9647 0.9733 0.9591 0.9597

Random Forest 0.9527 0.9456 0.9517 0.9581 0.9547 0.9464 0.9487

MobileNet 0.9498 0.9453 0.9328 0.9474 0.9410 0.9443 0.9419

GoogleNet 0.9518 0.9498 0.9534 0.9596 0.9558 0.9509 0.9458

DenseNet 0.9460 0.9398 0.9447 0.9393 0.9444 0.9387 0.9319

RNN 0.9236 0.9242 0.9002 0.9014 0.9012 0.9086 0.9067

ResNet 0.9418 0.9385 0.9214 0.9325 0.9291 0.9435 0.9402

XGBoost 0.9219 0.9185 0.9227 0.9252 0.9239 0.9190 0.9209
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4.7 Ablation study for LesionNet

We performed an ablation study, where various components of

the LesionNet model were systematically dropped and updated to

assess their contribution to the final performances. LesionNet is a

DL model tailored for skin lesion classification by a few relevant

components: SIFT features, and some neural network layers. The

modules that have been tested are the SIFT features, convolutional

layers, pooling layers, dense layers, batch normalization, and

dropout. In this paper, the benchmark Skin Lesion Dataset was

evaluated concerning accuracy, F1 score, precision, Kappa, recall,

AUC, and MCC.

Baseline model: The model includes all components: SIFT

features, convolutional-layers, pooling-layers, dense-layers, batch-

normalization, and dropout-layers.

Results:

• Removing SIFT features: accuracy decreased by 9%, precision

by 8%, recall by 7%, F1 score by 7%, and AUC by 8%.

• Removing convolutional layers: accuracy decreased by 10%,

precision by 9%, recall by 11%, F1 score by 10%, and AUC by

9%.

• Removing pooling layers: accuracy decreased by 5%,

precision by 4%, recall by 6%, F1 score by 5%, and AUC by

5%.

• Removing dense layers: accuracy decreased by 8%, precision

by 7%, recall by 9%, F1 score by 8%, and AUC by 7%.

• Removing batch normalization: accuracy decreased by 4%,

precision by 3%, recall by 4%, F1 score by 4%, and AUC by

3%.

• Removing dropout layers: accuracy decreased by 6%,

precision by 5%, recall by 7%, F1 score by 6%, and AUC by

5%.

Summary of findings: each component of LesionNet is crucial

for achieving high performance in skin lesion classification.

The results indicate that both traditional features (SIFT) and

modern DL components are important for building a robust and

accurate model.

4.8 Performance comparison

It is very important to validate the performance of any proposed

model with previously published research works. In this subsection,

we have compared the performance of the proposed LesionNet

model with other published research works as shown in Table 8.

Sikkandar et al. (23) used U-Net transfer learning with 369 images,

achieving 78% accuracy. Pour et al. (60) employed C-Means

clustering with 65% accuracy. Lopez et al. (61) used the VGG16

model, achieving 82% accuracy. All these models utilize DL models

but with no additional feature extraction technique that ultimately

results in low performance in terms of accuracy.

The proposed LesionNet framework outperforms both the

Grabcut algorithm (23) and CIELAB color space (60) due

to its superior feature extraction capabilities. SIFT (Scale-

Invariant Feature Transform) is highly effective in detecting and

describing local features that are invariant to scaling, rotation,

TABLE 7 Class-wise accuracy results using LesionNet model.

Target class Accuracy Overall accuracy

Melanoma 88.36%

90.12%

Melanocytic Nevi 94.67%

Basal cell carcinoma 89.47%

Benign keratosis like lesions 87.36%

vascular lesions 89.96%

Actinic keratoses 89.35%

Dermatofibroma 91.68%

TABLE 8 Performance comparison of the proposed LesionNet with

previously published research works.

References Proposed
technique

Accuracy Limitations

Sikkandar et al. (23) UNet 78% No cross validation,

no comparison with

SOTA

Codella et al. (62) Fr-CN 94% No cross validation,

no feature

engineering, and no

comparison with

SOTA

Pour and Seker (60) CMeans

Clusters

65% No cross validation,

no comparison with

SOTA

Lopez et al. (61) ConvNets’ 69% No cross validation,

no feature

engineering, and no

comparison with

SOTA

Lopez et al. (61) VGG-16 82% No cross validation,

no feature

engineering, and no

comparison with

SOTA

Proposed LesionNet

with SIFT

features

99.28% All limitations

resolved

Bold indicates the proposed model performance is better than everyone and all limitations are

resolved.

and illumination, making it robust for complex skin lesions. In

contrast, Grabcut, primarily a segmentation tool, relies heavily on

manual input and lacks the intricate feature extraction needed for

accurate lesion classification. CIELAB, focused on color differences,

falls short when handling texture and structural variations, which

are crucial for skin lesion analysis. By integrating SIFT with a

customized CNN, LesionNet provides a more automated and

adaptable approach, achieving better accuracy, precision, and

robustness, particularly in complex and diverse lesion datasets.

