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Background: Optimizing the diagnosis and treatment of hematological diseases 
is a challenging yet crucial research area. Effective treatment plans typically 
require the comprehensive integration of cell morphology, immunology, 
cytogenetics, and molecular biology. These plans also consider patient-
specific factors such as disease stage, age, and genetic mutation status. With 
the advancement of artificial intelligence (AI), more “AI + medical” application 
models are emerging. In clinical practice, many AI-assisted systems have been 
successfully applied to the diagnosis and treatment of hematological diseases, 
enhancing precision and efficiency and offering valuable solutions for clinical 
practice.

Objective: This study summarizes the research progress of various AI-assisted 
systems applied in the clinical diagnosis and treatment of hematological diseases, 
with a focus on their application in morphology, immunology, cytogenetics, and 
molecular biology diagnosis, as well as prognosis prediction and treatment.

Methods: Using PubMed, Web of Science, and other network search engines, 
we conducted a literature search on studies from the past 5  years using the main 
keywords “artificial intelligence” and “hematological diseases.” We classified the 
clinical applications of AI systems according to the diagnosis and treatment. 
We outline and summarize the current advancements in AI for optimizing the 
diagnosis and treatment of hematological diseases, as well as the difficulties and 
challenges in promoting the standardization of clinical diagnosis and treatment 
in this field.

Results: AI can significantly shorten turnaround times, reduce diagnostic 
costs, and accurately predict disease outcomes through applications in 
image-recognition technology, genomic data analysis, data mining, pattern 
recognition, and personalized medicine. However, several challenges remain, 
including the lack of AI product standards, standardized data, medical–industrial 
collaboration, and the complexity and non-interpretability of AI systems. 
In addition, regulatory gaps can lead to data privacy issues. Therefore, more 
research and improvements are needed to fully leverage the potential of AI to 
promote standardization of the clinical diagnosis and treatment of hematological 
diseases.

Conclusion: Our results serve as a reference point for the clinical diagnosis and 
treatment of hematological diseases and the development of AI-assisted clinical 
diagnosis and treatment systems. We offer suggestions for further development 
of AI in hematology and standardization of clinical diagnosis and treatment.
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1 Introduction

During the past decade, comprehensive clinical diagnosis and 
treatment of hematological diseases have become increasingly 
challenging. Hematological diseases are numerous and complex, and 
include leukemia, lymphoma, myelodysplastic syndrome (MDS), 
multiple myeloma (MM), and myeloproliferative neoplasms. In the 
realm of hematological disorders, a thorough diagnostic approach 
frequently integrates morphological assessment, immunological 
evaluation, cytogenetic analysis, and molecular biological techniques. 
While these diagnostic modalities are indeed effective, they impose 
significant demands on the clinicians’ expertise, detection 
methodologies, and experiential knowledge. Furthermore, the 
accuracy of test results improves with the number of samples, 
requiring substantial infrastructure investment. This makes it 
difficult to achieve full coverage in rural or underdeveloped areas, 
creating an uneven healthcare system. Most hematological diseases 
are refractory, and traditional clinical treatments such as general 
supportive therapy, immunotherapy, and radiotherapy are tailored to 
different diseases and systemic symptoms. In addition, it is often 
challenging to achieve high prognostic accuracy. Although new 
treatment options have been introduced in recent years, including 
targeted therapies, immunotherapy, and hematopoietic stem cell 
transplantation, some patients still experience poor outcomes and 
face potential drug resistance, post-transplantation relapse, and 
related complications.

Artificial intelligence (AI) represents a sophisticated technical 
solution that emulates human cognitive functions, whereas machine 
learning (ML) and deep learning (DL) are specialized subsets of AI 
dedicated to developing software systems capable of learning from 
data and enhancing their performance accordingly. Machine learning, 
which enables computers to derive insights from data without the 
need for explicit programming, serves as the foundational 
methodology for endowing machines with human-like intelligence. 
With the accumulation of massive datasets and the rapid development 
of AI, the medical research field is increasingly embracing the “AI + 
medical” model. AI algorithms, including DL, support vector machine 
(SVM), random forest (RF), genetic algorithms, and natural language 
processing (NLP), enable computers to ‘learn” (1). This allows them 
to quickly and accurately process vast amounts of medical data from 
different diagnostic modalities. AI has been widely applied to 
hematology-related morphological testing, immunological testing, 
chromosome karyotype analysis, gene sequencing, biomarker 
identification, drug development, risk stratification, and 
prognosis monitoring.

In recent years, advances AI technology have led to AI models that 
can achieve high efficiency and accuracy, comparable to or even 
surpassing human experts. In addition, the lower marginal cost of AI 
(the cost per additional sample after system training) and its ability to 
process massive amounts of data indicate its potential to build data 
analytics models that can be  remotely accessed and dynamically 
tracked (2). This capability can optimize medical treatment protocols, 
personalize clinical treatment guidance, and help medical facilities to 

accurately allocate healthcare resources, thereby promoting the 
precision treatment of hematological disorders.

Several key scientific advances in AI have been made in regard to 
the diagnosis and treatment of hematological diseases. For example, 
in the comprehensive typing diagnosis, AI-assisted detection systems 
such as ML-based CellaVision (FDA approved) (3), Scopio Labs X100 
(FDA approved) (4), Techcyte (5), and Morphogo (6) have been 
developed to automate morphological identification, labeling, 
counting, and analysis of bone marrow smears and peripheral blood 
smears. The integration of multi-algorithmic DeepFlow (7–9) has 
streamlined multiparameter flow cytometry (FC), optimizing the 
process of immunological diagnosis. AI systems for automatic 
karyotype analysis in cytogenetics based on convolutional neural 
networks (CNNs), such as Varifocal-Net (10) and KaryoNet (11), have 
improved on issues such as the low resolution of karyotypic maps and 
the difficulty detecting cryptic chromosomal abnormalities (12–14).

Using DL algorithms and high-throughput sequencing 
technology, the potential heterogeneity of blood diseases can be mined 
in genomics, transcriptomics, and proteomics, particularly in the 
diagnosis of leukemia. In addition, the newly developed chromatin 
interaction neural network (ChINN) overcomes limitations in 
regional genomic testing (15). Numerous clinical applications have 
shown that AI systems are very effective for assisting medical 
diagnosis, with high productivity and accuracy comparable to 
experienced physicians. However, manual assessment by an expert is 
still essential for disease reclassification, validation, and interpretation 
of results.

ML has demonstrated promising results in the personalized and 
precise treatment of hematological diseases. It can use clinical data to 
build data analytics models for disease prediction, risk stratification, 
and the tailoring of optimal treatment plans based on each patient’s 
individual characteristics and condition (16–19). Furthermore, it can 
assist in mining new drug therapy targets or pathways (20), promoting 
the innovative development of the clinical treatment of 
hematological diseases.

However, there are challenges in applying AI technology, such as 
the lack of access standards for AI products, standardized data, 
medical–industrial collaboration, privacy and ethical issues, and the 
“black-box” nature of algorithms. Therefore, the regulation of AI 
products should be  prioritized, along with addressing technical 
shortcomings and continuously strengthening education and training 
in the interdisciplinary field of AI and medicine. This is particularly 
important for clinical hematologists and undergraduate 
medical students.

During the past 5 years, the outbreak of COVID-19, the surge in 
the prevalence of hematological malignancies, and the globalization 
of the epidemic have caused significant harm to humanity. These 
challenges have also prompted consideration of AI-assisted diagnosis 
and treatment. There is a pressing need for reliable methods with high 
efficiency, high precision, and low cost to enhance the diagnostic and 
therapeutic environment for hematological diseases.

Here, we review the application of AI in hematology diagnosis 
and treatment over the past 5 years, with a particular focus on 
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comprehensive typing diagnosis (including morphology, 
immunology, cytogenetics, and molecular biology) (Figure  1) to 
clarify the role and limitations of AI in areas such as disease 
prediction, drug development, risk stratification, and prognosis 
tracking. We speculate on how the integration of AI algorithms in the 
future will optimize the intelligence, standardization, and consistency 
of routine hematology diagnosis and treatment. The aim is to provide 
uniform and standardized treatments for patients with specific 
hematological disorders, reduce variation in patient outcomes due to 
differences in medical practice, and significantly improve the 
efficiency of diagnosis and treatment and the integration of 
medical resources.

2 Application of AI in the diagnosis of 
hematological disease

2.1 AI-assisted morphological diagnosis of 
hematological disease

Hematological disorders are a complex group of diseases for 
which early diagnosis is crucial for effective clinical management. 
Cytomorphometric testing of bone marrow smears is one of the most 
common and effective diagnostic methods for blood diseases in clinic. 
Traditional manual analysis of smears begins with a hematologist 
selecting an area of interest with an appropriate distribution of cell 
trajectories and then performing a differential cell count on hundreds 
of cells to identify various cellular subsets and subtypes. This process 
is labor-intensive, cumbersome, and time-consuming (21). Because of 
the inherent complexity of bone marrow aspirate (BMA) samples, 
diagnosis largely depends on the hematopathologist’s experience, 
which makes the results highly subjective (22). In recent years, a 
promising technology has emerged to improve the accuracy and 
efficiency of morphological diagnosis: the combination of AI ML and 
digital morphological pathology analysis (Table 1). This approach aids 
diagnosis, with CNNs being particularly effective for the automated 
morphological detection and typing of BMA samples. CNNs are 
widely used for this purpose (23), and those enhanced with the 
CatBoost and XGBoost algorithms are particularly optimal (24).