This combination of SIFT features and CNN allows for a more

comprehensive analysis compared to Grabcut and CIELAB’s

limited segmentation and color-based methods.

5 Conclusion

Most skin cancers look alike and appear very similar to skin

injuries and other infections. They are only slightly different in
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shape or size, thus challenging doctors to diagnose skin lesions in

the early stages of development. Besides, many subtypes of skin

cancer add to the diagnostic difficulty. Early detection is important

because it allows for early intervention and saves many precious

lives. To help in tending to these challenges, this study proposes a

novel approach for skin lesion diagnosis with visual imagery of skin

cancer. The proposed model, LesionNet, integrates SIFT features

with a deep convolutional neural network model. SIFT features are

used to extract relevant features upon which LesionNet is trained

to learn. Through experimental evaluation, the model’s efficiency

is tested against the HoG method, which turns out to have less

satisfactory results. The results, however, were much more in favor

of the proposed model, with a resultant accuracy as high as 99.28%.

Future research efforts are directed toward expanding this approach

for diagnosing various cancer types other than skin cancer to

increase its scope of application. As part of future work, expanding

the dataset to include a more diverse set of skin lesion images

from various ethnicities and geographical regions to generalize

the proposed framework. Furthermore, we will deploy LesionNet

model in real-world environment to check its reliability with the

help of concerned dermatologists.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors.

Author contributions

SAA: Conceptualization, Data curation, Project administration,

Resources, Validation, Visualization, Writing – original draft. SO:

Conceptualization, Data curation, Funding acquisition, Project

administration, Supervision, Writing – review & editing.

JW: Conceptualization, Formal analysis, Funding acquisition,

Resources, Supervision, Validation, Writing – review & editing.

MU: Conceptualization, Methodology, Software, Validation,

Writing – original draft. SA: Data curation, Investigation,

Methodology, Resources, Software, Validation, Visualization,

Writing – original draft. AA: Conceptualization, Data curation,

Funding acquisition, Investigation, Methodology, Resources,

Software, Validation, Writing – original draft. MM: Formal

analysis, Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Validation, Writing – original

draft, Writing – review & editing. NI: Conceptualization, Data

curation, Formal analysis, Funding acquisition, Investigation,

Project administration, Supervision, Validation, Writing – review

& editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Princess Nourah Bint Abdulrahman University

Researchers Supporting Project Number (PNURSP2024R716),

Princess Nourah Bint Abdulrahman University, Riyadh, Saudi

Arabia. Nisreen Innab would like to express sincere gratitude to

AlMaarefa University, Riyadh, Saudi Arabia, for supporting this

research. The authors extend their appreciation to the Deanship

of Research and Graduate Studies at King Khalid University for

funding this work through Large Research Project under Grant

Number RGP2/283/45. Research reported in this publication was

supported by the National Science Foundation under Award

Number 2414513.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AWT, Wu Y, et al. The
repertoire of mutational signatures in human cancer. Nature. (2020) 578:94–101.
doi: 10.1038/s41586-020-1943-3

2. Bachert SE, McDowell A, Piecoro D, Baldwin Branch L. Serous tubal
intraepithelial carcinoma: a concise review for the practicing pathologist and clinician.
Diagnostics. (2020) 10:102. doi: 10.3390/diagnostics10020102

3. Recalcati S, Barbagallo T, Frasin L, Prestinari F, Cogliardi A, ProveroM, et al. Acral
cutaneous lesions in the time of COVID-19. J Eur Acad Dermatol Venereol. (2020).
doi: 10.1111/jdv.16533

4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. (2019)
69:7–34. doi: 10.3322/caac.21551

5. Tarver T. Cancer facts and figures 2014. J Consumer Health Internet. (2012)
16:366–67. doi: 10.1080/15398285.2012.701177

6. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD,
et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. (2018) 68:284–96.
doi: 10.3322/caac.21456

7. Pellacani G, Seidenari S. Comparison between morphological parameters in
pigmented skin lesion images acquired by means of epiluminescence surface
microscopy and polarized-light videomicroscopy. Clin Dermatol. (2002) 20:222–7.
doi: 10.1016/S0738-081X(02)00231-6

8. Deng L, Xu S. Adaptation of human skin color in various populations. Hereditas.
(2018) 155:1–12. doi: 10.1186/s41065-017-0036-2

9. Debelee TG. Skin lesion classification and detection using machine
learning techniques: a systematic review. Diagnostics. (2023) 13:3147.
doi: 10.3390/diagnostics13193147

10. Sadik R, Majumder A, Biswas AA, Ahammad B, Rahman MM. An in-depth
analysis of Convolutional Neural Network architectures with transfer learning for