The powerful role of CNN in automatic analysis of bone marrow 
smear data has been applied to a variety of blood diseases, such as 
aplastic anemia (AA), MDS, AML, etc. (25–28). The CNN-based 
you only look once (YOLO) model is a target-detection algorithm 
developed to rapidly and accurately detect and classify individual 
target cells in bone marrow smears (Figure 2). As early as 2020, this 
algorithm was used to evaluate individual cells in bone marrow smears 
of patients with MDS morphology (29). In order to improve accuracy, 
Wang et al. (30) developed a new YOLOX-s model. By combining 
MLFL-Net, a new architecture with multi-level features, the total 
accuracy was as high as 89.53%, and the diagnosis and prediction of 
acute leukemia also reached 92.5% of the cohort (compared with 
manual experts), which was better than all other relevant models. In 
2024, a significant development in microscopy digital systems 
emerged with a single-trial detection architecture and the MobileNet 
V2 backbone. The most important innovation of this system is its 
ability to overcome the limitations of traditional AI-based BMA 
analysis systems, such as the inability to analyze and share data 
remotely and issues with low reproducibility. This new system 
facilitates human–computer interaction in any hospital through an 
intelligent BMA digital platform, eliminating the need for specific and 
complex medical electronic devices (31). This advancement strongly 
supports the feasibility of AI in enhancing the diagnosis of clinical 
hematological disease.

In the context of identifying leukemia subtypes, CNNs outperform 
other ML algorithms, including plain Bayes, SVMs, k-nearest 
neighbor, and decision tree algorithms (32). Newer algorithms, such 
as Cat-Swarm Optimization, further optimize CNN performance by 
combining them with CNN architectures. Current research favors 
either highly accurate single-algorithmic systems or systems that 
combine multiple algorithms for early detection of leukemia. For 
example, artificial neural networks, feed-forward neural networks, 
AlexNet + SVM, and ResNet-18 + SVM can all achieve 100% accuracy 
in leukemia diagnosis (33). These systems not only reveal 
morphological features but also predict the mutation status of genes 
in leukemia, such as the NPM1 mutation, common in AML (34). The 
high numerical accuracy of CNN model applications highlight the 
promise of more efficient and accurate hematological diagnoses in the 
clinical setting. This indicates a new direction for subsequent research 

FIGURE 1

Assistance of artificial intelligence in comprehensive diagnosis of hematological diseases.
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TABLE 1 Application of artificial intelligence in morphological aspects of hematology diagnosis.

Diseases System Purpose and effect AI References

AA, MDS, AML
Recognition model constructed by 

image-net pre-trained model

Automatic differentiation of AA, 

MDS and AML based on bone 

marrow smears

CNN (28)

APL Mask R-CNN

Detection and classification of 

nucleated cells using example 

segmentation methods

CNN (26)

MDS DenseNet, YOLO

Detection and classification of 

cellular and non-cellular objects 

in samples

CNN (140)

MDS BMSNet

Evaluation of single-nucleated 

sphere morphology in bone 

marrow smears

CNN (29)

Leukemia YOLOX-s, MLFL-Net
Cellular detection, classification 

and prediction of leukemia types
CNN (30)

Leukemia CNN Model
Recognize all subtypes of 

leukemia
CNN (32)

Leukemia

ANN + FFNN+SVM1

Early detection of leukemia CNN (33)AlexNet, GoogleNet, ResNet-182

CNN-SVM3

AML
FRCNN, VGG Image Annotator, 

ENN, Xception CNN, ResNet50

Distinguish AML and predict the 

mutational status of NPM1
CNN (34)

Leukemia Faster R-CNN

Automatically detect bone 

marrow cells and determine their 

type

R-CNN (25)

AML, MM BMAsDCC

Detect and classify all non-

neoplastic bone marrow cell 

components of DCC and tumor 

cells

VGG16 CNN (22)

APL The multi-stage DL platform

Automatically reads bone 

marrow smear images, accurately 

segments cells, predicts APL

Xception CNN (27)

AML, ALL, CML, CLL ResNet50

Automated analysis of bone 

marrow smears using only slide-

level labels

DL (141)

HD AI-assisted Digital DCC System

BMA analysis for cell type 

counting and differentiation in 

an efficient and objective manner

DL (31)

Leukemia Techcyte
WBC identification and vesicle 

recognition
DL (37)

HM Techcyte

Assessing the accuracy of WBC 

classification and primitive cell 

identification

DL (5)

PBS Scopio Labs X100
Scanning of peripheral blood 

smears and BMA samples
DL (4)

MPN Single Shot Multibox Detector

Determine megakaryocyte 

cytomorphologic subtypes and 

correlate extracted features with 

potential diagnosis of MPN or 

reactive/non-tumor mimics

DL (38)

(Continued)
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to continue refining and optimizing CNN models for optimal 
clinical integration.

Morphological diagnosis in hematopathology also relies heavily 
on the analysis of peripheral blood smears. However, current digital 
cell imaging systems can only analyze limited areas of these smears 
and require manual intervention. With the continuous advancement 
of ML, more applications in hematological digital pathology can now 
extract and aggregate information from multiple data sources, 
including peripheral blood smears. These applications support 
diagnosis by simulating manual recognition workflows and thought 

modeling, thus enhancing the diagnostic process through improved 
accuracy and efficiency (35). Previous studies have developed 
advanced algorithms such as CellaVision and computer-assisted 
peripheral blood smear analysis for diagnosis. These technologies 
expand the hematopathologist’s capabilities, dramatically streamline 
workflow, and reduce turnaround time. By automating the analysis 
process and providing rapid, accurate results, these systems help 
enhance the efficiency and accuracy of hematological diagnoses (3). 
For example, the Scopio Labs X100 (Scopio Labs; Tel Aviv-Yafo, Israel) 
is an AI-based digital microscope imaging system that uses a full-field 

TABLE 1 (Continued)

Diseases System Purpose and effect AI References

ALL ALL Detector (ALLD)

Distinguishing ALL patients 

based on primary cellular 

micrographs

DL (142)

BMA Morphogo
Automated cell sorting of bone 

marrow cells
ML (6)

MCBM Morphogo

Identifying metastatic atypical 

cancer clusters and facilitating 

rapid diagnosis

ML (143)

AA, aplastic anemia; AI, artificial intelligence; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; ANN, artificial neural network; BMA, 
bone marrow aspiration; CLL, chronic lympholeukemia; CNN, convolution neural network; DCC, differential cell count; DL, deep learning; ENN, ensemble neural network; FFNN, 
feedforward neural network; FRCNN, faster region convolutional neural network; HD, hemolymph diseases; HM, hematological malignancies; MCBM, metastatic cancer of bone marrow; 
MDS, myelodysplastic syndrome; ML, machine learning; MM, multiple myeloma; MPN, myeloproliferative neoplasms; NPM1, nuclear phosphoprotein 1; SSD, single-session detection; PBS, 
peripheral blood smear; SVM, support vector machine; WBC, white blood cells.

FIGURE 2

Artificial intelligence identifies neutrophils in bone marrow smears. (A) Bone marrow smears were obtained from a database and raw images were 
acquired, the raw images were located and identified by a computer AI algorithm to crop out the neutrophils and reviewed by a morphologist and 
corrected in several iterations. (B) After obtaining raw bone marrow smears, selecting images, and feeding them into an artificial intelligence model 
trained by iterative machine learning, the target cell neutrophils are output.
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view approach to localize and classify blood cells in peripheral blood 
smears, marking a significant achievement by integrating a digital 
system with a microscope (4). Its digital nature allows for remote 
viewing by clinicians (36). Techcyte (Techcyte Inc., Orem, UT, 
United  States) also supports remote viewing (5). These systems 
drastically reduce turnaround time for clinical work and significantly 
improve the efficacy of identifying malignant cells in leukemia over 
time (37). Compared to traditional morphological analysis, a fully 
automated ML pipeline can more rapidly provide an objective and 
accurate initial differential assessment of peripheral blood smears. 
This capability is particularly valuable for regions or institutions with 
limited healthcare resources and specialized hematopathology 
talent (38).

2.2 AI-assisted immunophenotypic 
diagnosis of hematological disease

In the clinical setting, FC and multiparameter FC (MFC) are 
essential auxiliary methods for examining the bone marrow of patients 
with hematological disease (39). These technologies are a class of high-
throughput and high-sensitivity detection technologies that use a 
combination of different fluorescently labeled antibodies to detect the 
expression of antigens on the surface or intracellular of hematopoietic 
cells, and then analyze and determine the serial origin, differentiation 
degree, and abnormal phenotypic carnivore of cells. They have become 
an essential tool in the diagnosis and typing of blood diseases. 
However, traditional FC analysis relies on manual interpretation by 
the analyzer, which is time-consuming and prone to errors. The 
sensitivity and accuracy of these tests are subjective and depend 
significantly on the analyzer’s experience. Continuous exploration and 
development in recent years have led to computational analysis 
methods combined with AI, which has achieved promising results. 
These AI-enhanced methods have improved the accuracy and 
efficiency of the diagnostic process. In addition to identifying and 
classifying cells, DL-based AI models can reveal new biological 
associations between FC marker expression and cytogenetic and 
molecular variants in hematological disorders (40), providing 
clinicians with various differential diagnoses (39). Furthermore, they 
enhance the accuracy and standardization of clinical diagnoses 
through advanced visualization and automated gated analysis 
techniques (41).

However, the MFC data for most AI models are limited by specific 
panels and are often idiosyncratic. Therefore, DeepFlow, a clinically 
generalized FC panel based on the multidimensional density-
phenotype coupling algorithm, has been developed in recent years 
(7–9). It dynamically adapts to changes in reagents and instrument 
settings, reducing the time required to accurately cluster and analyze 
cell lineages to less than 5 min (42). In addition, the accuracy of the 
results of leukemia classification and diagnosis using DeepFlow  
in combination with unsupervised learning algorithms, 
multidimensional clustering algorithms, and RF is almost identical to 
that of manual analysis (9). This leads to faster determinations and 
more accurate classifications of lymphocyte subpopulations, 
compensating for the deficiencies of traditional techniques and 
improving quality and standardization. The integration of AI and ML 
is expected to address healthcare disparities by enhancing the 
precision and consistency of immunological diagnostic processes, 

thus providing more equitable healthcare solutions (42). However, this 
does not mean that the role of humans will be completely replaced by 
AI. Instead, AI plays a crucial role in providing objective and 
standardized clinical advice to assist healthcare professionals.

Immunohistochemistry (IHC) represents a sophisticated 
immunological detection technique that aids in the diagnosis of 
hematological disorders. However, the rapid growth of IHC data 
makes manual interpretation of IHC data inefficient. In order to solve 
this problem, an artificial intelligence system based on Bayesian 
theorem probabilistic decision tree algorithm, ImmunoGenius, has 
been developed. It can be applied to mobile platforms such as iOS and 
Android platforms to diagnose and predict B-cell lymphoma and 
T-cell lymphoma, and provide clinical hematopathologists and 
hematologists with more convenient interpretation of IHC. However, 
due to the lack of specific IHC markers and overlapping IHC profiles 
in the clinical detection of AI systems, it is still necessary to combine 
clinical artificial and other diagnostic information such as histology 
(43–45) (Table 2).

2.3 AI-assisted cytogenetic karyotyping for 
diagnosis of blood disorders

Hematological diseases exhibit a wide range of cytogenetic 
abnormalities, with significant variability even among patients with 
the same condition. Hematological cancer cells often display multiple 
aberrations such as rearrangements, deletions, and duplications. 
Correct interpretation of these abnormalities is crucial for disease 
classification, prognostic determination, and therapeutic decision-
making in patients with hematological malignancies.

Despite improved understanding of hematological malignancies 
due to increased genetic data availability, applying these large, 
complex, and time-consuming datasets in clinical practice remains 
challenging. Chromosomal karyotyping is one of the most important 
diagnostic tools in hematological cytogenetic laboratory tests. 
Typically, pathologists manually classify and construct karyotype 
maps of G-banded metaphase chromosomes based on each 
chromosome’s specific length and banding pattern. However, this is 
both costly and inefficient.

Over the years, ML methods have shown great potential for 
automating the analysis of large amounts of cytogenetic data (Table 3). 
To increase the rate of chromosome classification and karyotyping, 
various AI systems for automated mid-cycle capture, semi-automated, 
or interactive karyotyping have been introduced, leading to 
progressively wider clinical applications. These AI-driven systems 
enhance efficiency and accuracy, reducing the time and costs 
associated with traditional manual chromosomal karyotyping (46, 47). 
Using the CNN model to correct rotation and position in conventional 
karyotype analysis, the accuracy of identifying and classifying 
intermediate chromosomes of fluorescent R-bands could be improved 
to 98.8% (48). The accuracy of R-band and G-band chromosome 
classification can be improved by training with the characteristics of 
intra-karyotype interaction and category distribution through ML, 
which provides a new idea for accurate karyotype analysis of patients 
with different types of numerical abnormalities (11).

Notably, most chromosome classification and karyotype analysis 
systems have certain limitations, such as low-quality and poor-
resolution karyotype maps. These issues can easily lead to missed or 
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difficult-to-prepare reports on breakpoints within chromosomes. To 
improve the clinical analysis of low-quality karyotype maps, several 
AI models have been explored in recent years. They can convert 
low-quality karyotype maps into high-resolution images by specific 
algorithms, so as to accurately detect hidden chromosomal 
abnormalities (49) or obtain clearer chromosomal features, with an 
accuracy of up to 97.55% (12). In addition, type and polarity 
classification can speed up the process of generating karyotype 
maps, but chromosomes are prone to bending in microscopic 
images. This hinders cytogeneticists from analyzing chromosome 
types. Chromosome classification and straightening based on 
interleaving and multitasking networks can make chromosome band 
information easier to read (13). To address this, Li et  al. (14) 
developed a shielded conditional variational autoencoder for 
chromosome straightening. Combining this with other karyotyping 

systems can greatly improve the chromosome classification 
performance of various DL models, reduce the burden on clinicians, 
and save time and materials.

2.4 AI-assisted diagnosis of hematological 
disease in molecular biology

Molecular biology tests are another critical aspect of the 
comprehensive clinical diagnosis of hematological disease. Molecular 
testing of blood, including polymerase chain reaction, DNA 
sequencing, transgenics, and gene chip (DNA chip) technology, can 
predict and diagnose disease progression by testing various genes and 
their mutations in leukemia cells, particularly those that may lead to 
disease onset or regression.

TABLE 2 Application of artificial intelligence in immunology in the diagnosis of hematological diseases.

Disease System Immunization 
information

Function AI algorithm References

Blood 

immunodeficiency 

diseases

DeepFlow

T, B, and NK cells and 

important subsets of immune 

cells

Improve the accuracy and efficiency 

of flow cytometry in efficiently 

diagnosing immune diseases

MDPC (42)

Hemolymph 

neoplasms
ImmunoGenius

IHC results for lymphoid 

tumors
Auxiliary diagnose lymphoma

Probabilistic decision tree 

algorithm based on Bayes 

theorem

(44)

Hemolymph 

neoplasms
ImmunoGenius

IHC profiles of 2009 

antibodies

Provide a second opinion of the 

IHC interpretation to support the 

pathological diagnosis

Probabilistic decision tree 

algorithm based on Bayes 

theorem

(45)

Hemolymph 

neoplasms
ImmunoGenius

IHC data for 150 lymphoid 

tumors and 584 antibodies
Diagnosis of lymphoid tumor

Probabilistic decision tree 

algorithm based on Bayes 

theorem

(43)

MDS

Flow cytometry 

diagnostic system for 

MDS

Six tubes based on FC panel
Distinguish between MDS and 

non-neoplastic cytopenia

FlowAI, FlowSOM, 

Random Forest
(144)

AML ABMILM 1,820 flow cytometry samples
Automatic diagnosis of AML and 

molecular characterization
DL (40)

AML
Cross-panel sample-level 

classification model

FC data from bone marrow 

aspirate samples

Diagnosis and classification of 

AML
GMM-SVM (41)

IHC, immunohistochemistry; AML, acute myeloid leukemia; DL, deep learning; MDS, myelodysplastic syndromes; GMM-SVM, Gaussian mixture model support vector machine; MDPC, 
multidimensional density-phenotype coupling.

TABLE 3 Application of artificial intelligence in chromosome karyotype analysis of blood diseases.

Researcher Year System Input Function AI References

Qin 2019 Varifocal-Net Chromosome karyotype map
Classification of chromosome types 

and polarity
CNN (10)

Vajen 2022 CNN Model
Fluorescent R-band metaphase 

chromosomes

Identify chromosomes in cancer 

cells
CNN (48)

Bokhari 2022 ChromoEnhancer
Plain and enhanced karyotype maps 

derived from CytoVision
Enhanced tumor karyotype image CycleGAN (49)

Liu 2022 SRAS-net
Biological image chromosome 

classification dataset

Classification of low resolution 

chromosome images

SRAFBN, 

SMOTE (DL)
(12)

Xia 2023 KaryoNet R-band and G-band clinical data sets
Simultaneously predict chromosome 

type and polarity
DL (11)

CNN, convolutional neural network; CycleGAN, cycle generative adversarial network; DL, deep learning; SRAFBN, self-attention negative feedback networks.
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TABLE 4 Application of artificial intelligence in molecular biology diagnosis of hematological diseases.

Focus Year System Input Function AI References

Genomic analysis Genome-wide 

data
2020 AML classifier GEP

Risk prediction, differential diagnosis and 

subclassification of AML were performed
ML (50)

2020 AML classifier
AML cancer gene 

expression dataset

Predicting genetic associations in acute 

myeloid leukemia disease
OCSVM (51)

2021 ChINN DNA sequence
Predict open chromatin interactions in 

DNA sequences
CNN (15)

Next-

generation 

sequencing 

(NGS)

2017 WfG
Genomic DNA by 

NGS

Identify candidate driver mutations and 

related pathways
NLP (60)

2019 WfG CS data
Identify candidate driver mutations and 

related pathways
NLP (61)

DNA 

methylation 

(DNAm)

2020 MethylNet DNAm data Discovery of unknown heterogeneity DL (58)

2021
MethylCapsNet, 

MethylSPWNet
DNAm data

Capture characteristics associated with 

aging, cell type, and disease progression
DL (55)

2020 EpiScore
Single-cell RNA-seq 

tissue map

Quantitative specific differential 

methylation signals
DL (56)

2023 EpiScore
Single-cell RNA-Seq 

dataset

Facilitate the microanatomy of DNA 

methylation groups in large tissues
DL (57)

Transcriptome 

analysis

Single-cell 

RNA 

sequencing

2016
SVM or RF 

classifier

Gene expression data 

of AML samples

Identification of characterized genes with 

the ability to predict FLT3/ITD mutation 

status

SVM, RF (145)

2019 BERMUDA scRNA-seq date Reduced batch effect ML (68)

2021 RCA2 scRNA-seq date Reduced batch effect ML (67)

Proteomic 

analysis

Protein 

pathways
2019

Stacked 

autoencoder
Proteomics data

Identification of key protein pathways 

involved in FLT3-ITD mutations
DL (73)

Fusion protein 

targets
2023 XG Boost Model

Integrated multi-

omics datasets

Reveal the PML:: RARA gene target in 

APL
ML (72)

AML, acute myeloid leukemia; ChINN, chromatin interaction neural network; CNN, convolutional neural network; CS, clinical sequencing; DL, deep learning; DNAm, DNA methylation; 
FLT3, FMS-like tyrosine kinase 3; GEP, gene expression profile; ML, machine learning; NGS, next generation sequencing; NLP, natural language processing; OCSVM, one-class classification 
support vector machines; RF, random forest; SVM, support vector machine; WfG, Watson for Genomics; XG Boost, extreme gradient boosting.

With the introduction of high-throughput sequencing 
technologies such as multi-gene sequencing, whole-genome 
sequencing, whole-exome sequencing, and transcriptome sequencing, 
molecular biology has entered the realm of big data. These advanced 
sequencing technologies are now approved for clinical purposes and 
greatly facilitate the diagnosis of hematological disorders, ushering in 
the era of “precision diagnosis” for these diseases (Table 4).