Frontiers inMedicine 14 frontiersin.org

https://doi.org/10.3389/fmed.2024.1487270
https://doi.org/10.1038/s41586-020-1943-3
https://doi.org/10.3390/diagnostics10020102
https://doi.org/10.1111/jdv.16533
https://doi.org/10.3322/caac.21551
https://doi.org/10.1080/15398285.2012.701177
https://doi.org/10.3322/caac.21456
https://doi.org/10.1016/S0738-081X(02)00231-6
https://doi.org/10.1186/s41065-017-0036-2
https://doi.org/10.3390/diagnostics13193147
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alzakari et al. 10.3389/fmed.2024.1487270

skin disease diagnosis. Healthc Anal. (2023) 3:100143. doi: 10.1016/j.health.2023.
100143

11. Anand V, Gupta S, Koundal D, Singh K. Fusion of U-Net and CNN model for
segmentation and classification of skin lesion from dermoscopy images. Expert Syst
Appl. (2023) 213:119230. doi: 10.1016/j.eswa.2022.119230

12. Hasan MK, Ahamad MA, Yap CH, Yang G. A survey, review, and future trends
of skin lesion segmentation and classification. Comp Biol Med. (2023) 115:106624.
doi: 10.1016/j.compbiomed.2023.106624

13. Chang ALS, Chen S, Osterberg L, Brandt S, von Grote EC, Meckfessel MH.
A daily skincare regimen with a unique ceramide and filaggrin formulation rapidly
improves chronic xerosis, pruritus, and quality of life in older adults. Geriatric Nurs.
(2018) 39:24–8. doi: 10.1016/j.gerinurse.2017.05.002

14. Harvey NT, Chan J, Wood BA. Skin biopsy in the diagnosis of neoplastic skin
disease. Aust Fam Physician. (2017) 46: 289–94.

15. Goyal M, Knackstedt T, Yan S, Hassanpour S. Artificial intelligence-based image
classification methods for diagnosis of skin cancer: challenges and opportunities.
Comput Biol Med. (2020) 127:104065. doi: 10.1016/j.compbiomed.2020.104065

16. Van Onselen J. Skin care in the older person: Identifying and managing eczema.
Br J Community Nurs. (2011) 16:578–80. doi: 10.12968/bjcn.2011.16.12.577

17. Dong C, Dai D, Zhang Y, Zhang C, Li Z, Xu S. Learning from dermoscopic images
in association with clinical metadata for skin lesion segmentation and classification.
Comput Biol Med. (2023) 152:106321. doi: 10.1016/j.compbiomed.2022.106321

18. Tan E, Yung A, Jameson M, Oakley A, Rademaker M. The prognostic
impact of lesion depth in acral melanoma. Br J Dermatol. (2010) 162:803.
doi: 10.1111/j.1365-2133.2010.09673.x

19. Li Y, Shen L. Skin lesion analysis towardmelanoma detection using deep learning
network. Sensors (Basel). (2018) 18:556–774. doi: 10.3390/s18020556

20. Grignaffini F, Barbuto F, Piazzo L, Troiano M, Simeoni P, Mangini F, et al.
Machine learning approaches for skin cancer classification from dermoscopic images:
a systematic review. Algorithms. (2022) 15:438. doi: 10.3390/a15110438

21. Dhivyaa C, Sangeetha K, Balamurugan M, Amaran S, Vetriselvi T, Johnpaul P.
Skin lesion classification using decision trees and random forest algorithms. J Ambie
Intellig Human Comput. (2020) 1–13. doi: 10.1007/s12652-020-02675-8

22. Akram T, Khan MA, Sharif M, Yasmin M. Skin lesion segmentation
and recognition using multichannel saliency estimation and M-SVM on selected
serially fused features. J Ambie Intellig Human Comp. (2018) 15:1083–102.
doi: 10.1007/s12652-018-1051-5

23. Sikkandar MY, Alrasheadi BA, Prakash N, Hemalakshmi G, Mohanarathinam A,
Shankar K. Deep learning based an automated skin lesion segmentation and intelligent
classification model. J Ambie Intellig Human Comp. (2020) 2020:1–11.

24. Lambert B, Forbes F, Dayle S, Dehaene H, Dajat M. Trustworthy clinical AI
solutions: a unified review of uncertainty quantification in Deep Learning models for
medical image analysis. J Med Imag. (2023) 10:1–30. doi: 10.1016/j.artmed.2024.102830

25. Singh RK, Gorantla R, Allada SG, Narra P. SkiNet: A deep learning framework
for skin lesion diagnosis with uncertainty estimation and explainability. J Dermatol Res.
(2023) 15:123–45. doi: 10.1371/journal.pone.0276836

26. Khan MA, Sharif M, Akram T, Bukhari SAC, Nayak RS. Developed Newton-
Raphson based deep features selection framework for skin lesion recognition. Pattern
Recognit Lett. (2020) 129:293–303. doi: 10.1016/j.patrec.2019.11.034

27. Khan MA, Sharif M, Akram T, Damaševičius R, Maskeliunas R. Skin lesion
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