2.4.1 Genomic analysis
Due to the sheer volume of data analyzed, annotation of clinically 

actionable genomic regions and their biological functions with 
prioritization of genetic variants is necessary for clinical decision-
making and is the basis for automated disease classification, a process 
known as functional genomics. More research is being conducted to 
sequence a set of gene regions associated with a suspected disease, 
which not only reduces costs but also increases efficiency.

AML is a serious hematopoietic malignancy, and prediction of its 
status by whole-genome sequencing is essential for clinical diagnosis 
and treatment. Using deep neural networks of high-dimensional 
machine learning, combined with genomic analysis, it is now possible 
to subtype, differential diagnose, and predict risk for AML, while also 
obtaining meaningful predictive genetic signatures. The accuracy of 

this AML classifier is directly proportional to the number of samples, 
so the establishment of reference blood gene expression profiling data 
sets of a large number of samples is helpful to the obtained high-
precision classifier, which can effectively solve the problem of lack of 
professionals in some regions or medical environments and greatly 
reduce the cost (50). Like most models, systems for predicting 
AML-associated genes are typically binary classification models that 
distinguish between known causative genes and unknown genes. A 
more accurate AML classifier focusing on known genes has been 
developed based on a one-class SVM (51). The reduced potential error 
rate compared to binary classification models demonstrates that gene 
expression profiling can provide more efficient, objective, robust, and 
prospective clinical guidance with the assistance of AI.

The importance of DNA methylation (DNAm) in cancer 
development and progression has been revealed in recent years (52). 
DNAm involves the addition of methyl groups to nucleotides without 
a change in the DNA sequence, and it most often occurs on cytosine–
guanine dinucleotides. Hypermethylation of suppressor genes and 
hypomethylation of oncogenes in hematological malignancies such as 
MDS and acute lymphoblastic leukemia (53, 54) are part of the 
pathogenesis of these diseases and can lead to a poor prognosis. 
Traditional analysis of heterogeneity changes associated with 
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phenotypes involves multiple-hypothesis testing and managing 
multiple covariates, which presents a significant challenge for genomic 
data analysis. However, with the development and integration of 
various AI algorithms and applications, DL has shown great potential 
and promising results for discovering and analyzing DNAm on 
actionable genomic targets. This advancement correlates with 
improved diagnosis of blood diseases (55). Teschendorff et al. (56) 
used DL algorithms to develop EPISCORE, a single-cell histology 
reference model that reduces the cost of inferring DNAm differences 
in patients with acute lymphoblastic leukemia by analyzing DNAm 
cell heterogeneity using high-resolution datasets (57). Another DL 
model, MethylNet (58), can uncover unknown DNAm through a 
combination of unsupervised generation, clustering, cell type 
deconvolution, subtype classification, age regression, and smoking 
status classification. It is also user-friendly.

With the increasing availability of genetic data, next-generation 
sequencing (NGS) has become a prerequisite for accurate diagnosis 
and proper treatment in clinical hematology/oncology (59). Watson 
for Genomics (WfG), a semi-automated pipeline AI system based on 
in-house NLP algorithms, has been developed for applications in 
clinical sequencing and precision medicine for patients with 
hematological malignancies. Tojo (60) used malignant and normal 
tissues from more than 150 patients as inputs and combined them 
with WfG to analyze the sequence data, identify mutations and 
associated pathways, and infer applicable drug information. Yokoyama 
(61) demonstrated the role of AI in the manual interpretation process 
of clinical sequencing using clinical sequencing data from more than 
300 patients with hematological cancers as inputs.

The gold standard for hematology diagnosis has been challenged 
by the introduction of whole-genome sequencing and NGS combined 
with AI (62). AI shows the potential to outperform experienced 
hematologists in comprehensive analysis of high-dimensional whole-
genome sequencing and NGS data, effectively narrowing interobserver 
variability and improving diagnostic timeliness and accuracy. In 
addition, precise and comprehensive AI-assisted genomic analysis is 
expected to be  used more often to aid clinical decision-making. 
Because of the limited availability of genome-wide data, predicting 
chromatin interactions between open chromatin regions using only 
limited DNA sequence data is a major challenge. However, the ChINN 
provides a potential solution by identifying open chromatin 
interactions in a genome-wide manner. This was verified in samples 
from patients with CLL, exhibiting extensive heterogeneity in 
chromatin interactions of prognostic genes and thus suggesting 
differential expression of oncogenes (15).

2.4.2 Transcriptomic analysis
RNA sequencing (RNA-seq) is an important method of 

transcriptomic analysis, which can reveal specific biological processes 
and the molecular mechanisms involved in the development of 
hematological disorders at a holistic level. RNA-seq is most commonly 
used to analyze differentially expressed genes, which is a challenge in 
the diagnosis of hematological neoplasms due to their heterogeneity. 
With the construction of dynamic RNA databases (63), the 
development of single-cell RNA-seq technology has significantly 
advanced. It is now possible to detect the underlying mechanisms of 
blood tumor heterogeneity and the biological behaviors of tumors to 
identify new potential targets in the clinical setting (64–66), providing 

deeper clinical insights. However, with the increasing amount of 
single-cell transcriptome data, there is a growing tendency to analyze 
data jointly, which can easily generate batch effects. RNA-seq, as a 
high-throughput sequencing method, is particularly sensitive to batch 
effects because of its high detection accuracy. Therefore, Schmidt et al. 
(67) established a model called RCA2, which helps reduce the batch 
effect while unifying single-cell data. The DL-based Batch Effect 
Removal using Deep Autoencoder (BERMUDA) can distinguish 
between different batches of small conditional RNA-seq data and 
different cell populations while removing the batch effect (68). This 
suggests that ML and DL of AI algorithms can optimize the 
transcriptomic analysis process and provide more objective and 
precise data for clinical transcriptional data analysis.

2.4.3 Proteomics analysis
The mining of protein variants from multivariate data is also an 

important part of the diagnosis of blood disorders. Increasing 
numbers of studies are exploring the clinical applications of 
proteomics technologies for monitoring treatment responses, disease 
progression, and microscopic residual foci, with initial results showing 
promise (69). Typically, proteomics studies involve thousands of 
observations and thus require preprocessing of data (70). ML 
techniques have been applied in proteomics analysis because of their 
powerful ability to categorize unknown samples (71). Among these 
techniques, SVMs have proven particularly effective for proteomics 
classification. In 2023, using a multi-omics dataset and an ML 
algorithm, a new fusion protein target called PML::RARA was 
reported. This target directs the mechanism of different features of the 
transcriptional response, confirming that disruption of the coagulation 
cascade response due to high expression of this gene is associated with 
acute promyelocytic leukemia coagulation dysfunction and 
hemorrhage, presenting significant clinical challenges (72). In 
addition, ML can aid the extraction of hierarchical features to identify 
key protein pathways in FLT3 internal tandem duplication mutations 
in patients with AML (73). Overall, with the increasing popularity of 
proteomics and the generation of large amounts of proteomics data, 
the future challenge lies in utilizing AI to process these big data 
effectively. The goal is to discover and analyze new actionable targets 
or pathways to facilitate the diagnosis and treatment of blood disorders.

3 Application of AI in precision therapy 
for hematological disease

3.1 Biomarker recognition

During the last decade, a large amount of molecular biology 
information has been mined, and ML algorithms have enabled the 
identification of biomarkers in the body fluids of patients with 
hematological disorders. These biomarkers can be  used for early 
diagnosis, disease typing, and prognostic assessment, greatly 
broadening the horizons of hematological diagnosis. This 
advancement has deepened the understanding of the complex 
interactions among different molecular subgroups in hematological 
disorders, helping clinicians make precise estimations of 
interindividual variability and providing a reliable basis for subsequent 
targeted therapeutic regimens. This approach helps clinicians 
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accurately estimate variability among individual patients and provides 
a solid foundation for developing targeted therapeutic programs (74). 
In addition, methods that incorporate ML create correlations between 
different layers of information, are user-friendly across various 
platforms, and enable the sharing of resources.

A few studies have relied on ML to discover or utilize new 
biomarkers for blood disorders. For example, Venezian Povoa et al. 
(75) used clinical and molecular data to predict treatment sensitivity 
in patients with MM and found that using gene expression values as 
markers improved the accuracy of predicting treatment sensitivity. In 
addition, combining high-throughput histology data with clinical data 
demonstrated higher clinical utility. Ghobadi et al. (76) characterized 
a variety of mRNAs and miRNAs in asymptomatic carriers of adult 
T-cell leukemia/lymphoma, identifying reliable miRNA–mRNA 
interactions for each subtype. These interactions serve as potential 
targets for subsequent therapy and as biomarkers for prognosis. 
Guerrero et  al. (77) integrated cytogenetics [t(4; 14) and/or del 
(17p13)], tumor load (clonal size of bone marrow plasma cells and 
circulating tumor cells), and immune-related biomarkers to develop 
efficient, integrated weighted models for predicting undetectable 
measurable residual disease in MM episodes. Immune biomarkers 
showed the highest weight in these models, suggesting their 
importance in predicting the measurable residual disease status.

The potential of ML to aid the discovery of new biomarkers 
provides an opportunity to develop new AI systems that alleviate the 
pressure on clinicians to deal with massive amounts of data. At the 
same time, prognostic indicators based on ML-derived patient 
characteristics provide a more objective assessment of potential risk, 
facilitating the creation of clinically targeted therapies for new 
biomarkers and enabling personalized treatment for patients (74).

3.2 Drug development

Drug discovery and development is a long and costly process. 
During the past decade, ML, DL, and NLP have emerged as 
breakthrough technologies, accelerating the process because of their 
automated nature, predictive capabilities, and expected efficiency 
gains (78).

The persistence of leukemia stem cells has been shown to lead to 
acute leukemia treatment resistance. Li et al. (79) combined multiple 
ML algorithms to identify signatures specific to the gene expression 
of leukemia stem cells. Zhang et al. (80) found that genes associated 
with leukemia stem cells, particularly RFC4 and RFC5, exhibit strong 
cluster interactions and may serve as inhibitory therapeutic targets for 
AML. ML can analyze large amounts of high-quality molecular 
biology data to identify targets of drug resistance during treatment. By 
discovering drug–target interactions, it can predict therapeutic 
efficacy, aid the design of new drug molecular structures, optimize 
drug efficacy, and help minimize side effects. CNNs in particular excel 
in image analysis, aiding biomarker identification and optimizing 
drug formulations. An example of this is AlphaFold, a CNN-based 
protein structure prediction and drug formulation system developed 
by DeepMind (Google). This neural network-based system excels in 
protein structure prediction and drug repurposing, significantly 
advancing the field of drug discovery and development (81).

Analyzing high-dimensional data to predict interactions between 
ligands and proteins is a difficult task in the drug-discovery process. 

Janssen et  al. (20) developed a fully open-source drug-discovery 
mapping model that predicts the activity of novel kinase inhibitors in 
the kinome, such as the new inhibitor of FLT3. Continued progression 
and relapse of CLL after treatment remains problematic in patients 
with CLL that have been treated with new targeted agents (ibrutinib 
and venetoclax). Given the important role of microenvironment 
interactions in the progression and relapse of CLL, Gimenez et al. (82) 
built a drug-discovery platform to elucidate the critical role of 
simvastatin in targeting the microenvironment and its synergistic 
enhancement with ibrutinib or venetoclax for the treatment of 
CLL. These research endeavors suggest that ML algorithms can 
be  used to build AI platforms that aid the development of new 
medicines or new combination therapies for blood disorders.

Furthermore, in addition to R&D to predict drug–target 
interactions and design new drugs, understanding the side effects of 
drugs and optimizing drug efficacy are aspects that cannot be ignored. 
Eltrombopag, a thrombopoietin receptor agonist for the treatment of 
primary immune thrombocytopenia, has side effects that affect 
systemic immunomodulatory responses. Therefore, Lozano et al. (83) 
developed the Therapeutic Performance Mapping System using AI 
pattern recognition to reveal the association between the target 
markers of eltrombopag (BCL1L2, BCL2, and BAX) and the key 
proteins involved in immune thrombocytopenia. This system has 
advanced our understanding of the drug’s mechanisms of action and 
side effects, providing valuable insights for drug optimization research 
and pointing to future directions for improving therapeutic efficacy 
and safety.

In summary, the incorporation of AI optimizes all aspects of drug 
development. It integrates with genomics, proteomics, and 
metabolomics to detect and dynamically monitor the effects of drugs, 
whether alone or in combination with other drugs. This greatly 
improves safety and efficacy outcomes and is expected to enhance 
patient prognosis and drive drug innovation. However, the use of AI 
technologies also faces a series of ethical and moral issues, such as data 
privacy and security, algorithmic bias and interpretability, and 
obtaining informed consent. Therefore, human oversight of intelligent 
algorithms is essential, and relevant laws and regulations need to 
be established or improved to address these challenges (84).

3.3 Disease prediction and risk stratification

Failure to treat hematological diseases in a timely manner is likely 
to be life-threatening. Malignant hematological diseases such as AML, 
MDS, and myeloproliferative neoplasms progress relatively rapidly 
and generally have a poor prognosis. However, previous studies have 
demonstrated that specific changes in these disorders can be detected 
prior to diagnosis (85). By analyzing a patient’s genomic data and 
lifestyle factors, AI can quickly and accurately predict the risk of 
developing a particular blood disorder, helping physicians to intervene 
early. Mahmood et al. (86) reported that using multiple supervised ML 
algorithms, it is possible to predict a significant risk of pediatric acute 
lymphoblastic leukemia based on clinical variables, phenotypic data, 
and environmental factors to inform treatment and prognosis. Nazha 
et  al. (87) also demonstrated that stochastic survival algorithms 
combined with multidimensional data can facilitate dynamic risk 
stratification and personalized prediction of overall survival in 
patients with MDS. This ability of ML algorithms to quantify the risk 
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of various myeloid tumor subtypes and make dynamic predictions can 
certainly provide more convenient one-stop prediction tools for 
clinical use (85).

A variety of ML algorithms can be employed to develop predictive 
models to optimize the rational allocation of clinical treatments, such 
as SVMs, artificial neural networks, RFs, decision trees, logistic 
regression, and k-nearest neighbors (88). However, most of these 
algorithms have limitations that are difficult to explain to clinicians. 
Consequently, recent studies have increased the use of explainable AI 
(XAI) methods such as Local Interpretable Model-agnostic 
Explanations (LIME) and Shapley Additive Explanations (SHAP), 
which are designed to help clinicians to more intuitively understand 
the impact of risk factors (89, 90). For immunocompromised patients 
with hematological malignancies, the SARS-CoV-2 mRNA vaccine is 
not effective and may increase the risk of severe breakthrough 
infections. According to Rodríguez-Belenguer et  al. (91), ML 
algorithms (particularly SVM, which shows the best performance) 
and XAI can efficiently select patient-specific features to enhance 
predictions and improve healthcare strategies, which makes the 
widespread use of AI systems in the clinical setting more promising.

3.4 Individualized treatment and prognosis

With the continuous accumulation and expansion of systems 
biology data, including molecular biology, genomics, proteomics, 
metabolomics, and bioinformatics, along with precise estimation of 
interindividual variability and ongoing efforts to establish correlations 
between different layers of information, improved targeted therapeutic 
regimens are increasingly emerging in clinical practice. It is evident 
that the demand for both precision medicine and personalized 
medicine is gradually increasing among both doctors and patients. AI 
holds significant promise in promoting personalized medicine by 
enhancing the accuracy and efficacy of these tailored therapeutic 
approaches (92). Previous studies have demonstrated that, in 
conjunction with systems biology data, AI-automated networks can 
generate dynamic data clouds that are unique to each patient. These 
data clouds help physicians understand disease mechanisms, identify 
relevant blood biomarkers, and define druggable molecular targets. 
Then this information can be used to develop individualized treatment 
regimens, including the selection of the most effective drug and 
determination of the optimal dosage (93).

AI-assisted individualized treatment and prognostic prediction 
models are widely used in patients with leukemia. Previous studies 
have shown that AI models based on ML algorithms can identify key 
prognostic molecular markers for AML using high-throughput 
sequencing expression profiling data (94). These models can also 
predict complete remission or event-free survival, calculate prognostic 
indices, and stratify survival for individualized prognostic prediction 
(95, 96). For pediatric patients with acute lymphoblastic leukemia 
receiving cranial radiotherapy, ML algorithms can also predict 
treatment efficiency by stacking integrated classifiers, helping 
physicians to track the patients’ status (97). Notably, most current 
predictive models are trained with multi-source data from a single 
patient, which facilitates more accurate and personalized treatment 
for that particular patient. However, developers should note that 
in-depth gene sequencing is rare in routine clinical diagnosis. If an ML 
model is trained on genomic data alone and lacks clinical variables, 

the stability and generalizability of the resulting AI model will 
be greatly reduced (95).

Despite the gradual application of targeted therapies with 
innovative treatments for leukemia, conventional treatment is still 
usually performed using allogeneic hematopoietic stem cell 
transplantation (allo-HSCT) (98). Such treatment carries risks of high 
therapeutic toxicity, infectious complications, graft-versus-host 
disease (GVHD), graft failure, and relapse. ML has been used to 
predict risk factors for death in patients treated with allo-HSCT (99), 
with alternate decision trees showing great potential (100, 101). This 
allows the analysis of multiple factors simultaneously and ensures the 
generalization and high accuracy of the results. In addition, the output 
of alternate decision trees has the advantage of visualization, which 
lays the foundation for extended clinical use (100). Among the many 
prognostic risks of allo-HSCT, GVHD is the top priority. Recent 
studies have utilized decision tree tools to stratify post-transplant 
survival and have successfully identified seven unique phenotypes of 
patients with chronic GVHD (101).

Moreover, several new prognostic scoring systems have been 
proposed for the treatment of myelofibrosis over the last 2 years, 
aiming to improve the identification of patients with the poorest 
prognosis following treatment with ruxolitinib and to increase the 
accuracy of patient stratification. Notably, two systems, the Artificial 
Intelligence Prognostic Scoring System for Myelofibrosis (AIPSS-MF) 
and Response to Ruxolitinib After 6 Months (RR6), have been 
developed (102, 103). Both systems outperform traditional models in 
stratifying patients, enabling early identification of patients with 
myelofibrosis who have impaired survival after ruxolitinib treatment. 
This advancement provides a foundation for personalized AI-based 
prognostic models.

New candidate biomarkers for disease progression, treatment 
response, and chemotherapy resistance in MM have been identified 
by mass spectrometry-based proteomics (69). The proteasome 
influences tumor development through tumor signaling pathways, 
immunomodulation, and drug resistance (104), with the ubiquitin 
proteasome pathway playing a crucial role in the development of 
MM. Ren et al. (105) constructed a Ubiquitin Proteasome Pathway 
Risk Score (UPPRS) system that combines nine genes related to the 
ubiquitin proteasome pathway. This system stratifies MM patients and 
utilizes the International Staging System to efficiently predict overall 
survival. In addition, a prognostic column chart was produced to 
uncover mechanisms of resistance to proteasome inhibitors. This can 
be used to identify new targets for inhibiting the ubiquitin proteasome 
pathway, aiming to reduce the recurrence rate and increase the cure 
rate of MM (105). Furthermore, an ML-based decision support system 
can identify proteomic profiles to provide sensitive/resistant 
chemotherapeutic agents for patients with MM, offering a more 
precise approach for personalized treatment (106).

XGBoost models, based on an ML gradient boosting framework, 
can more accurately represent nonlinear relationships between 
multiple features and outcomes than traditional linear models. This 
advantage was recently validated in the comprehensive prognosis of 
mantle cell lymphoma (107). Despite the success of these AI models 
in individualized treatment and prognosis of hematological disorders, 
they still have limitations. These include a lack of external validation 
cohorts and generalization issues, which need to be  addressed in 
further research. To improve these models, future studies should focus 
on creating more standardized training samples and integrating 
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multiple features from multi-omics and clinical measures. This 
integration will enhance the accuracy of prognostic predictions 
(Table 5).

4 Difficulties and limitations of 
AI-assisted applications

Optimizing standardized clinical care for hematological 
diseases is a crucial and challenging area of research. 
Standardized care in hematology involves providing uniform 
treatments for patients based on clinical practice guidelines and 
best practices to achieve optimal outcomes and consistent 
patient care regimens, reducing variability due to differences in 
medical practice. The development of standardized treatments 
is typically based on extensive clinical research and experience 
to determine the most effective and safest treatments for specific 
situations. These guidelines and specifications are often 
developed by professional medical organizations, academic 
institutions, or government agencies.

In the past 5 years, the rapid advancement of emerging 
technologies such as AI, ML, and DL has led to the development of a 
series of AI applications based on generalized comprehensive 
diagnosis and treatment. These applications have been widely used 
throughout the entire process of managing hematology patients, from 
prediction and diagnosis to treatment and prognosis. They range from 
analyzing peripheral blood smears and bone marrow smears to 
identifying genome heterogeneity and molecular biomarkers.

The integration of AI and human expertise is effectively advancing 
the intelligence, standardization, and normalization of hematology 
diagnosis and treatment. AI algorithms help humans analyze and 
interpret vast clinical data, improving the efficiency, objectivity, and 
accuracy of diagnosis and guiding clinical decision-making, 
particularly for inexperienced doctors. In addition, they can integrate 
data from multiple sources and uncover potential new clinical 
discoveries, thereby extending human capabilities and deepening 
knowledge and understanding of hematological disorders. This 
integration opens new directions and pathways for future research and 
improvement of treatment prognoses. In essence, AI enhances our 
understanding of blood diseases and offers new opportunities for 
improving therapeutic outcomes.

However, there are many difficulties and shortcomings in the 
process of using AI to these ends (Figure 3). First, any AI product 
needs to obtain a medical device registration certificate before it can 
be used clinically, which means there needs to be a standardized AI 
product that has been comprehensively validated. This is a prerequisite 
for integrating AI models into clinical practice. In terms of 
morphological recognition, many digital image analyzers using AI 
algorithms have been developed to automate blood smear examination 
and pre-classify cells. However, these come from different 
manufacturers and exhibit variation in staining methods, optical 
magnification, color, and display characteristics, hardware, software, 
and file formats. This lack of standardization presents significant 
challenges for consistent and reliable clinical application (108). The 
lack of standardization of parameters throughout the analysis process 
could also somewhat limit the extended use of this technology. In 
addition, because AI undergoes continuous ML to improve its 
performance, the integration and training of new data during the ML 

process is dynamic and flexible. This means that the system’s 
heterogeneity is susceptible to analytical confounders that do not align 
with highly stringent clinical trial standards and regulations. These 
confounders include batch effects, interinstitutional differences in 
sample collection, and pre-analytical processing protocols, which lead 
to difficulties in comparing and evaluating new algorithms (109). 
Therefore, the incorporation of AI technology does not mean the 
complete liberation or exclusion of humans. Instead, it emphasizes the 
need for human-supervised use to assist in clinical diagnosis and 
treatment. It also highlights the importance of establishing 
comprehensive guidelines and standard evaluation criteria for 
AI tools.

The second issue is the lack of standardized data and poor 
reproducibility. Data form the foundation of AI applications, and the 
large global population base provides an opportunity to establish 
extensive databases. It is widely acknowledged and confirmed that 
increasing the sample size greatly benefits algorithm performance 
enhancement by improving AI model accuracy. However, available 
training data for blood diseases is highly complex and limited, which 
makes it time-consuming to collect a large number of samples. 
During this process, changes in equipment, procedures, and 
personnel may occur, potentially leading to incomplete capture of 
morphological, genetic, or molecular biological variation, as well as 
susceptibility to issues such as overfitting and accidental fitting of 
confounding factors. In actual research, different laboratories and 
teams utilize various AI detection platforms with differences in 
model workflow, detection reagents, and selection parameters, 
which are constrained by infrastructure limitations. This results in 
uneven quality of similar data, which significantly reduces 
homogeneity (110). In addition, the relative independence of 
medical institutions makes it difficult to intercommunicate and 
share data, compromising the transferability of AI models across 
different clinical institutions. In the field of diagnosis and treatment 
of hematological diseases, systematic, and comprehensive high-
dimensional data for ML are needed to provide accurate and robust 
prediction results to guide treatment strategies (95). Particularly 
when using ML for analyses involving sensitive and confidential 
patient data, a lack of standardization is likely to raise ethical issues 
regarding data privacy and security (111). Therefore, it is necessary 
to screen and construct effective datasets while complying with 
relevant regulations such as the EU General Data Protection 
Regulation. Strengthening the integration of laboratory information 
systems and electronic health record systems with ML, building a 
mature data-sharing platform, and establishing a comprehensive 
data standard system are crucial to ensure data security and 
maximum sharing. Using ML on this basis is more likely to promote 
data-driven implementation into all aspects of clinical care, such as 
accelerating the process of drug discovery and development and 
reducing failure rates for hematological diseases (81).

Another key difficulty is the lack of intersection between 
medicine and engineering. Given the complexity of ML, which 
requires continuous refinement of AI, clinicians and researchers 
often encounter several pitfalls when designing and developing new 
models (112). When constructing a model, the data are usually 
decomposed into a training set and a test set. In experiments, 
researchers often overestimate the actual effect of the model because 
of improper data splitting. Typically, only the target variables are 
changed during the experiment; however, the ML algorithm is 
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TABLE 5 Application of artificial intelligence in the precision treatment of hematological diseases.

Focus Year Disease Model Function AI algorithms References

Identification of 

biomarkers
2020 AML

MCFS, IFS, SVM, 

RIPPER

Identify LSC-specific gene expression 

signatures
ML (79)

2021 Leukemia LSC gene network

Analyze LSC gene transcriptional 

correlations and interactions between LSC 

proteins

WGCNA (80)

2021 MM MuLT
Examine the predictive value of MM 

heterozygosity TS
Supervised learning (75)

2022 ATLL SVM-RFECV Classify different ATLL subtypes of AC ML (76)

2022 MM
Synthetic weighted 

models

Predicting undetectable MRD in multiple 

myeloma episodes
ML (77)

Drug development 2019 AML DDM Predicting novel inhibitors of FLT3 t-SNE (20)

2020 CLL ANN model
Identify drugs that target key proteins that 

function in the microenvironment
ANN (82)

2021 ITP TPMS
Obtaining a more rational pathway between 

eltrombopag target and key ITP proteins
ML (83)

Prediction of 

disease
2020 ALL

CART, RF, GM, 

C5.54 decision tree
Identify significant risk for ALL ML (86)

2023 AML, MDS, MPN MN-predict Dynamic prediction of myeloid tumor risk Cox regression (85)

Individualized 

treatment and 

prognosis

2019 AML

Prediction model 

based on 

nomogram

Identify key prognostic molecular markers of 

AML and predict prognosis
Cox regression (94)

2019 AL

Prediction model of 

relapse after allo-

HSCT

Aids decision-making in allo-HSCT ADTree (100)

2019 AML ANN model

Improves stratification accuracy while 

identifying strong predictors of AML 

survival

ANN (96)

2020 ALL
Stacked ensemble 

classifier

Predicts CRT therapy in pediatric ALL 

patients
ML (97)

2021 MDS Prognostic models

Dynamically predict survival, probability of 

leukemia transformation and risk 

stratification in MDS patients

Stochastic survival (87)

2022 MF RR6

Early identification of survival-impaired MF 

patients who may benefit from timely 

treatment conversion to RUX therapy

ML (103)

2023 AML
A multi-stage ML 

decision model

Predict and risk stratify complete remission 

and survival in AML
ML (95)

2023 MF AIPSS-MF, RR6
Improve ability to identify subgroups of 

worst patients for stratification
ML (102)

2023 MM UPPRS

Assess associations between clinical 

outcomes and PI and UPPRS-triggered 

responses

Cox regression, LASSO (105)

2023 MCL XGBoost
Accurately predict MCL disease outcomes in 

large patient cohorts
ML (107)

AC, asymptomatic carriers; ADTree, alternate decision tree; AIPSS-MF, artificial intelligence prognostic scoring system for myelofibrosis; AL, high-risk acute leukemia; ALL, acute 
lymphoblastic leukemia; allo-HSCT, allogeneic hematopoietic stem cell transplantation; AML, acute myeloid leukemia; ANN, artificial neural network; ATLL, adult T-cell leukemia/lymphoma; 
CART, classification and regression tree; CLL, chronic lymphocytic leukemia; CRT, cranial radiotherapy; DDM, drug discovery map; GM, gradient lifting machine; IFS, incremental feature 
selection; ITD, internal tandem duplication; ITP, primary immune thrombocytopenia; LASSO, least absolute shrinkage and selection operator; LSC, leukemia stem cells; MCFS, Monte Carlo 
feature selection; MCL, mantle cell lymphoma; MDS, myelodysplastic syndrome; MF, myelofibrosis; ML, machine learning; MM, multiple myeloma; MPN, myeloproliferative neoplasm; MPL, 
thrombopoietin receptor; MuLT, multi-learning training method; OS, overall survival; PI, proteasome inhibitor; RR6, response to ruxolitinib after 6 months during ruxolitinib treatment; 
RIPPER, repeated incremental pruning to produce error reduction; RUX, ruxolitinib; SVM, support vector machine; SVM-RFECV, support vector machine recursive feature elimination and 
cross validation; TS, treatment sensitivity; t-SNE, t-distributed random neighbor embedding; TPMS, treatment effect mapping system; UPPRS, ubiquitin-proteasome pathway; WGCNA, 
weighted gene co-expression network analysis.

https://doi.org/10.3389/fmed.2024.1487234
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2024.1487234

Frontiers in Medicine 14 frontiersin.org

highly sensitive to hidden variables, leading to confounding factors. 
It is necessary to use multiple ML models to detect these hidden 
variables. Data output from an AI model may be biased, and model 
developers may misunderstand the goal. Therefore, the rich 
experience of professionals and standardized diagnosis and 
treatment processes are crucial for improving the applicability of 
ML in the diagnosis and treatment of hematological diseases. 
However, the number of experienced and professional hematologists 
is currently limited, and few clinicians have knowledge of AI 
technology or are skilled in its development, research, and use. 
Cultivating such composite high-end talents requires a significant 
amount of time and economic cost. This limitation hampers the 

increasing effectiveness, precision, and clinical adoption of 
AI products.

The “black box” is an objective shortcoming of AI technology. AI 
relies on continuous ML to improve its performance. ML includes 
three components: algorithms, training data, and models. An 
algorithm is a set of procedures that, in ML, learns to recognize 
patterns after being trained on large amounts of data. Once an ML 
algorithm is trained, the result is an ML model, which can be used by 
people. DL models usually contain a large number of parameters and 
complex network structures, enabling them to handle high-
dimensional data and learn complex feature representations. However, 
the complexity of the model also makes its inner workings 
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Challenges and future improvement of artificial intelligence in precision medicine of hematological diseases.
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unexplainable. Typically, any one of these three components can 
be hidden or figuratively described as being placed in a black box. To 
protect intellectual property and achieve higher accuracy and 
generalization, AI developers often obscure the model or the data used 
to train the model. This means that the training data are placed in a 
black box, which makes it impossible for non-AI professionals, such 
as clinicians, to directly understand how the model extrapolates 
decisions during the decision-making process. This difficulty ensuring 
the credibility and safety of the results has, to some extent, hindered 
the full integration of AI ML technology and clinical practice. In view 
of this, research in recent years has focused on the development of 
new XAI technologies (113–116), such as LIME and SHAP (89, 90). 
XAI can capture the results and outputs of ML/DL algorithms and 
provide model decision-making and interpretation to overcome the 
limitations of the black box nature of AI. XAI has shown great promise 
in diagnosis and prediction of drug discovery and development (116–
118). However, XAI technology is still in the exploration and 
development stages and has not been effectively and 
comprehensively standardized.

Overall, AI and ML have demonstrated promising results in 
laboratory research and hold potential for widespread application in 
clinical auxiliary diagnosis and treatment. However, the lack of 
standardized product standards, uniform data, and high-level 
expertise hinders the transferability of AI and ML, leading to 
complexity and challenges in interpreting algorithms and models. The 
main obstacles that need to be  addressed include establishing 
reasonable and legal clinical decision-making guidelines and 
enhancing the integration of AI into clinical practice.

5 Current research hotspots and 
suggestions

Due to the deepening reform and development of “AI + medical,” 
the field of blood disease diagnosis and treatment is undergoing major 
changes. Clinical laboratories are transforming the traditional purely 
manual comprehensive diagnosis and treatment model by integrating 
clinical decision support systems with AI, ML, and DL algorithms 
(119). This entails the integration of morphology, immunology, 
genetics, and molecular biology with advanced high-precision 
technology. Through data collection, sorting, preprocessing, feature 
extraction, model establishment, validation, evaluation, and treatment 
optimization, AI has significant applications across all stages of blood 
disease healthcare. These stages include early diagnosis, personalized 
treatment plans, disease progression prediction, real-time prognosis 
monitoring, and drug management. The implementation of AI greatly 
reduces the need for manual intervention while significantly 
improving efficiency and accuracy. This enables doctors to make more 
informed decisions in clinical practice and assists in promoting the 
standardization of clinical diagnosis and treatment.

Despite the great convenience brought by AI, there are still many 
challenges to integrating it into clinical practice, highlighting 
directions for subsequent research. First, it is necessary to fill the gap 
of specific criteria for AI-assisted diagnosis of hematological diseases 
and establish a standardized database. The classification of 
chromosomes in the karyotype analysis of patients with blood diseases 
is cumbersome and error-prone. Most of the existing AI models have 
been developed from different private datasets with poor 

transferability. To address this, a research team has established publicly 
available clinical chromosome classification datasets (120). Similarly, 
the LeukmiR genetic database was developed based on AI 
algorithms (63).

Second, the application of AI products needs to be evaluated 
in clinical trials, which requires the establishment of 
comprehensive reporting guidelines. These guidelines ensure 
standardized data output, address potential sources of bias specific 
to AI interventions, and enable integration into AI DL models. 
Ensuring the successful application and transferability of AI 
models across teams or laboratories is crucial. To address potential 
risks associated with AI use in the clinic, prospective evaluations 
involving AI interventions are necessary. Since the first reporting 
guidelines for clinical trials involving AI interventions 
(SPIRIT-AI) were developed in 2019 and the first international 
standards for clinical trials were jointly released in 2020 (121–
126), the quality of clinical trials has improved. The latest 
guidelines indicate that in addition to the core items of CONSORT 
2010, the CONSORT AI extension adds 14 new items (127), and 
the SPIRIT AI extension adds 15 new items (128). These additions 
address the processing of inputs and outputs, the setting of 
interventions, the interaction between humans and AI, and the 
analysis of error cases. This improves transparency and integrity 
in reporting clinical trials of AI interventions. In addition, the 
Minimum Information about Clinical Artificial Intelligence 
Modelling (MI-CLAIM) guidelines and the Minimum Information 
for Medical AI Reporting (MINIMAR) series have been released. 
These guidelines are designed to help researchers improve their 
designs and model quality (121). It is believed that more 
comprehensive guidelines will be  developed to evaluate and 
regulate the clinical application of AI products in the future.

In addition, with the rapid development of AI technologies 
such as ChatGPT and their application in the field of education, 
humans are gradually moving toward a new path of collaborative 
development and symbiosis with AI in education (129). Similarly, 
the collaboration between medical professionals and AI is 
becoming essential for the advancement of AI in healthcare, 
ensuring that AI can effectively adapt to and enhance medical 
treatment. The current clinical and research environment suggests 
an urgent need for more clinicians with strong professional 
abilities to participate in the research and development of AI 
systems. This involvement will help replicate and promote the 
experience of doctors, produce more AI products, and ensure that 
these technologies are closely aligned with clinical needs to better 
serve patients. Accelerating the use of AI and clinical decision 
support systems (AI-CDSSs) in clinical practice is essential. 
However, there is a shortage of high-end composite talents in the 
field. According to international surveys, undergraduate medical 
students show a strong interest in AI and have high expectations 
but most have not received relevant education. They often do not 
understand the basic principles, limitations, and potential biases 
of various ML algorithms (130–133). However, large AI language 
models such as ChatGPT (129) can be used as virtual teaching 
aids to provide students with personalized and immediate medical 
knowledge and conduct interactive simulation learning and 
detection. Therefore, significant changes will gradually take place 
in the field of medical education. Increasingly more undergraduate 
medical colleges are beginning to focus on training students in AI 
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technology. This includes providing personalized learning 
experiences, enhanced diagnostic training, and risk-free practical 
experiences (134). The School of Medicine at the University of 
Paris has introduced an elective course on AI-CDSS. This program 
allows medical students to assume the role of AI-CDSS designers 
and develop projects from six key aspects: determining needs, 
defining goals, designing educational strategies, implementation, 
formulating assessments, and designing project evaluations. The 
aim is to cultivate digital health skills and critical thinking, 
preparing students to adapt to the rapidly evolving digital 
environment (135). Dartmouth’s Geisel School of Medicine also 
offers elective courses on AI and its clinical applications. These 
courses include a preclinical hematology module, which enhances 
students’ understanding of advanced AI algorithms and models 
(136). Emory University School of Medicine offers an elective 
course on web-based resources and related research papers for 
fourth-year medical students without a background in data 
science or programming. An analysis of student project reports 
from this course concluded that even 1 month of AI and ML 
education during the undergraduate period can significantly 
improve students’ confidence in their understanding and self-
reporting of AI and ML concepts (137), preparing them for 
current and future developments and changes in practices. 
Integrating AI into education fosters team cooperation with open 
communication between medical students, clinical medical 
workers, and AI experts. This approach leverages the technical 
skills of AI experts, the rich experience of clinical workers, and 
the valuable opinions and expectations of medical students, 
ensuring that research and development are closely aligned with 
clinical practice and meet clinical needs and preferences. However, 
this type of medical education has not been widely promoted on 
a global scale, primarily because of the lack of teachers 
knowledgeable in AI and the absence of standard guidelines for 
its use. To promote the effective and responsible use of AI in the 
future, several recommendations have been proposed: ensuring 
the transparency of AI system development and deployment, 
resolving biases in AI algorithms to ensure educational equity, 
verifying the output of AI educational tools, protecting the privacy 
of input data, obtaining informed consent, promoting multi-party 
cooperation, training teachers in AI ethics, conducting important 
ideological education, continuously maintaining the performance 
of AI algorithms, establishing clear accountability systems, and 
improving usage standards (134). In conclusion, future doctors 
should follow current development trends and be  taught to 
become key users of AI as early as possible. They should 
understand the principles and basic scope of various algorithms 
and models and be able to critically analyze and evaluate the data 
and suggestions provided by AI. This approach will inject fresh 
perspectives and active force into the future optimization and 
standardization of clinical diagnosis and treatment via AI (74).

With the increasing integration of AI and ML algorithms into 
medical education, people’s understanding of high-end technology 
continues to deepen, and their willingness to use AI technology 
continues to grow. However, alongside this enthusiasm, there are 
also fears and concerns about human judgment being gradually 
reduced and replaced by AI (138). However, in fact, most studies 
have selectively highlighted the advantages and clinical 
applicability of AI products, often leading to exaggerated results 

to meet expectations. In addition, there are ethical challenges 
related to patient privacy, inherent biases in algorithms, and the 
interpretability-associated shortcomings of AI. In the future, it is 
expected that AI technology will be able to integrate medical data 
from any data owner worldwide without violating privacy laws, 
thereby crossing the technological divide and driving precision 
medicine for blood diseases (139).

To better use AI to promote the standardized diagnosis and 
treatment of blood diseases, we can comprehensively analyze and 
compare the current AI-assisted technology platforms or models 
applicable to this field. By selecting the optimal AI system, we can 
build a comprehensive platform for standardized, AI-assisted 
diagnosis and treatment of blood diseases based on the clinical 
pathway of the diagnosis and treatment of blood diseases. Continuous 
ML updates can improve diagnostic accuracy, guide clinical 
treatment, recommend the best and most personalized treatments, 
and dynamically track and adjust treatment plans as the patient’s 
condition changes. The platform or model should adhere to the 
clinical pathway, including data collection and sorting, data 
preprocessing and feature extraction, diagnosis, dynamic 
optimization of treatment regimens, prediction of disease 
progression, prognosis, and nursing guidance. This approach will 
promote the standardization of diagnosis and treatment of blood 
diseases. Recent research has also proposed a future involving multi-
model integrated interpretation of data, where information from cell 
morphology samples, genetic analysis, and other datasets is combined 
to form a human–AI feedback loop (108). This approach aims to 
provide an overall semantic understanding as well as thoughtful 
diagnostic prediction and interpretation (140). In this way, 
hematologists can be assisted in real time to make the best clinical 
decisions. Integrated AI tools combining different ML techniques can 
automate repetitive tasks, including the assessment of cell 
morphology, FC, genetic data, and genetic mutation data, integrating 
all diagnostic modalities for the same blood disorder (74). However, 
the development and use of such multimodal DL methods should 
be accompanied by the establishment of regulatory oversight, legal 
frameworks, and monitoring systems to ensure effective clinical 
disclosure and safe application of AI products.

6 Conclusion

AI based on ML and DL algorithms has been continuously 
applied to the comprehensive diagnosis and precision treatment in 
hematological diseases (Table 6). Its powerful data analysis capability 
can improve the speed of laboratory diagnosis while maintaining or 
even surpassing the accuracy of human diagnosis. Notably, some AI 
digital recognition systems offer high degrees of visualization, 
presenting analysis and diagnosis results to clinicians in an intuitive 
and visual manner. In treating blood diseases, issues such as drug 
resistance, GVHD in allo-HSCT, and relapse are common. With the 
integration of various clinical data and ML, AI has been able to 
uncover potential pathogeneses, drug resistance mechanisms, and 
new therapeutic targets, providing more accurate guidance for drug 
innovation, risk stratification, and prognosis tracking. Despite the 
lack of AI product standards, the absence of standardized ML data, 
the challenges posed by the intersection of medicine and engineering, 
and the difficulty of interpreting algorithm models, progress has been 
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TABLE 6 The application of AI in the diagnosis and treatment of various hematological diseases.

Diseases Application System Purpose and effect References

Leukemia APL Diagnosis Mask R-CNN Detection and classification of nucleated cells using example segmentation methods (26)

XG Boost model Reveal the PML:: RARA gene target in APL (72)

The multi-stage DL platform Automatically reads bone marrow smear images, accurately segments cells, predicts APL (27)

AML Diagnosis FRCNN, VGG Image Annotator, ENN, 

Xception CNN, ResNet50

Distinguish AML and predict the mutational status of NPM1 (34)

SVM or RF classifier Identification of characterized genes with the ability to predict FLT3/ITD mutation status (145)

AML classifier Risk prediction, differential diagnosis and subclassification of AML were performed (50)

Predicting genetic associations in acute myeloid leukemia disease (51)

ABMILM Automatic diagnosis of AML and molecular characterization (40)

Cross-panel sample-level classification 

model

Diagnosis and classification of AML (41)

Treatment A multi-stage ML decision model Predict and risk stratify complete remission and survival in AML (95)

ANN model Improves stratification accuracy while identifying strong predictors of AML survival (96)

DDM Predicting novel inhibitors of FLT3 (20)

MCFS, IFS, SVM, RIPPER Identify LSC-specific gene expression signatures (79)

Prediction model based on nomogram Identify key prognostic molecular markers of AML and predict prognosis (94)

ALL Diagnosis ALL Detector (ALLD) Distinguishing ALL patients based on primary cellular micrographs (142)

Treatment CART, RF, GM, C5.54 decision tree Identify significant risk for ALL (86)

Stacked ensemble classifier Predicts CRT therapy in pediatric ALL patients (97)

CLL Treatment ANN model Identify drugs that target key proteins that function in the microenvironment (96)

Leukemia Diagnosis YOLOX-s, MLFL-Net Cellular detection, classification and prediction of leukemia types (30)

Techcyte WBC identification and vesicle recognition (37)

Faster R-CNN Automatically detect bone marrow cells and determine their type (25)

CNN Model Recognize all subtypes of leukemia (32)

ANN + FFNN + SVM1 Early detection of leukemia (33)

AlexNet, GoogleNet, ResNet-182

CNN-SVM 3

Treatment LSC gene network Analyze LSC gene transcriptional correlations and interactions between LSC proteins (80)

Lymphoma MCL Treatment XGBoost Accurately predict MCL disease outcomes in large patient cohorts (107)

ATLL Treatment SVM-RFECV Classify different ATLL subtypes of AC (76)

(Continued)
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Diseases Application System Purpose and effect References

Myeloma MM Treatment MuLT Examine the predictive value of MM heterozygosity TS (75)

Synthetic weighted models Predicting undetectable MRD in multiple myeloma episodes (77)

UPPRS Assess associations between clinical outcomes and PI and UPPRS-triggered responses (105)

Myelodysplastic syndrome MDS Diagnosis DenseNet, YOLO Detection and classification of cellular and non-cellular objects in samples (140)

BMSNet Evaluation of single-nucleated sphere morphology in bone marrow smears (29)

Flow cytometry diagnostic system for 

MDS

Distinguish between MDS and non-neoplastic cytopenia
(144)

Treatment Prognostic models Dynamically predict survival, probability of leukemia transformation and risk 

stratification in MDS patients

(87)

Myeloproliferative disorders MF Treatment RR6 Early identification of survival-impaired MF patients who may benefit from timely 

treatment conversion to RUX therapy

(103)

AIPSS-MF, RR6 Improve ability to identify subgroups of worst patients for stratification (102)

MPN Diagnosis Single Shot Multibox Detector Determine megakaryocyte cytomorphologic subtypes and correlate extracted features 

with potential diagnosis of MPN or reactive/non-tumor mimics

(38)

Immune hematologic disorders ITP Treatment TPMS Obtaining a more rational pathway between eltrombopag target and key ITP proteins (83)

Metabolic blood disorders HM Diagnosis Techcyte Assessing the accuracy of WBC classification and primitive cell identification (37)

Metastatic cancer of bone marrow MCBM Diagnosis Morphogo Identifying metastatic atypical cancer clusters and facilitating rapid diagnosis (143)

AA, MDS, AML Diagnosis Recognition model constructed by 

image-net pre-trained model

Automatic differentiation of AA, MDS and AML based on bone marrow smears (28)

AML, MM Diagnosis BMAsDCC Detect and classify all non-neoplastic bone marrow cell components of DCC and tumor 

cells

(22)

AML, ALL, CML, CLL Diagnosis ResNet50 Automated analysis of bone marrow smears using only slide-level labels (141)

AML, MDS, MPN Treatment MN-predict Dynamic prediction of myeloid tumor risk (85)

AA, aplastic anemia; AC, asymptomatic carriers; AI, artificial intelligence; AIPSS-MF, artificial intelligence prognostic scoring system for myelofibrosis; ALL, acute lymphoblastic leukemia; ANN, artificial neural network; AML, acute myeloid leukemia; APL, acute 
promyelocytic leukemia; ATLL, adult T-cell leukemia/lymphoma; CART, classification and regression tree; CLL, chronic lympholeukemia; CNN, convolution neural network; CRT, cranial radiotherapy; DCC, differential cell count; DDM, drug discovery map; DL, deep 
learning; ENN, ensemble neural network; FFNN, feedforward neural network; FLT3, FMS-like tyrosine kinase 3; FRCNN, faster region convolutional neural network; GM, gradient lifting machine; HM, hematological malignancies; IFS, incremental feature selection; 
ITD, internal tandem duplication; ITP, primary immune thrombocytopenia; LSC, leukemia stem cells; MCFS, Monte Carlo feature selection; MCL, mantle cell lymphoma; MCBM, metastatic cancer of bone marrow; MDS, myelodysplastic syndrome; MF, myelofibrosis; 
ML, machine learning; MM, multiple myeloma; MPN, myeloproliferative neoplasm; MuLT, multi-learning training method; NPM1, nuclear phosphoprotein 1; PI, proteasome inhibitor; RF, random forest; RIPPER, repeated incremental pruning to produce error 
reduction; RR6, response to ruxolitinib after 6 months during ruxolitinib treatment; RUX, ruxolitinib; SVM, support vector machine; SVM-RFECV, support vector machine recursive feature elimination and cross validation; TPMS, treatment effect mapping system; TS, 
treatment sensitivity; UPPRS, ubiquitin-proteasome pathway; WBC, white blood cells; XG Boost, extreme gradient boosting.

TABLE 6 (Continued)
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made by establishing digital databases of blood diseases, formulating 
laws and regulations on AI ethics and privacy supervision, integrating 
AI algorithm education into medical undergraduate programs, and 
developing interpretable AI models. In short, AI has the potential to 
markedly enhance the precision of clinical diagnosis and treatment 
of hematological diseases. However, the ultimate goal is not to replace 
humans with AI but to aid the standardization of clinical diagnosis 
and treatment through AI products. To further improve and 
standardize precise diagnosis strategies and the treatment of blood 
diseases in the context of “AI + medicine,” more research is needed to 
build an integrated intelligent diagnosis and treatment platform that 
aligns with clinical pathways.
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